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Abstract. It is now generally recognized that reliable finite element procedure, must
fulfill specific mathematical convergence requirements, as consistency and stability
conditions, before it is recommended for general use in solid and fluid mechanics. In
the present paper it will be shown that three-dimensional finite element HC8/27, based
on the primal-mixed formulation in linear elasticity, is consistent and stable. In
addition, numerical evaluation of the inf-sup condition for the full three-dimensional
primal-mixed scheme in elasticity will be presented. It should be noted that present
finite element is stable without use of any stabilization technique.
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1. INTRODUCTION

The main motive of the present investigation is the research and developing of the
finite element approach for which common problems connected to the primal finite
element methods in elasticity will not occur. These problems may be divided in three
main groups. The first group of problems is connected to shear locking when low order
elements are used. The second group of problems is the presence of spurious or kinematic
modes, that is extra zeroes eigenvalues of system matrix, when selectively reduced
integration is used. The third group of problems is the occurring of the nearly singular
system matrix when the limit of incompressibility is approached. The popular standard
displacement based finite element approach, as representative of the class of primal
approaches, in its raw form is not applicable in these situations. In spite of great number
of techniques to remedy these bad characteristics, they are all on the account of violation
of the consistency and stability issues. For example, very popular general shell element
QUAD is not stable in the analysis of banding dominated problems [1,2], regardless of
number of local nodes per element.

On the other hand, from the 1960's when term mixed method was first used, to
describe finite element methods in which two or more variables of interest are treated as
fundamental variables, number of reasons have been offer to prefer their use in numerical
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simulation rather than primal ones [1,10]. The mixed finite element schemes are now
abundantly used for the analysis of fluid flows, almost incompressible and
incompressible materials, plates and shells with plane finite elements.

Nevertheless, the overall stability of mixed approaches is difficult to achieve [9-11]. It
is from the reason that in the linear elasticity problems one has to deal with two
fundamental variables, that is stresses and displacements. In that case, the first stability
condition requires a large displacement approximation space in accordance to stress
approximation space. On the other hand, second stability condition requires a large stress
approximation space in accordance to displacement. It is clear that first and second
stability conditions are in contradiction. Therefore, to avoid instabilities the well balance
between the approximation spaces of these two fundamental variables must be
accomplished.

The application of primal-mixed approach in elasticity did not encountered much
attention until results presented in papers [4-6], where it has been shown that it has many
advantages in accordance to displacement based finite element approach. The main
reason for that situation results from fact that stability, which governs the convergence
and the rate at which approximate solution will converge to the solution of the governing
mathematical model, is no obvious as in the case of primal based finite element methods.
Fortunately, in the case of the present scheme the first stability conditions is a priory
satisfied. Consequently, with the careful choice of the stress approximation space over
the displacement, the second stability condition will be satisfied [11], also.

Only recently, an extension of the present formulation to the three-dimensional
settings was made [7,8], where mathematical model starts from the fully three-
dimensional equilibrium equations and linear tri-dimensional strain-displacement and full
stress-strain relationships, without any simplifications, correcting terms, tricks or tune-
ups. It has been shown that the lowest-order finite element HC8/9 of that scheme is
consistent, solvable and robust. Further it has been shown that it satisfies ellipticity
condition, known also as ellipticity on the kernel condition – the first stability condition,
since the bilinear form connected to the stress space is coercive (see Chapter 4.2).
Moreover, it has been shown that it can be used in the analysis of regular model problems
of arbitrary geometry, as well as in analysis of compressible and almost incompressible
materials. Under regular model problems we consider the model problem subjected to the
smooth force and displacement boundary conditions. However, it has been numerically
proven that it is not stable, i.e. it does not pass numerical inf-sup test. That results was for
expected, since its two-dimensional counterpart does not pass that test also, although it
was numerically proven that it is very efficient [6,7].

In the present paper it will be shown that is possible to construct reliable [1] finite
element method in linear elasticity that is consistent and automatically satisfies the first
and second stability condition, and in addition, at the same time has C0 continuous
stresses.

