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National Technical University of Athens

Abstract. This paper deals with a model, which simplifies the finding of the natural
eigenfrequencies of a cable-stayed bridge, with dense distribution of cables. Then, it is
possible to study the vertical forced vibrations of the bridge. Finally, an example is
given, which, clearly, shows the simplicity of the method.

1. INTRODUCTION

Many researchers have, in the last 100 years, studied the dynamic response of railway
bridges and, later, of highway bridges under the influence of moving loads. Extensive
references to the literature on this subject can be found in Frýba's book [1].

The cable-stayed bridges are a particular form of bridges, which have been of great
interest in recent years, particularly because of their special shape and, also, because they
are an alternative solution to suspension bridges for long spans [2].

For the dynamic behaviour of cable-stayed bridges particular attention is given to the
free vibrations, aerodynamic stability (or instability) and to the seismic analysis. There
are many studies which have obtained serious results concerning the dynamic response of
several types of cable-stayed bridges, or of service loads [3]. A numerical analysis of the
dynamic response of cable-stayed bridges has been developed, taking into account the
vibration behaviour of the stay cables and studying the influence of the coupled deck-
cable motions [4].

We must refer to the recent studies of Nazmy and Abdel-Ghaffar [5], Chatterjee and
others [6], dealing with the lateral and torsional dynamic behaviour, Bruno and Colotti
[7], proposing a fan-shaped bridge scheme as an analytical model and studying the
eigenfrequencies.

Finally, we must mention the works of Achkrive-Preumont [8], who deals with the
active vibration control of C-S bridges, Khalil [9] who studies some special characteristics
of C-S bridges and attempts to solve the associated problems, Bosdogianni-Olivari [10]
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who study the oscillations of a bridge under combined effect of wind and rain and, finally,
Virlogeux [11] who studies the rapid progress and the improvements of C-S bridges in the
last years.

For the dynamic study of cable-stayed bridges, one must take into account the
influence of the dynamic deformations of the pylons and, also, the serious influence of
the axial forces of the deck, caused by the cable-tensions, which excite the bridge in a
simultaneous axial dynamic movement.

The corresponding dynamic moments, which rise because of the above axial dynamic
forces, can be, as a first approximation, neglected.

The present work investigates the dynamic behaviour of cable-stayed bridges. Taking
into account the interaction between cables and deck we try to find an analytical
expression for the load q(x), which expresses the effect of the cables on the bridge deck.
Afterwards we are able to form a linear system to find the tensions of the cables (for the
case of rare distribution of the cables) or the differential equation giving the deck
deformations (for the case of dense distribution of the cables). Then, we can proceed to
the first goal, which is the finding of the eigenfrequencies of the bridge, using a
simplified version of Galerkin's method. The definition of shape modes is the second
goal. Then one can find, easily, the eigenfrequencies, shape modes etc.

Finally he dynamic analysis of a cable-stayed bridge subjected to moving loads is
studied. and an illustrated example is presented.

2. ANALYSIS

For the following analysis, the model of a cable-stayed bridge scheme, like the one of
Figure 1, is adopted. The optimal values of the ratios )(1 hH −!  and )(22 hH −!  are
usually assumed as: )(1 hH −! =5/3, and )(22 hH −! =5.

Fig. 1. Structural scheme of a cable stayed-bridge.

We accept the following assumptions:
a. The deck of the bridge, during its free vibration, is simply supported by the pylon

without any other connection. So, the deck of the bridge can be characterized as a
three- span continuous beam.
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b. It is assumed that, under the dead load, there is no configuration of the deck or of the
pylons, but the cables are stressed by the axial forces Pig , which can be calculated
through a static analysis.

c. For the case of the dynamic behaviour, we will have: Pi = Pig + Pid, where:
Pig = constant (as before in b) is the force, which is given by the static analysis,
Pid = Pi  f (t) is a time depended and so changed dynamic portion of the force Pi .
Because it is valid that p < g, it will be p < g  Pid < Pig and then Pid can be positive or
negative, up to the value of Pig : |Pid| ≤ Pig .

d. As it is well-known, the behaviour of the cables upon an axial force is non-linear, due
to its own weight action. For a dynamic analysis we consider that the initial tension σg
of the cables corresponds to the starting equilibrium configuration under the own load
g and so, we can adopt the tangent modulus of elasticity and not that which is given

by Dischinger's formula: )
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e. We ignore the influence of the bridge deck surface roughness, because its contribution
on the vibration of the bridge is negligible for bridges with long span, like the cable-
stayed bridges.

f. A 2D analysis is considered while the influence of axial forces either of the pylon or
of the deck is neglected.

