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A SIMPLIFIED MODEL FOR THE DYNAMIC ANALYSIS
OF CABLE - STAYED BRIDGES
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Abstract. This paper deals with a model, which simplifies the finding of the natural
eigenfrequencies of a cable-stayed bridge, with dense distribution of cables. Then, it is
possible to study the vertical forced vibrations of the bridge. Finally, an example is
given, which, clearly, shows the simplicity of the method.

1. INTRODUCTION

Many researchers have, in the last 100 years, studied the dynamic response of railway
bridges and, later, of highway bridges under the influence of moving loads. Extensive
references to the literature on this subject can be found in Fryba's book [1].

The cable-stayed bridges are a particular form of bridges, which have been of great
interest in recent years, particularly because of their special shape and, also, because they
are an alternative solution to suspension bridges for long spans [2].

For the dynamic behaviour of cable-stayed bridges particular attention is given to the
free vibrations, aerodynamic stability (or instability) and to the seismic analysis. There
are many studies which have obtained serious results concerning the dynamic response of
several types of cable-stayed bridges, or of service loads [3]. A numerical analysis of the
dynamic response of cable-stayed bridges has been developed, taking into account the
vibration behaviour of the stay cables and studying the influence of the coupled deck-
cable motions [4].

We must refer to the recent studies of Nazmy and Abdel-Ghaffar [5], Chatterjee and
others [6], dealing with the lateral and torsional dynamic behaviour, Bruno and Colotti
[7], proposing a fan-shaped bridge scheme as an analytical model and studying the
eigenfrequencies.

Finally, we must mention the works of Achkrive-Preumont [8], who deals with the
active vibration control of C-S bridges, Khalil [9] who studies some special characteristics
of C-S bridges and attempts to solve the associated problems, Bosdogianni-Olivari [10]
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who study the oscillations of a bridge under combined effect of wind and rain and, finally,
Virlogeux [11] who studies the rapid progress and the improvements of C-S bridges in the
last years.

For the dynamic study of cable-stayed bridges, one must take into account the
influence of the dynamic deformations of the pylons and, also, the serious influence of
the axial forces of the deck, caused by the cable-tensions, which excite the bridge in a
simultaneous axial dynamic movement.

The corresponding dynamic moments, which rise because of the above axial dynamic
forces, can be, as a first approximation, neglected.

The present work investigates the dynamic behaviour of cable-stayed bridges. Taking
into account the interaction between cables and deck we try to find an analytical
expression for the load g(x), which expresses the effect of the cables on the bridge deck.
Afterwards we are able to form a linear system to find the tensions of the cables (for the
case of rare distribution of the cables) or the differential equation giving the deck
deformations (for the case of dense distribution of the cables). Then, we can proceed to
the first goal, which is the finding of the eigenfrequencies of the bridge, using a
simplified version of Galerkin's method. The definition of shape modes is the second
goal. Then one can find, easily, the eigenfrequencies, shape modes etc.

Finally he dynamic analysis of a cable-stayed bridge subjected to moving loads is
studied. and an illustrated example is presented.

2. ANALYSIS

For the following analysis, the model of a cable-stayed bridge scheme, like the one of
Figure 1, is adopted. The optimal values of the ratios ¢,/(H -k) and ¢,/2(H —h) are

usually assumed as: ¢, /(H —h)=5/3, and ¢, /2(H —h) =5.

FAT

Fig. 1. Structural scheme of a cable stayed-bridge.

We accept the following assumptions:

a. The deck of the bridge, during its free vibration, is simply supported by the pylon
without any other connection. So, the deck of the bridge can be characterized as a
three- span continuous beam.
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. It is assumed that, under the dead load, there is no configuration of the deck or of the
pylons, but the cables are stressed by the axial forces P, , which can be calculated
through a static analysis.

. For the case of the dynamic behaviour, we will have: P;= P, + P, where:
P, = constant (as before in b) is the force, which is given by the static analysis,
P,;=P; f(f) is a time depended and so changed dynamic portion of the force P; .
Because it is valid that p < g, it will be p < g P;; < P, and then P;; can be positive or
negative, up to the value of Pj, : |Pig| < Py .