More clearly, this paper is an answer to the paper of Brezzi et al. [9] where several
observations concerning mixed finite element schemes are presented. Firstly, "...for linear
elasticity problems such a construction (satisfying the first and second stability condition)
is yet unachieved and looks rather difficult". Secondly, there is a remark about mixed
finite element in elasticity where both variables of interest (stresses and displacements)
are continuous "…It is not known if this element is stable". And finally, "…The use of C0
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discretization for the stress filed should be avoided. The main reason for this is the
difficulty in the numerical solution of the linear system of equations."

In the present case of finite element HC8/27, a well-balanced continuous stress and
displacement interpolation functions are used, assuring that second stability condition is
satisfied for model problem with arbitrary model geometry and value of Poisson's ratio.

The present finite element scheme is based on so-called primal-mixed formulation in
elasticity that is fully investigated in two-dimensional case [4-7], where all relevant
issues as reliability, efficiency and applicability are examined in detail. It was
numerically proven that primal-mixed finite element QC4/9 is reliable and more efficient
than corresponding finite element Q4 of usually used displacement finite element
scheme, in spite of additional three equations per global node connected to the stress
components.

The one of main advantage of the present finite element in accordance to
displacement-based finite element is calculation of stresses in the processing part of the
finite element procedure, so typical procedures as stress recovering and stress smoothing
techniques [14] are no needed anymore.

2. PRESENT FORMULATION

We start from the weak primal-mixed formulation in elasticity [4] which seeks
nnn HH ×Ω×Ω∈ sym

11 )()(},{ Tu  satisfying wu =Ω∂ u
 and pnT =⋅ Ω∂ t

 such that:

∑∫∫∫ ⋅−Ω∂⋅−Ω⋅−=Ω∇−∇− Ω∂ΩΩ
e

FvpvfvTvuSST
t

ddd    ):: :(A , (1)

for all nnn HH ×Ω×Ω∈ sym
11 )()(},{ Sv  satisfying 0=Ω∂ u

v  and 0nS =⋅ Ω∂ t
.

In this expression u is displacement field, T is the stress field, f is the vector of body
forces and p is the vector boundary tractions. F is the concentrated force not considered
later in this text. Further, A = K−1 is the elastic compliance tensor, while v and S are the
displacement and stress weight functions, respectively. Space nn

symH ×Ω)(1  is the space of all
symmetric tensorfields that have square integrable gradient, while space H1(Ω)n is the
space of all vectorfields that are square integrable and have square integrable gradients,
where n is the number of spatial dimensions of the problem under consideration. It should
be noted that trial and test displacement space functions are from the same space H1(Ω)n

as in the case of popular displacement based finite element approach. Further, the stress
boundary conditions are introduced as essential, although not necessary from the point of
view of underlying variational principle.

In the case of the present approach, the space Π of unknown functions decomposes as
the product of two spaces Π = T × U, where space T is the space of the stress functions
and U is the space of displacement space functions. So, the present weak formulation (1)
can be written in the form:

Find u ∈ U and T ∈ T such that
)()),(),,(( vFB =vTuS (2)

for all V∈v and S∈S ,
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where B has the special form:

),(),(),()),(),,(( vTuSTSvTuS bbaB ++= . (3)

Let's explain the basic properties of the form a in Eq. (3). For the present linear
elasticity problem T, S ∈ nn

symH ×Ω)(1 , forma a has the physical sense of deformation energy
which is positive definite:

2:),( TSTST α≥Ω= ∫Ω da Α , 0≥α . (6)

Consequently, the form a : T × T → R is bilinear coercive symmetric quadratic form,
resulting with the fact that present scheme satisfies the first Brezzi condition, also known
as ellipticity condition (see Chapter 4.2).

Further, form b : T × U → R is nonsymmetrical bilinear form, while the form
F : U × U → R is the linear form [15], where the space R is the space of real numbers.

After discretization of the starting problem (1) by finite element method, it has been
shown in [4] that present scheme can be written as the system of linear equations of order
n = nu + nt , where nu is the number of displacement degrees of freedom, while nu is the
number of stress degrees of freedom:
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In this expression, unknown (variable) and known (prescribed) values of the stresses
and displacements, denoted by the indices v and p respectively, are decomposed. The
nodal stresses tLst and displacements uKq components are consecutively ordered in the
column matrices t  and u  respectively. The members of the matrices A  and D , of the
column matrices f and p (discretized body and surface forces) in (4), are respectively:
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In these expressions, N
ΛΩ  is the incidence matrix that maps global nodes into the