2.1 Deformation of the system bridge-pylon

The relative deformation of the top of the pylon of Figure 2, to the point of the
support of the deck on the pylon, is:

















+





−=−=

323

32
6 H

h
H
h

IE
HP

uuu
pp

i
dp  (1)

where: Pi the projection of the axial force of the i cable on the horizontal axis
Ep the modulus of elasticity of the material of the pylon and
Jp the moment of inertia of the cross-section of the pylon.

Fig. 2. Deformation of the girder. Cables at the right of the pylon.
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2.2 Relations between Pid, wi, u

The force which acts at the top of the pylon, because of a dynamic loading and causes

the deformation u, is: ∑
ρ

=
ϕ⋅

1
sin

i
iidP , where ρ is the number of the cables, which are

connected at the top of the pylon. Then we have:
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If si is the length of the cable i under the static loads and ∆si its deformation because
of the dynamic loading, it will be:
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where Es is the tangent modulus of elasticity of the material of the cable and Ai the area of
its cross-section.

From the geometry of figure 2, we have (projecting on axis a-a):

iiidiiiiipip wussswu ϕ⋅+ϕ⋅+=ϕ∆∆++ϕ⋅+ϕ⋅ cossincos)(cossin

or neglecting wp (as a very small quantity) and putting cos ∆ϕi = 1, we get:

iiiidp wsuu ϕ=∆+ϕ− cossin)(  or

ρ    to1for      cossinsin32
6 1

32

=ϕ=+ϕ⋅












ϕ⋅⋅
















+





− ∑

ρ

=
iw

AE
PsP

H
h

H
h

IE
H

ii
is

idi
i

i
iid

pp

and finally:

 ρ    to1  and    32
6

    : where

  
cos

)sin(sin

323

1

=
















+





−⋅=

⋅
ϕ

=
⋅⋅

⋅
+ϕϕ ∑

ρ

=

i
H
h

H
h

IE
HB

w
BAEB

PsP

pp

i
i

i

is

idi
iidi

 (4)

From equation (4), we obtain the following system:
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Solving the above system (5), we can find:
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2.3. The free vibration of a bridge with rare distribution of cables

The equation of the vertical motion of the deck bridge is:
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where: )( ix α−δ  the Dirac's Delta function, while the moments caused by the tensions of
the cables are neglected as very small.

Then, because of equation (6a) and of the relation, )( ii ww α= equation (7) becomes:
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We search a solution of separate variables, under the form:
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Because of equation (8), equation (7a) becomes:
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In order to apply Galerkin's method, we put:
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where: ci unknown coefficients, which will be determined and Ψi (x) are arbitrary chosen
functions of x, which satisfy the boundary conditions. As such functions, we choose the
shape functions of the corresponding continuous beam (which has the same
characteristics with the bridge but without cables), given by the appendix.

Introducing equation (10) into (9), multiplying the outcome successively by Ψ1, Ψ2,
… Ψn and integrating the results from 0 to L, we obtain the following homogeneous,
linear system without second member of n equations, with unknowns c1, c2, …cn .
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The above equations (11) constitute a linear homogeneous system of c1, c2, ….cn,
without second member. In order to have a non trivial solution, the determinant of the
coefficients of c1, c2,….,cn, must be equal to zero:

 |∆ij| = 0 (12)

From the above equation (12) one can find the eigenfrequencies of the bridge.

2.4 The free vibration of a bridge with dense distribution of cables

Let us consider that the cables are placed very densely, at a distance δ << (α2 − α1)
(see Figure 3). So, we can consider a distributed load q(x), extended from α1 to α2 which
at xI will be:

iidi Pxq ϕ⋅
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Fig. 3. The load q(x), which expresses the effect of the cables on the bridge deck.

It is evident that it is valid:
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For the cable i, is valid that:
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where: 
δ

= iAxA )(  (18)

the, conventional, distributed area of cross-section of the cables, which is a function of x.

2.4.1 First case A(x)=constant.

We symbolize:
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On the other hand we have: 
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After integration from α1 to α2 we get:
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2.4.2. Second case, A(x) = variable.