. As it is well-known, the behaviour of the cables upon an axial force is non-linear, due
to its own weight action. For a dynamic analysis we consider that the initial tension o,
of the cables corresponds to the starting equilibrium configuration under the own load
g and so, we can adopt the tangent modulus of elasticity and not that which is given

2,2

by Dischinger's formula: £ = g/(1+ £y (30) .
0

. We ignore the influence of the bridge deck surface roughness, because its contribution
on the vibration of the bridge is negligible for bridges with long span, like the cable-
stayed bridges.
A 2D analysis is considered while the influence of axial forces either of the pylon or
of the deck is neglected.

2.1 Deformation of the system bridge-pylon
The relative deformation of the top of the pylon of Figure 2, to the point of the

support of the deck on the pylon, is:

3.0 O
u=u,-uy =i|:2—3B£G+B£gD (1)

g 6E,l,§ OHO OHOR

where: P; the projection of the axial force of the i cable on the horizontal axis

E, the modulus of elasticity of the material of the pylon and
J, the moment of inertia of the cross-section of the pylon.
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Fig. 2. Deformation of the girder. Cables at the right of the pylon.
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2.2 Relations between Pig, Wi, U
The force which acts at the top of the pylon, because of a dynamic loading and causes

the deformation u, is: %P; , Bing, , where p is the number of the cables, which are
i=1
connected at the top of the pylon. Then we have:

EI 3B—g B—SEZPM [in ¢, 2

6pp§ 0H O

Qu=u,-u; =

If s; is the length of the cable i under the static loads and As; its deformation because
of the dynamic loading, it will be:

As. = Si md

3
o 3)

where E| is the tangent modulus of elasticity of the material of the cable and A4; the area of
its cross-section.
From the geometry of figure 2, we have (projecting on axis a-a):

u, Bing, +w, [dos @, +(s; +As;) cosAp; =s; +u, Bind, +w, [dosd;
or neglecting w, (as a very small quantity) and putting cos A, = 1, we get:

(u, —uy)sing; +As; =w, cosd; or

0
Sé él B—g i g@ P, Ein¢i%8in¢i+%:wi cosp, fori=1top
H O i=1 E s

and finally:

P, .
sin ¢, Z(Pd sing,) + SEE ll]4 co;(]), O,

“
g Dandz—ltop
6pp Q DH DHDQ

where: B =

From equation (4), we obtain the following system:

((Xl+sin¢1)md +Sin¢2P2d+ ......... +Sin¢pde :Bl I]’Vl
Sin¢1 md +(02 +Sin¢2)P2d+ ........ +Sin¢pde :BZ H’Vz

......................................................................................................... 4)
sing, [P, +sind, Py +...e..e. +(0, +sind,) B, =B, Oy

p
; 1
where: ;= y , B, =
BLE 4, Bin¢; Ban ¢;
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Solving the above system (5), we can find:

with i=1top and:

(6)

y; = (al +sin¢1) SiIl(I)z ............ sin(l)p

sin ar +sin@,)------ sin
b, (ay +sind,) b,

O e

2.3. The free vibration of a bridge with rare distribution of cables

The equation of the vertical motion of the deck bridge is:

P
Eyw"" (x,1) +c;, Ov(x, 1) + mii(x,t) + Y P, [dosd, [B(x—a;) =0 (7
i=

where: &(x—a;) the Dirac's Delta function, while the moments caused by the tensions of

the cables are neglected as very small.
Then, because of equation (6a) and of the relation, w; = w(Q,) equation (7) becomes:

P
Elyw""(x,t) +cp, Ov(ox, ) + myv(x, 1) + izl[yilw(al) +..+ yl-pw(ap)] [dosd; B(x—a;)=0 (7a)

We search a solution of separate variables, under the form:
w(x,1) =X (x)[T(@) (®)