local nodes of an element, SN , TL are the stress approximation functions, while VM,UK are
the displacement approximation functions. The term Aabcd is the fourth order elastic
compliance tensor in its covariant form. Further, in (4) a

ug )(Λ  and q
vg )(

)(
Γ
Λ are Euclidian's

shifters. In addition, the Einstein convention on the summation of repeated indices is
used. By the letters N and M the local stress nodes are denoted, ranging in the present
case from {8,27} in each finite element. Further, letter K stands for 8  displacement node
per each element, in the present case.
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From the expression (4) it can be seen that present system matrices is symmetric and
indefinite. Further, it has positive, zero and negative eigenvalues due to the fact that the
saddle point problem is discretized. It is different from displacement based finite element
method where solution is sought as an extreme point, where resulting system matrix will
have only zero and positive eigenvalues. As it is already mentioned, in the present case
discretization of stresses and displacements has to be made in the compatible way in
order to avoid instabilities.

3. PRESENT FINITE ELEMENT HC8/27.

In the recent years, considerable attention has been devoted to the development of reliable finite
elements. In the present case the reliability of the finite element HC8/27 shown in Fig.1., is
examined in detail. The basic properties of the lower order finite elements HC8/8 and HC8/9, of the
present formulation, can be found in [8]. In the present notation, letter H stands for element
hexahedral geometry, while letter C indicates continuous interpolation of displacement and stress
fields. These letters are followed by number of displacement and stress local nodes per element,
respectively. Circles depict displacement nodes, while stress nodes are represented by tetrahedrons.
The present finite element HC8/27 has 3 degrees of freedom per displacement and 6 degrees of
freedom per each stress node.

Fig. 1. The finite element HC8/27.

Both unknown fields are in corner nodes approximated by the tri-linear interpolation functions
P1 − P8 given by Eq. (7).

In addition, stress field is enriched by P9 − P27 quadratic hierarchic shape functions connected
to the additional 19 hierarchic nodes, from which twelve are connected to midside nodes at the
element edges, next six are connected to midside nodes of element sides and one to, so-called,
bubble node placed at the element center.
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The numerical integration is performed by 3×3×3 numerical Gaussian integration. It
should be noted that, besides additional degrees of freedom connected to the stress global
nodes, in the two-dimensional case it was shown that this formualtion has better aspect of
the time needed for prescribed accuracy than displacement finite element method [6,7].

4. THE MATHEMATICAL CONVERGENCE REQUIREMENTS

As the finite element mesh is refined, the solution of that discrete problem should
approach to the analytical solution of the mathematical model, i.e. to converge. The
convergence requirements for shape functions of isoparametric element can be grouped
into three categories, that is: completeness, compatibility and stability. Consequently, we
may say that consistency and stability imply convergence.

Completeness criterion requires that elements must have enough approximation power
to capture the analytical solution in the limit of a mesh refinement process. Therefore, the
approximation functions must be of certain polynomial order that ensures that all
integrals in the corresponding weak formulation are finite. Further, compatibility
requirement demands that shape functions provide displacement continuity between
elements. On that manner, it will be provided that no artificial material gaps will appear
during the deformation of finite element mesh. As the mesh is refined, such gaps could
multiply and may absorb or release spurious energy.
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Completeness and compatibility are two aspects of the so-called consistency condition
between the discrete and mathematical models. A finite element model that passes both
completeness and continuity requirements is called consistent.

Further, if the method is stable the non-physical zero-energy modes (kinematic
modes) in finite element model problem will be prevented. The kinematic modes are
name for extra zeroes eingenvalues of the corresponding finite element system matrix.
The finite element is stable if it satisfies two necessary conditions i.e., the first condition
represented by the ellipticity on the kernel condition and second condition represented by
the inf-sup condition [1].

It should be noted that satisfaction of the completeness criterion is necessary for the
convergence, while violating others two criteria not necessary means that solution will
not converge. However, if the method is not stable, at least what could happen is that
approximate solution will not converge to the analytical solution at the same rate as the
best approximation error [10]. That is, in the best scenario the approximate solution will
slowly converge to the analytical solution of the mathematical model. The worse scenario
will be the getting away from analytical solution, as the mesh is refined, as shown in
numerical example from Chapter 6. With that in connection, interesting reader my notice
that reasons from illusory high accuracy of the rough meshes in the displacement base
finite element approach, are investigated in detail in [14]. Finally, in the worst case the
system matrix will be singular, thus without solution of the given model problem at all.