It is usual to suppose [12] that the area of the cross-sections of the cables changes
under the formula:
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where:
g : the uniform distributed deck own load

σg : the initial tension of the stays curtain, due to the above g . It is : 
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where σa the allowable stress of cables and p the design live load.
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After integration from α1 to α2 , we get:
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And, finally, from equation (26), we can find:
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Or, under a general form, we can write:
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For the case of Figure 4, namely for the case of a bridge deck that is at the left of the
pylon, we have:
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We can now find the eigenfrequencies of the bridge.
The equation of the vertical motion of the deck bridge is:

),()(),(),( 1 txqtxwmtxwctxwEI by −=++′′′′ ###  (31)

with q(x,t) given by equation (30).
We search for a solution of separate variables, under the form:

)()(),( tTxXtxw ⋅=  (32)

Because of equations (32) and (30), equation (31) becomes:
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Fig. 4. Deformation of the girder. Cables at the left of the pylon.

In order to apply Galerkin's method, we set (as in §2.3) :

)(.....)()()( 2211 xcxcxcxX nnΨ++Ψ+Ψ=  (34)

with the notes and restrictions of §2.3.
Introducing (34) into (33), multiplying the outcome successively by Ψ1 , Ψ2 ,….,Ψn

and integrating the results from 0 to L, we obtain the following homogeneous, linear
system, without second member of n equations, with unknowns c1 ,c2 ,…..,cn .
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In order for the above system to have non-trivial solutions, the determinant of its
coefficients must be zero:

ijijijij BAnji ⋅λ−=Γ==Γ   and  ,....,2,1,  with  , 0||  (37)

From equations (37), we determine the values of λ and from equation (33b), the
spectrum of the flexural eigenfrequencies ωi .

From the first (n − 1) equations of system (35), we can finally find:
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From equation (33b), we can find the time function of the free vibration:
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where: 
m

cb

2
=β  is the, so called, "damping quantity" and 22 β−ω=ω

∗
.

The two last cases are impossible to take place for usual cable-stayed bridges. That is
possible to happen only when Iy → 0 and Ip has very small values (like some primitive
bridges in jungle where girder strength is practically nonexistent). Nevertheless, it is
remarkable that through appropriate values of A3 and B3, (which are depended on initial
conditions), the third case conducts to a flutter instability.

2.5. The forced vibrations

The equation of motion for the flexural forced vibration, is given by:

),(),(),(),(),( txptxqtxwmtxwctxwEI by =++⋅+′′′′ ###  (39)

where q(x,t) is given by equ.(30) while p(x,t) is the external dynamic load.
We seek a solution under the form:

)()(),( xPxXtxw n
n

n∑ ⋅=  (40)

where Pn(t), unknown functions of the time, which will be determined and Xn(x) are
functions of x, arbitrarily chosen, which satisfy the boundary conditions.



A Simplified Model for the Dynamic Analysis of Cable - Stayed Bridges 197

As such functions, we choose the shape functions of the corresponding continuous
beam (which continuous beam has the same characteristics with the bridge but without
cables), given by the appendix.

Then equation (39) becomes:

∑ ∑ ∑ ∑ ∫ ∑
α

α
=−+++⋅′′′′

n n n n n
nnnnnnnnbnny txpPXFFPXFPXmPXcPXEI

2

1

),(][ 321
###  (41)

The Shape functions Xn, satisfy the equation of motion of the freely vibrating
corresponding continuous beam:
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And equation (41) becomes:
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After multiplication by Xi and integration of the outcome from 0 to L, we get:
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In order to solve the above differential system, we use the Carlson-Laplace
transformation with the following initial conditions:
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Then, equation (43), get the form:
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The usual forms of functions F(p), are rational functions of p.
Then , solving the system (47), gi(p) takes the following form:
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where Ni, Mi are polynomials with respect to p with Mi(p) of higher order than Ni(p).
Heaviside's rule can thus be applied, leading finally to equation:
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3. NUMERICAL RESULTS AND DISCUSSION

In this section a numerical investigation based on the equations obtained in the
previous paragraphs has been developed. The above equations connect the deformations
of the deck to the load q(x) (that expresses the effect of the tensions of the cables). The
individual and coupling effects of the mechanical and geometrical parameters are
discussed in detail.