Because of equation (8), equation (7a) becomes:

. [P .
ELX" [T +c, X [T+ [YaX(0))+...+Y,, X ()] [dos P, Eé(x—ai)EZT+mD¥[T:O

LiF1
or
mr 1 [P N . Cp -
X +F [Ya LK (a)) +.. 4y, X (0 )] Bos b, D(x—a,)g 747
Yy Li=1 D:— m =(.02
iX T
E[y

and finally:
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O

X4 E; [V X (@) + .+ Yip X ()] Ros &, Blx—a, )m X=0 0

l O
> o O

mw a

where: A= 0

EI, 0

In order to apply Galerkin's method, we put:

X(x) =¥ () + e Wy () +.t e, W, (x) (10)

where: ¢; unknown coefficients, which will be determined and ¥; (x) are arbitrary chosen
functions of x, which satisfy the boundary conditions. As such functions, we choose the
shape functions of the corresponding continuous beam (which has the same
characteristics with the bridge but without cables), given by the appendix.
Introducing equation (10) into (9), multiplying the outcome successively by ¥, V>,
. ¥, and integrating the results from 0 to L, we obtain the following homogeneous,
linear system without second member of n equations, with unknowns cy, ¢, ...c,.

L
J'(clLlJ1 +o+e, W )LP dx +

n'n

"'E_{[yll{(’ll’l'J ((X )+ +(’n n(a )}+ "'ylp{(’ll’lJ (ap)+ +Cn n(up)}]mosd)ll]p ((X )+

YW (@) +te, W (o) e+ Yo de W)+t e, W () [os 6, [Wg(ay) +
an

Vo {a Wi @)+t e, W, (@} +.H Yo fe Wy (@) +.t 0, W, ()} 1 Tos §, (W () -

n-'n

—)\J'(c,‘-P +tote, W )O)Wdx =0 (for 0=1 to n)

OJOOooOoOooOoooooooooooooo

The above equations (11) constitute a linear homogeneous system of ¢y, ¢, ....cp,
without second member. In order to have a non trivial solution, the determinant of the
coefficients of ¢y, ¢s,....,c,, must be equal to zero:

A1 =0 (12)
From the above equation (12) one can find the eigenfrequencies of the bridge.
2.4 The free vibration of a bridge with dense distribution of cables

Let us consider that the cables are placed very densely, at a distance & << (o, — o)
(see Figure 3). So, we can consider a distributed load ¢(x), extended from a; to a, which
at x; will be:

a(x)) :éPM Ros, (13)
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mnmm

Fig. 3. The load ¢g(x), which expresses the effect of the cables on the bridge deck.

It is evident that it is valid:

P = 0_ll'zq(x) (fan ¢ Ldlx (14)

pylon

And equation (2) becomes:

3 O oy
Ou)=u, ~uy; = A DD—SB£S+B£S J'q(x)DJancI)Bix—
6E,/, § OHO OHOQPqs,
15)
3 O 0o,
= H e - 3B£g+5—gmjxﬂj(x)ﬁix
6E,1,(H~h) B OHO OHO
For the cable i, is valid that:
ou [8in ¢, +2SDD)Z,- =w, [dos ¢, (16)
and equation (16), because of (15), becomes:
0 3 0
0O H h 8; 5q(x-)
ED &3 L=y gosp, (17)
@'WH DHQZ M A G g, T
where: A(x) = % (18)

the, conventional, distributed area of cross-section of the cables, which is a function of x.