4.1 Consistency condition

In the present case, the completeness requirement is satisfied as local approximation
finite element functions posses all polynomial terms of degree k = 3, needed for the
present three-dimensional case. Further, both finite approximation subspaces of stress and
displacements are from space H 1 over the domain of the model problem. Consequently, it
is provided that these spaces are continuous over the interelement a boundary, resulting
that compatibility requirement is satisfied, also.

4.2 First stability condition

The ellipticity on the kernel condition [9] is given by:

hh Za ∈α≤ zzzz  allfor   ||||),( , }  allfar   0),(  { hhh VbSZ ∈=∈= vvzz (11)

Spaces Sh and Vh are finite dimensional subspaces of test stress spaces S and
displacement spaces v, respectively.

In the present case, the test and trial stress local functions are from spaces
Sh ⊂ (H 1) n×n. Therefore, the corresponding bilinear form a in (3) is quadratic. In addition,
as it is already mentioned in Chapter 2, in the physical sense it represents the deformation
energy, which is for linear elasticity problems always positive definite. Consequently, it
is symmetric and bounded, also. From all this properties of the present bilinear form a,
we can conclude that first stability condition is automatically satisfied.

4.3 Second stability condition

The second condition for stability is satisfied if for the meshes of increasing density,
value γh, following from LBB (Ladyzhenskaya, Babuška, Brezzi) condition and defined
in e.g. [12], p.76, Eq.(3.22), remains bounded above zero:
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In addition, condition (12) ensures solvability and optimality of the finite element
solution [1]. It is interesting to note that any loading does not enter the test [1].

It should be noted that discrete LBB condition in the present case is equivalently
stated [11] that for each v ∈ Vh there is an i  such that:

ihh S )(∈∇v . (15)

Because verification of condition like (12) involves an infinite number of meshes, a
numerical inf-sup test should be performed for a sequence of several meshes of
increasing refinement [1]. Consequently, in the present case, numerical inf-sup test in
matrix notations is stated as the generalized eigenvalue problem given by:

xx    1T
hhhh KDAD λ=− , (16)

where D and A are matrix entries in (4), matrix K is the stiffness matrix from the
relating displacement finite element method. The square root of the smallest eigenvalue
of the above problem minλ  is equal to the inf-sup value γh in Eq.(12). The test involves
[2] the determination of γh for several meshes with increasing refinement with the mesh
density indicator 1/N, via calculation of λmin.

If the inf-sup values, for chosen sequence of finite element meshes, do not show
decrease toward zero, meaning that the λmin values stabilize at some positive level, then it
can be considered that inf-sup test is passed. It should be noted that decreasing of the inf-
sup values on log-log diagram would be seen as curve with moderate or excessive slope.
This approach is already used in [7,8] for the testing of stability of lower order finite
element HC8/9 of the present scheme.

5. INF-SUP TEST NUMERICAL RESULTS

In this section the results of the numerical inf-sup test for the present finite element
HC8/27 with respect to the finite element HC8/9 for which the stresses approximation
space is less fine [10,13], are reported. The results are presented in the log-log diagram,
where on the horizontal axe the mesh factor N given as 1/N is presented. Mesh factor in
the present case represents the uniform subdivision of the starting one-element model,
along its axes. On the diagram's vertical axe the smallest eigenvalues of the
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corresponding generalized eigenvalues problem (16) are
given. In addition, all element matrices in (16) are evaluated
using full numerical integration.

The simple unit square block, shown in Figure 2, loaded
by uni-axial force is analyzed. The largest circles in Figure 2
depict suppressed displacement degree of freedom in x-
direction, while smaller and smallest circles depict
suppressed displacements in y and z directions, respectively.
Therefore, only some displacement degrees of freedom are
constrained to allow the present tension test in x-direction.
The model problem is gradually refined using meshes with
mesh density indicator N = 1,2,3,4.

The first model problem has only displacement degrees
prescribed as essential. The maximal eigenvalues of generalized eigenvalue problem (16)
are equal to unity, for all considered finite element meshes. Minimal eigenvalues are
shown in the Figure 3. Although, in the present case only the sequence of three finite
element meshes are considered, the instability of finite element HC8/9 is obvious, while
stability of finite element HC8/27 is numerically proven.
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Fig. 3. Inf-sup results.