The mathematical model discussed herein is related to a real three-span bridge with a
fan-shaped system of cables along the girder (like in Fig. 5), middle span !2 = 400 m,
equal site spans !1 = !3 = 120 m, weight per unit length g = ~8000 kN/m, and moment of
inertia of the deck Id =~ 0.21 m4. The above data are combined with the design loads
p/g = 0.5 and 1.0 (this ratio is connected to the cross-section area of the cables),
moments of inertia of the pylon Ip / Id = 0.5, 1.0, 1.5, 2.0, 2.5, total height of pylons
L/H = 4, 5, 6, 7, and distance of the deck under-surface from the surface of the earth
h/H = 0.50, 0.25, and 0.125.

The three eigenfrequencies ω1, ω2 and ω3 are found for the above cases. Numerical
results, concerning the above research, are given in Table A.
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Fig. 5. Cable stayed-bridge for the illustrated example.

From the plots of Fig. 6, 7, 8 we can see, respectively, the three eigenfrequencies of
the free vibrations as a function of the parameter h/H for the cases Ip / Ib = 0.5, 1.5, 2.5.
The plots of Fig. 9, 10, 11 show the three eigenfrequencies as a function of parameter
Ip / Ib, for the cases h/H = 0.5, 0.25, and 0.125.

Fig. 6. Relationship between the first Fig. 7. Relationship between the first
eigenfrequency ω1 and the ratio L/H eigenfrequency ω2 and the ratio L/H
for various values of Ip/Ib. for various values of Ip/Ib.
___ p/g = 0.50 - - - - p/g = 1.00 ___ p/g = 0.50 - - - - p/g = 1.00
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Fig. 8. Relationship between the first Fig. 9. Relationship between the first
eigenfrequency ω3 and the ratio L/H eigenfrequency ω1 and the ratio L/H
for various values of Ip/Ib. for various values of h/H.
___ p/g = 0.50 - - - - p/g = 1.00 ___ p/g = 0.50 - - - - p/g = 1.00

The first significant remark is that if the characteristics of the deck remain
unchanged, while the other parameters (like the pylon height, pylon moment of inertia,
cross-section area of the cables, distance of the deck under-surface from the surface of
the earth) change, then we can affect the eigenfrequencies only a little.

The maximum effect of the above secondary parameters (like the pylon height, pylon
moment of inertia, cross-section area of the cables, distance of the deck under-surface
from the surface of the earth) is for the first eigenfrequency ~15.5%, for the second
~6.8% and for the third one ~9.5%.

Figures 6 to 11 show clearly those influences.
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Fig. 10. Relationship between the first Fig. 11.  Relationship between the first
eigenfrequency ω2 and the ratio L/H eigenfrequency ω3 and the ratio
for various values of h/H. L/H for various values of h/H.
___ p/g = 0.50 - - - - p/g = 1.00 ___ p/g = 0.50 - - - - p/g = 1.00

4. CONCLUSIONS

On the basis of the model chosen, we may draw the following conclusions:
1. The function q(x), giving the load that expresses the effect of the cables on the

bridge deck, is determined.
2. A simplified model, based on the above found load q(x) is used for a quick dynamic

test of a bridge.
3. The basic parameters, which affect the eigenfrequencies of a bridge, are those of the

deck of the bridge.
4. The parameters connected to the pylons and the cables of a bridge affect less the

eigenfrequencies and their effect comes up to about 12%.
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APPENDIX

1. Two-span continuous beam
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2. Three-span continuous beam

Eigenfrequencies equation:
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Table A
p/g 0.50 1.00
h/H 0.500 0.250 0.125 0.500 0.250 0.125

L/H Ip/Ib ωωωω1 ωωωω2 ωωωω3 ωωωω1 ωωωω2 ωωωω3 ωωωω1 ωωωω2 ωωωω3 ωωωω1 ωωωω2 ωωωω3 ωωωω1 ωωωω2 ωωωω3 ωωωω1 ωωωω2 ωωωω3
0.5 0.5107 3.1469 5.9193 0.4833 3.0844 5.5946 0.4722 3.0148 5.4034 0.5690 3.6085 6.7882 0.5349 3.5353 6.4106 0.5206 3.4541 6.1881
1.0 0.5163 3.1481 5.9198 0.4934 3.0862 5.5952 0.4853 3.0117 5.4042 0.5741 3.6095 6.7886 0.5440 3.5369 6.4111 0.5324 3.4561 6.1888