2.4.1 First case A(x)=constant.

We symbolize:
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3 O 0 a
6E’J[_I—Hh - 3B£g + Bﬁ O=4 a
yH-mg DHO 0OHOF u (19)
1 a
EAx 0
On the other hand we have: s; .x,» . Then, equation (17) becomes:
sin

a;
AGin¢ [II xq(x)dx+ B E—Iﬂ =w(x)cos or
a, sind [dosd

o
ABin? ¢ [dosd | xq(x)dx + Bxq(x) = w(x) [ind [dos’ ¢ or from the geometry of figure 2:

o

(H = h)x? % _ (H-h)’x
[xz + (H _ h)2]3/2 [cl{xq(x) + qu('x) - W('x) [[}xz + (H —h)2]3/2 (20)
After integration from a, to a, we get:
2 (H—h)xzdx 2 a2 _ a2 xw(x)dx
AE{ (x> +(H - h)* ]2 %XQ(X)OIX%B({ sede= _h)zufl RN
We can find:
% (H—h)xzdx
I = =
c al-] [x2 +(H - )T
-y GO 0 cpai+(H iy’ —aai+ (- [
B a+yai+(i -l (- T+ (H -h)] B
After some manipulations we reach:
a, a, d
(Al +B) [ xq()ds = (I ~h)? e f(v;(x_) h))cz]yz (22)
And finally from equation (20), we can find:
_ (H - h)? O AH-mG %2 xO(x)dx
4= BO* +(H -h)’T" Egv(x) Al +B D(,Il x> +(H-h)’T"? g @)

2.4.2. Second case, A(x) = variable.

It is usual to suppose [12] that the area of the cross-sections of the cables changes
under the formula:
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_ g
AC) = o, [éos 4

where:
g : the uniform distributed deck own load

o, : the initial tension of the stays curtain, due to the above g . Itis: 0, =0 f
gtp
where g, the allowable stress of cables and p the design live load.

Then we symbolize:
3 O O
" 2-3 Bﬁﬁz + Bﬁg O=4

6EJp(H~-h{ "OHO OHOQ 09)

=B

mOoOoOomOanO

-2
Elg

X; .
and because of 5; =——, equation (17) becomes:
i

i

A8in ¢Oj3x Lg(x)Ldx + B E[YBI—(X) =w(x)dosdp or
a sin ¢

oy
ABin’ ¢ [x§(x) G + B3 (x) = w(x) Bin ¢ [Gos
a,
or from the geometry of Figure 2:

2 o,
AG————— Ofx Gy (x) Gl + B G G (x) = wi(x) EIM (26)
X +(H+h) 4 +(H = h)

After integration from o, to a, , we get:
2 a
! x” [dlx B+ ' ox Ov(x) Lélx
A _ x(x)x=tBOxG(x)Wx=(H-hHO[ ——— (27)
iy o e
We can find:

a; 2
IV:I P X L 2 :(a2_a1)_(H_h)H7VCEaII 9 —arc Han il H
a, X" +(H —h) 0 H-h H-h0

After some manipulations we reach:

Al DIXB](X)Wx+BDIxB](x)Q{x (H - h)Dan

& &, +(H = h)?

H-h % x0Ou(x)0x
Al, +B Ix +(H-h)*

(]'zx Lg(x) Ldlx = (28)

And, finally, from equation (26), we can find:
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H-h Ax % xOu(x)Ex H
q=—ED B of S5 29)
BO +(H-h)*1 5 Al, +B § x*+(H~h)*
Or, under a general form, we can write:
a, 0
q(x,1) = Fy (x) Mw(x, 1) = F5 (x) Uf F5 (x) Gv(x, 1) Ldlx] B
a
Where : for A = const. B
H-h)? AH = h x 0
Fi(x): 2( ) 2.3/2 ° FZ(X)z(—)Ij:’ FS(x): 2 2 3/2%
Bx” +(H —h)"] Al +B X" +(H=-1)"1"" g (30)
a
and for A =variable B
H-h Ax by O
()= , B(x)=————, iK(x)=————
1( ) B[Dx2+(H—h)2] 2( ) AIV+B 3( ) x2+(H—h)2 B
B