In the next test, the stress boundary conditions are introduced as essential, which
means that on the free physical boundaries of the test model problem normal and shear
stress components are set to zero. Consequently, the number of stress degrees of freedom
is reduced, resulting with smaller system matrix and therefore, smaller matrices A and D
in (16). It is interesting to note that introduction of essential stress boundary condition
always improve the results. From the obtained inf-sup results shown in the Table 1 and
Figure 4, it can be concluded that finite element HC8/27 is obviously stable.

Table 1. Finite element HC8/27 Inf-sup test results.

Finite element HC8/27
The minimal eigenvalues of the problem (16)

N 1 2 3 4
λmin 0.52521005 0.45950700 0.47725788 0.46886696

E=1
ν=0.3

Fig. 2. The unit brick
model problem.
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In the Figure 5, the inf-sup test results for the present finite element and different
gradually increased values of Poisson's ratio toward incompressibility, are shown. We
may see that this element is stable even for the almost incompressibility case.
Consequently, it can be said that finite element HC8/27 is robust.
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Fig. 4. Inf-sup results. Stress boundary Fig. 5. Inf-sup results.
condition introduced as essential. Increasing values of Poisson ratio.

It is interesting to see that if the L2 norms for evaluation of the test (16), for which any
material characteristics do not enter the test, as suggested in [1], the similar eigenvalues
were obtained, see Figure 6. It should be noted that in the present paper L2 norms were
obtained using E = 1 and ν = 0 for calculating the coefficients of matrix A  and K  [6].
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Fig. 6. Eigenvalues of problem (16) when L2  and Energy norm are introduced.

It should be noted that when stress approximation spaces are such that resulting finite
elements are not stable, like in the case of element HC8/9, the occurring of the kinematic
modes (zero eigenvalues of the corresponding generalized eigenvalue problem (16)) in
the discrete inf-sup test can be prevented by not employing stress boundary conditions at
all, or applying these only on the part of the boundary where surface forces are intro-
duced. In addition, the numerical inf-sup test results for the plate bending analysis and
hyperbolic paraboloid show that present finite element is stable also, which is not pre-
sented here.
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CONCLUSION

In the present paper the reliability, that is consistency and stability, of the new primal-
mixed three-dimensional finite element HC8/27, so-called Taylor-Hood finite element in
elasticity, where displacements and stresses shape functions are a priori continuous
fundamental variables, is analyzed in detail. It has been shown that present finite element
method is consistent, which means that is satisfies completeness and compatibility
criteria. In addition it has been shown that it satisfies a priori ellipticity on the kernel
conditions, widely known as first stability conditions. Further, it has been shown that
with the careful choice of stress approximation finite element sub-spaces, the second
stability condition, known as inf-sup test, is satisfied also, providing that approximate
solution will converge to the analytical solution at the same rate as best approximation
error. The numerical experiments performed on standard benchmark examples not
presented here show the superior behavior of the present method, as well.

The present finite element, as a first mixed finite element in elasticity with such a
spectrum of good properties, can be recommended for general use in 3d elasticity.
Consequently, the usual big library of case-dependent finite elements, such as families of
one-dimensional, plane and solid elements, could be replaced with the present finite
element. Naturally, since the present approach involves much more degrees of freedom
than primal approaches, special attention must be paid on the development on the most
effective solution strategy, which is subject of the future investigation.
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U radu je pokazano da je konačni element HC8/27 primalno-mešovite formulacije u punoj tro-
dimenzionoj elastičnosti pouzdan, što podrazumenva da je konzistentan i stabilan. Kao takav, može
da se preporuči kao univerzalan konačni element element u mehanici čvrstog tela za analizu
problema proizvoljne geometrije, uslova oslanjanja, zadatih opterećenja i vrednosti koeficijenta
smicanja ν . Na taj način se uobičajene biblioteke elemenata, bazirane na familijama jedno-
dimenzionih, ravnih i trodimenzionih elemenata, zamenjuju samo jednim trodimenzionim ele-
mentom, kome korisnik može da bira broj lokalnih čvorova po elementu za aproksmaciju napona, a
u zavisnosti od toga da li je polazni fizički problem problem regularan ili ne.