4 1.5 0.5219 3.1493 5.9202 0.5033 3.0880 5.5959 0.4980 3.0193 5.4050 0.5791 3.6106 6.7890 0.5529 3.5385 6.4117 0.5440 3.4581 6.1895
2.0 0.5227 3.1506 5.9207 0.5129 3.0899 5.5965 0.5104 3.0216 5.4058 0.5841 3.6117 6.7894 0.5618 3.5402 6.4122 0.5554 3.4601 6.1901
2.5 0.5329 3.1518 5.9212 0.5224 3.0917 5.5972 0.5224 3.0239 5.4066 0.5891 3.6127 6.7898 0.5704 3.5417 6.4128 0.5665 3.4621 6.1908
0.5 0.5243 3.1057 5.9659 0.5042 3.1423 5.8096 0.4951 3.1090 5.6699 0.5850 3.5606 6.8422 0.5593 3.6027 6.6606 0.5474 3.5637 6.4981
1.0 0.5312 3.1075 5.9666 0.5162 3.1447 5.8530 0.5107 3.1120 5.6710 0.5911 3.5620 6.8428 0.5702 3.6048 6.6613 0.5615 3.5663 6.4991

5 1.5 0.5379 3.1091 5.9672 0.5280 3.1472 5.8114 0.5258 3.1149 5.6721 0.5972 3.5635 6.8434 0.5808 3.6069 6.6621 0.5752 3.5689 6.4999
2.0 0.5446 3.1107 5.9679 0.5395 3.1496 5.8123 0.5405 3.1179 5.6731 0.6033 3.5649 6.8439 0.5913 3.6090 6.6629 0.5888 3.5715 6.9009
2.5 0.5512 3.1124 5.9686 0.5507 3.1520 5.8131 0.5546 3.1308 5.6742 0.6093 3.5664 6.8445 0.6016 3.6111 6.6637 0.6017 3.5740 6.5018
0.5 0.5317 3.0424 5.9356 0.5184 3.1495 5.9145 0.5111 3.1455 5.8220 0.5936 3.4869 6.8069 0.5757 3.6109 6.7824 0.5663 3.6061 6.6748
1.0 0.5398 3.0445 5.9365 0.5322 3.1526 5.9157 0.5293 3.1492 5.8234 0.6007 3.4887 6.8077 0.5882 3.6136 6.7834 0.5824 3.6093 6.6760

6 1.5 0.5476 3.0467 5.9374 0.5457 3.1556 5.9168 0.5465 3.1529 5.8247 0.6074 3.4906 6.8085 0.6004 3.6163 6.7844 0.5981 3.6125 6.6772
2.0 0.5554 3.0488 5.9383 0.5588 3.1586 5.9179 0.5631 3.1565 5.8260 0.6148 3.4925 6.8092 0.6124 3.6189 6.7854 0.6133 3.6157 6.6783
2.5 0.5630 3.0509 5.9392 0.5716 3.1617 5.9191 0.5792 3.1602 5.8273 0.6247 3.4943 6.8100 0.6241 3.6216 6.7864 0.6281 3.6189 6.6795
0.5 0.5364 2.9566 5.8524 0.5306 3.1256 5.9633 0.5264 3.1501 5.9217 0.5988 3.3869 6.7000 0.5897 3.5831 8.8389 0.5832 3.6112 6.7906
1.0 0.5458 2.9594 5.8536 0.5465 3.1295 5.9649 0.5468 3.1547 5.9234 0.6072 3.3893 6.7100 0.6041 3.5868 6.8403 0.6017 3.6153 6.7021

7 1.5 0.5550 2.9621 5.8548 0.5620 3.1333 5.9663 0.5664 3.1593 5.9251 0.6155 3.3918 6.7121 0.6181 3.5898 6.8416 0.6196 3.6193 6.7936
2.0 0.5640 2.9651 5.8560 0.5771 3.1372 5.9678 0.5853 3.1639 5.9269 0.6236 3.3942 6.7132 0.6318 3.5931 6.8429 0.6370 3.6233 6.7951
2.5 0.5729 2.9676 5.8572 0.5917 3.1410 5.9693 0.6036 3.1685 5.9286 0.6317 3.3965 6.7142 0.6453 3.5965 6.8442 0.6538 3.6273 6.7966

UPROŠĆEN MODEL ZA DINAMIČKU ANALIZU
KABLOVIMA PODRŽANOG MOSTA

George T. Michaltsos

Ovaj rad se bavi modelom koji uprošćava nalaženje prirodnih sopstvenih frekfencija kablovima
podržanog mosta sa raspodelom gustine kablova. Tada je moguće proučiti vertikalne prinudne
oscilacije mosta. Konačno, dat je primer koji jasno prikazuje jednostavnost metode.