For the case of Figure 4, namely for the case of a bridge deck that is at the left of the

pylon, we have:

for A = const.
(H-h)* A(H - h) l—x

Fi(x)= We-x), F3(x)=

57 Fa ()=

B¢ ~x)* +(H ~h)*]

g
o, os¢ ’
H—h _A(t-x) _ 0-x

Fy(x) = Fy(x) =
BON/ —x)* +(H-h)*]’ 0= s B

for 4=

()=

We can now find the eigenfrequencies of the bridge.
The equation of the vertical motion of the deck bridge is:

nn

ET W™ (x,0) + cyw(x, 1) + mw(xf) = =q(x,1)

with g(x,f) given by equation (30).
We search for a solution of separate variables, under the form:
w(x,1) =X (x) [T (0)
Because of equations (32) and (30), equation (31) becomes:

. . O a, O
EILX" [T +c, [XT +mXT =-F X - F, [F; X LT or
E ay E

Al +B [(¢=x)* +(H =h)*T"?

(L=x)* +(H ~h)’

moOoOooomOoooogo

—~
W
je]
%]

=2

€2))

(32)
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1 U a N 0
va + F D}( _F F XD . C .
7E1v 1 A 2 J 3 g T+2bT
- - =- Mm_ = or
m B¢ T
El,
1 0 a a O
EI, A & a
1
d
T+ m+0*T=0 H (33)
m O
2 0
where A=l9 O
Ely H
Fig. 4. Deformation of the girder. Cables at the left of the pylon.
In order to apply Galerkin's method, we set (as in §2.3) :
X(x)=cW (x)+cy Wy (x) +.....t ¢, W, (%) (34)

with the notes and restrictions of §2.3.

Introducing (34) into (33), multiplying the outcome successively by ¥, , ¥ ,....,¥;
and integrating the results from 0 to L, we obtain the following homogeneous, linear
system, without second member of n equations, with unknowns ¢, ,c; ,.....,C; -

e1(Ayy =ABy) + 5 (Ajy =ABjp) * oot (A —AB,) =0, (i=12,....n)  (35)

mn

where:
L " 1 1 G2 D
Ay = (¥ ——[F (0) W, ———[F (x) [F, (x) [ [ F3(x)W; L) |, Laix ]
0 EI, EI, a 0
. 1 g (36)
_ O
By —J'LP,- BPj Cdlx E
0
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In order for the above system to have non-trivial solutions, the determinant of its
coefficients must be zero:
|T;1=0, with 4,j=12,...,n and T; = 4; —A[B; 37)
From equations (37), we determine the values of A and from equation (33b), the

spectrum of the flexural eigenfrequencies o, .
From the first (n — 1) equations of system (35), we can finally find:

r12 .............. I—ll ............... rln E
............................................. 0
P | L)oo . H
A L (7! OO Gith s i =1, (n-1), j=2,(1) O (38)
Cl | rlj D
0
n C.
and therefore:  X,(x)=¢; Y E-Vl +—LY, E 0
J=2 a H
From equation (33b), we can find the time function of the free vibration:
0 O
T(t)= e (4, sin Wt + B, cos wt) for ;?én <w E
T@) = e_B’(AZ +B, [3) for % =g % (38a)
2 0in 0
T(t) = e P (4, sinh oot +cosh En) for S s O
3 P 2 (i E

0
where: 3= 2c—b is the, so called, "damping quantity" and w=+/w’ -3 .
m

The two last cases are impossible to take place for usual cable-stayed bridges. That is
possible to happen only when /, — 0 and /, has very small values (like some primitive
bridges in jungle where girder strength is practically nonexistent). Nevertheless, it is
remarkable that through appropriate values of 4; and B;, (which are depended on initial
conditions), the third case conducts to a flutter instability.

2.5. The forced vibrations
The equation of motion for the flexural forced vibration, is given by:

ELwW" (x,0) + ¢, O (x,2) + mi(x, 1) + q(x,1) = p(x,1) (39)

where g(x,?) is given by equ.(30) while p(x,t) is the external dynamic load.
We seek a solution under the form:

wix,1) =3 X, (x) B, (x) (40)

where P,(f), unknown functions of the time, which will be determined and X,(x) are
functions of x, arbitrarily chosen, which satisfy the boundary conditions.
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As such functions, we choose the shape functions of the corresponding continuous
beam (which continuous beam has the same characteristics with the bridge but without
cables), given by the appendix.

