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Abstract. The new vector methods in the linear homogeneous deformation kinematics
including their topological and algebraic characterization are formulated.

1. INTRODUCTION

In approximation of globally averaged final linear homogenous standard contiinual
medium, the geometrical aspect of kinematic description of the material is rigorously
analised.. The approximation itself is conservative broadening of the term "global" rigid
body. This model can be abandoned, if necessary. As a result of the basic Helmholtz
theorem for kinematics, in this case new vector products for dilatation and shearing are
defined after the analogy with rotatory motion. The primary idea is to base new laws of
dynamics for the motions on the basis of the fact that rotatory motion follows the basic
law of dynamics.The cost of this idea is: abandoning of the present Euclidean geometry
and introduction of the global affine geometry.This is achieved by employing critical
analysis of the objectivity principle. In this way Galileo’s group of motions is also
broadened. Mathematical innovation consists of the introduction of new vector products,
and with this also the introduction of non-Lie's (non-quantum) algebras, groups and
(differential) geometries. Cited references suggest that this is the new method. This paper
is an introductory character.

2. AVERAGE GLOBAL LINEAR APPROXIMATION OF THE FINAL CONTINUAL MEDIUM

The basic prerequisites for establishing this approximation are: 1) The space with the
observer is a vector one, three-dimensional and three exists Descartes coordinate system.
So all Latin indices an on bottom places; 2) the material observed is standard. Special
rheological models are obtained, by assumption, on the basis of this model by weakening
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or setting particular requirements. In Euler's description, used in this paper, relevant
functions of the position and time are continually differential sufficient number of times;
3) The body is observed during the two moments of time, so the discussion is of a
geometrical type. In Euler's method X(X,f), X and X represent vectors of the continual
medium particle position, i. e. of spatial points in relation to outer Descartes coordinate
system. Two points A and B are observed (A # B in every moment of time) of the
continual medium during two different moments ¢ = ¢, and ¢ > ¢, (A and By, i. e. A, and
B).Ife;i=1, 2, 3 are unit vectors of coordinate axes, then X = X; e, is valid, i.e. X = x; &;
(E: = ;). The opposite case E; # €;, two outer Descartes coordinate referentiall systems
connected, for example, with Euclids group, do not represent, in principle, a different
case. The following differences can be defined in this way: AX; iy = Xi 40 — Xi 40, DX aisz =
Xi g — X po, DX 45 = DX gigq — DX gisp + DX, 450 The first and the second formulae describe
vectors of displacements of arbitrary points A and B (translation of the pole A, i.e. of the
body-point B), while the third one expresses components of the vector which connects
the points A and B during the moment of the time ¢ Total displacement is
(AX: 100) 40 = (AX; 45 — DX; 4p0), if translation of the pole Ay is excluded. Developing into
Taylor's order (AX; ) 40 after AX; 450 for an arbitrary continual body, linear approximation
is used in three cases: 1) The body is of small dimensions (Ax; 430) and (AX; )40 of @
small size, while the values of higher derivatives are final in accordance with the
approximation; 2) The values of higher derivatives are small while the body is of final
dimensions under the same condition; 3) Both derivatives and body dimensions are small.
The first and the third case do not allow final rotations of the body, while the second one
allows it. From the point of view of natural broadening of the final rigid motion, the first
and the third cases are useless. Special problem is connected with the approximation
dependence on the points Ay and By .The idea is to include somehow the influence of
other members of the Taylor's order is used. The total result would be dependence of
gradient deformation average value on time. Taylors development explicitly put down:

_ EPXi, AB

(BX; 15) 40 = 0 o Ax; ABOE Res =m';0 (1) Ax; 450 Res. (1)
O

40 g

It is averaged by means of expression m';, Res, which exists by assumption.
Explicitly given, it is:

1
<m';4o Res > (¢) = f{/ (m';;40 ReS(BX 50, 1))dX 410dX o - 2)
40V B0 V1V 5o
Concisely written down:
<(AX; 1) > (@) =<my(t) > Dx; ypo. (3)

The mistake of the method is checked up by dispersion defined in a standard way.
If the body translation is also introduced, Helmholtz theorem can be expressed in the
following way.

Theorem 1. In the approximation stated every elementary displacement of the continual
medium can be expressed in the form of elementary motions: of spatial translation
<dX; 44> = <dX,,>, real rotation, shearing and dilatation. Elementary rotation
<dX; ;> corresponds to the anti - symmetrical part < dm;; >, (fo) of the matrix < dm;> (t,)
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of the deformation averaged gradient. To the elementary shearing <dX; , > corresponds
extra diagonal part, while to the dilatation < dJX; ;> corresponds the diagonal part of the
symmetrical part < dm;>g(t) of the matrix cited. Configurationally manifoldness is twelve-
dimensional. The written form and structure of this statement are evident:

<dX.

i tot

> (t,) =<dX, , >+<dX,

i rot

>+<dX; 4 >+<dX; g >, 4

1
<dX; 1 > () =<DX; yp —Dx; 4po >+ <dX; , >=<dX; , >,

1
<dm; >g (to):5(< dm; > (ty)+ <dm; > (1)), )

1
<dmy > 4 (t) :E(< dm; > (ty)= <dm; > (1)),
1=ty +dt.