Then equation (39) becomes:

. . oy
El,S X)'B, +c, 5 X, B, +mY X, B, + K[ X,P,~F, [F;3 X,P,]1= p(x,f) (41)
n n n n a, n

The Shape functions X,, satisfy the equation of motion of the freely vibrating
corresponding continuous beam:

EIX)" ~mw,X, =0
And equation (41) becomes:
2 . .. az
mzwanPn +cbzXnPn +sznPn +F1[ZX111)11 _FZ _I-F?azXnPn] = p(xvt) (42)
n n n n (xl n
After multiplication by X; and integration of the outcome from 0 to L, we get:
L L L
m(wy P [ X X;dx+ @, P [ X, X;dx+--+ W, B, [ X, X;dx) +
0 0 0
L L L
+ey (R[X\ Xidx+ By [ Xy Xidx +---+ P, [ X, X;dx) +
0 0 0
.. L . L .. L
+m (B[ X\ Xidx+ P [ Xy Xdx +---+ P, [ X, X;dx) +
0 0 0
L L L
+(P[FRX Xdx+P, [FX,Xdx+-+P, [FX, X dx) -
0 0 0

a, L a, L a, L
(AW [FX\dx)([F FyXdx) + Py ([ F3Xodx)([FyF Xido) +--+ B ([ F3 X, dx)([FFy X dx)] =
a, 0 a; 0

a, 0
_ L
= ([ P(0)X, dx
0

(because, we considered that p(x,¢) = p(x) D;(t) ).
Or finally

ZlDl-jP, +cbZIG,-jR- +m;GijPl- =R,
for j=1ton

L L a, L
and: Dy =mw; [X X, dx+IFlXle- dx—(J'F3dex)(IFlF2Xl-dx) 03
0 0 a 0 (43)
L
G, =£Xin dx

L
R; = J’ﬁ(x) X ;dx
0

mOoOooooomOooood
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In order to solve the above differential system, we use the Carlson-Laplace
transformation with the following initial conditions:

w(x,0) = Ww(x,0)=0 (45)

We put: L P()=g(p)
and therefore: L P(t) = p g,(p)~ pP(0) = pg;(p)
LP(t)=p*g,(p)~ p’P(0)~ pP(0) = p*g,(p)
Lf(t)=F(p)

(46)

I o

Then, equation (43), get the form:
(Dy; +¢,Gyyp +mGy;p*) €1(p) +(Dy; +€,Gopp +mGyyp*) g5(p) 4+
A (Dy e, Gyp+mGyph)g,(p) = RiF(p)  (47)
with j=11ton
The usual forms of functions F(p), are rational functions of p.

Then , solving the system (47), g,(p) takes the following form:

N,
g () =22 ik i=1 10 (48)
M;(p)
where N;, M; are polynomials with respect to p with M,(p) of higher order than N,(p).
Heaviside's rule can thus be applied, leading finally to equation:
) . N, Pt
-1 Ni(p) _ Ni(0) | Nl(Pk')e (49)
M;(p) M0) j=prM:(Py)

P(t)=L"g;(p)=L

3. NUMERICAL RESULTS AND DISCUSSION

In this section a numerical investigation based on the equations obtained in the
previous paragraphs has been developed. The above equations connect the deformations
of the deck to the load ¢(x) (that expresses the effect of the tensions of the cables). The
individual and coupling effects of the mechanical and geometrical parameters are
discussed in detail.

The mathematical model discussed herein is related to a real three-span bridge with a
fan-shaped system of cables along the girder (like in Fig. 5), middle span ¢, =400 m,
equal site spans /; = /3 = 120 m, weight per unit length g = ~8000 kN/m, and moment of
inertia of the deck I,=~0.21 m*. The above data are combined with the design loads
pl/g=0.5 and 1.0 (this ratio is connected to the cross-section area of the cables),
moments of inertia of the pylon 7,/ 1;=0.5, 1.0, 1.5, 2.0, 2.5, total height of pylons
L/H=4, 5, 6, 7, and distance of the deck under-surface from the surface of the earth
h/H = 0.50, 0.25, and 0.125.

The three eigenfrequencies wy, ) and wy are found for the above cases. Numerical
results, concerning the above research, are given in Table A.
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Fig. 5. Cable stayed-bridge for the illustrated example.

From the plots of Fig. 6, 7, 8 we can see, respectively, the three eigenfrequencies of

the free vibrations as a function of the parameter h/H for the cases 7,/ 1, =0.5, 1.5, 2.5.
The plots of Fig. 9, 10, 11 show the three eigenfrequencies as a function of parameter

1,/ I, for the cases h/H = 0.5, 0.25, and 0.125.
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The first significant remark is that if the characteristics of the deck remain
unchanged, while the other parameters (like the pylon height, pylon moment of inertia,
cross-section area of the cables, distance of the deck under-surface from the surface of
the earth) change, then we can affect the eigenfrequencies only a little.

The maximum effect of the above secondary parameters (like the pylon height, pylon
moment of inertia, cross-section area of the cables, distance of the deck under-surface
from the surface of the earth) is for the first eigenfrequency ~15.5%, for the second
~6.8% and for the third one ~9.5%.

Figures 6 to 11 show clearly those influences.
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4. CONCLUSIONS

On the basis of the model chosen, we may draw the following conclusions:

1. The function ¢g(x), giving the load that expresses the effect of the cables on the
bridge deck, is determined.

2. A simplified model, based on the above found load ¢(x) is used for a quick dynamic
test of a bridge.

3. The basic parameters, which affect the eigenfrequencies of a bridge, are those of the
deck of the bridge.

4. The parameters connected to the pylons and the cables of a bridge affect less the
eigenfrequencies and their effect comes up to about 12%.
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APPENDIX
1. Two-span continuous beam
Eigenfrequencies equation:
coshA/, BinAl, BinAl, Binh Al; +coshAl, BinA¢, Ein A/, Binh A/,
—cosAl, Binh A4, Binh A/, [dinh A/, —cos A/, [dinh A/, [dinh A/, Binh Al, =0

Shape-functions equation:

1 . 1 .
W, (x;) =———sinA ,x; —————sinhA ,x; for0<sx, </,
sinA ¢, sinhA 0,
W, (x,) =—cotA,l,sinA,x, +cosA, x, +cothA ,l,sinh A ,x, —coshA x, forO0<x,</(,
5 (925
w
where: A, = "
ET

2. Three-span continuous beam

Eigenfrequencies equation:
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coshA,?, [doshA 05 BinA, ¢, BinA, ¢, EBinA,¢5 Einh A0, +
coshA ¢, [doshA, ¢ 8inA, ¢, BinA ¢, BinA,¢; BinhA ¢, -
cosA,l, [doshA, 05 8inA ¢, BinA ¢4 Binh A, ¢, Binh A, ¢, -
cosA,l; [doshA 05 8inA, ¢, BinA {5 8inh A, ¢, Sinh A, 7, +
coshA,?, [doshA, ¢, BinA, ¢, BinA, ¢, EinA ,¢5 [Sinh A, 05—
cosA,l; [doshA, ¢, [BinA, ¢, BinA ¢, BinhA, ¢, Binh A, 05 +
cos®\, 0, Bin\, ¢, Bin\, ¢, Binh A, ¢, Binh A, (5 —
2[8osA ¢, [doshA ¢, BinA ¢, BinA /5 [Sinh A ¢, Binh A, 05 +
cosh® A, ¢, @inA ¢, BinA 05 Binh A, ¢, Binh A, /5 —

cosA, ¢, [dosh A, ¢, 8inA ¢, BinA, ¢4 Binh A, ¢, Einh A, 045 +
sin\ ¢, Bin®> A, ¢, Bin A ¢; Binh A, ¢, Binh A, ¢4 -