Where the relations for the corresponding values are:

Some non — translatory members in the equation (4) are obtained by means of
adequate application of the second and third expressions in the equation (5) on any
AX; 4p0. Along with that it is considered that nine elements of the matrix < dm; > (%)) are
insufficient. Due to the stated process of averaging this procedure is also realized for
every two moments t and t + dt in the time interval observed. Rigid elementary rotation is
obtained in case that <my;>, (f) (<m;>s (f) = 0), and having in mind that it is Lie's
algebras so (3,R) of anti - symmetrical matrices the use of exponential function of the
parameterized anti - symmetrical matrix generates final rotations (local parameterization
of the Lie's group SO (3,R)). Three parameters — rotation angles make associated vector
for the anti - symmetrical matrices stated. In this way vector product for of two vectors is
defined (which also satisfies the relations of Lie's algebra, as well as commutators of the
associated matrices). Remembering the theorem on polar composition of the regular
tensor, in case of using exponential functions < M;;> ., (¢) = exp (< my; > 4 (1)), t O [#9,00)
represents orthogonal matrix and describes relations. So, this approach realizes
theoretical existence of the term final rigid body in a natural way.

1

ei rot(t) =38ijk < mjk > (t)’

0; 4 () =0y <my > (), (6)
1

0, ()= 5 | € [<m > (2).

The associatively process of three-indices values of deformation is carried out in this
way:

€; are known as Levi- Civita symbols, while d;; are suggested by the author of this
paper (they are equal to one for i = j = k and to zero in all other cases). Tensor nature of
all these values is easily defined.
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Lemma 1. The process of association is one and sole.
The proof results out of relations:

:|g

0

ilm " €

0

EilmE jim im 1728, -
itm® jim = %ij-

This lemma establishes isomorphism among the corresponding three-indices values
and matrices. Now, the equation (4) can be given in the following form:

< dXt tot > (t()) =
<dX; , >+€;d0; A 4o +05d0; Yy 4o +| €k |dej D% 4p0-

Jj rot

®)

ax b=gyeab, , ax,b=9;e.a;b, ©

ax;b=|¢g; | eab.

All products of the two vectors a = ae; 1 b = bej can be expressed in the following
form:

The last two products have not the same directions and intensity in various coordinate
systems. An example can be the system S'obtained by rotation of a certain system S around
the given axis (for example, axis z — coordinate system is fixed in this way without
lowering of the generality) for a certain angle 6. During the association of the vector to the
anti - symmetrical part of the deformation tensor corresponding vector product is also
introduced. So, A ~ ai.e.c=a x; b=A Db. If rotation is carried out being defined with
matrix R ,itwillbe: c'=Rc=R (a@ax;b)=RAb=RA R'Rb=Ab=a x b In fact,
the situation is as follows: Relation a' = R a should correspond to A' = RAR" (R" = R™).
Let axis z be that one around which the rotation is carried out for a certain angle (det R = 1).
For an arbitrary vector a and vector product "X;" the process of association satisfies the
previous rotations. For the diagonal tensor and the vector associated with it, the angle 6
must satisfy the relation sin® cos® = 0. The discussion is similar for the extra-diagonal
symmetrical part of the tensor, too.

Theorem 2. Three-indices values connected with final dilatation and shearing do not
represent vector values and do not represent objective physical values in Euclid's
geometry.

The possibility left is — global affined geometry. It is characterized by the fact that the
basic objective relation maintains valid - it is the relation of vector parallelism. In this
affined geometry all stated three-indices values are objective vectors.

The last statement is the result of transformational linearity; global affined geometry
is accepted to be the basic geometry in this paper. The author is of the opinion that the
work in practice will show the necessity of this solution. Values 6; o, , 6; 4 , 6; ¢, Will be
called vectors of generalized angles.
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Theorem 3. The first vector product is anticommutative and non-associative, while
the other two are commutative. The second vector product is associative, while the third
one is not.

The author's idea is to introduce anticommutators for the vector products connected with
dilatation and shearing and to define their features ( the structure of non Lie's algebras). In
this way quantum Lie's algebras cannot be obtained [5]. On the basis of relations [6] the
basic reason for this is that the multiplicity observed is locally diffeomorphic towards
affined space. The features of these anticommutators are expressed in the following way:

Theorem 4. Vector products, which are connected with deformation motion, satisfy the
following relations:

ax; s b +bx2’3 a=[a, b]2’3,

[[a, bl,, cly =[a, [b, 5]y, (10)
[[a, bly3, clp3+Ilc, aly3, bly3+Ib, cly3, alp3-

—([[a, cl3, bly;+[[b, aly5, cl,5+[[c, bl,;, al,3)=0.

The problem of non-Lie's group's structures, which correspond to deformations, is set.
We shall assume that for every algebraic element, in all cases only one curve should exist
over the group so to transform, by means of an exponential function certain zero
environment of an algebra on to certain environment of the group unit in a diffeomorphic
way (local description). In this way defined deformation motions should be better
understood and, through kinematics, the way towards dynamics would be paved. In case
of use of non-linear members of the Taylor's order the situation is the same referring to
the process of averaging and vector products. The proof for this statement is not given in
this paper for the moment.

CONCLUSION

The next step is global affine broadening of the Galileo's group (kinematics).
Naturally, a number of questions are set in relation to the behaviour of various physical
values in case of differential affined geometry and a series of these new non-linear
geometries. All the more so as the references for these cases are insufficient.
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GEOMETRIJSKA FORMULACIJA KINEMATIKE
DEFORMABILNIH SREDINA

Zoran Vosyka

Nove vektorske metode u kinematike linearne homogene deformacije, ukljucujuci i njene
topoloske i algebarske karakterizacije su formulisane.