cosA, 04 [doshA, ¢, BinA, ¢, BinA, ¢, Binh A, ¢, Einh A, 05—
cosA,l, [BoshA, ¢, 8inA, ¢ BinA {5 Sinh A, ¢, Binh A, 05 +
cosA,l, [dosA, ¢4 BinA, ¢, BinhA ¢, Sinh A, ¢, Binh A /5 +
cosA,l; [dosA, /5 BinA ¢, BinhA ¢, Binh A, ¢, Binh A /5 +
cosA, ¢, [dosA 0, BinA, ¢4 Binh A, ¢, Binh A ¢, Binh A, 05 -
sinA, ¢, BinA, /5 Binh A ¢, Binh? A ¢, Binh A, ¢; =0

Shape-functions equation:

. 1 .
- sinA,x; —————sinh A, x; for0sx; </,

sinA ¢, sinh

l'IJn (xl) =

nt1

W, (x;)=(—cotA,l, + )sinA, x, +cosA ,x,

sinA,/,
C .
+(cothA, ¢, —————)sinh A, x, —coshA, x, for0<x, </,
sinhA /¢,
W, (x3) =—CLdotA ¢4 BinA, ¢4 +CEosA, x;
+CEOth)\né3 @inh)\nx3—CROSh)\nx3 forOSx3 Sé3
5 925
where: A, = a
El

sinA ¢, —sinh A, /0,
sinA, ¢, Binh A ¢, (cothA ¢, +cothA , ¢ —cotA,l, —cotA,l53)

and C =
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Table A

p/g

0.50

1.00

WH

0.500

0.250

0.125

0.500

0.250

0.125

LH [1]1,

(Y

0.5

0.5107

[

[0

3.1469]5.9193

(Y

[0

(Y

[0

0.4833

3.0844

5.5946

0.4722

3.0148

5.4034

(Y

[

0.5690] 3.6085

[0

[0

[

(Y

[0

[

6.7882

0.5349

3.5353

6.4106

0.5206

3.4541

6.1881

1.0

0.5163

3.1481

5.9198

0.4934

3.0862

5.5952

0.4853

3.0117

5.4042

0.5741

3.6095

6.7886

0.5440

3.5369

6.4111

0.5324

3.4561

6.1888

4 |15

0.5219

3.1493

5.9202

0.5033

3.0880

5.5959

0.4980

3.0193

5.4050

0.5791

3.6106

6.7890

0.5529

3.5385

6.4117

0.5440

3.4581

6.1895

2.0

0.5227

3.1506

5.9207

0.5129

3.0899

5.5965

0.5104

3.0216

5.4058

0.5841

3.6117

6.7894

0.5618

3.5402

6.4122

0.5554

3.4601

6.1901

25

0.5329

3.1518

5.9212

0.5224

3.0917

5.5972

0.5224

3.0239

5.4066

0.5891

3.6127

6.7898

0.5704

3.5417

6.4128

0.5665

3.4621

6.1908

0.5

0.5243

3.1057

5.9659

0.5042

3.1423

5.8096

0.4951

3.1090

5.6699

0.5850

3.5606

6.8422

0.5593

3.6027

6.6606

0.5474

3.5637

6.4981

1.0

0.5312

3.1075

5.9666

0.5162

3.1447

5.8530

0.5107

3.1120

5.6710

0.5911

3.5620

6.8428

0.5702

3.6048

6.6613

0.5615

3.5663

6.4991

5 |15

0.5379

3.1091

5.9672

0.5280

3.1472

5.8114

0.5258

3.1149

5.6721

0.5972

3.5635

6.8434

0.5808

3.6069

6.6621

0.5752

3.5689

6.4999

2.0

0.5446

3.1107

5.9679

0.5395

3.1496

5.8123

0.5405

3.1179

5.6731

0.6033

3.5649

6.8439

0.5913

3.6090

6.6629

0.5888

3.5715

6.9009

25

0.5512

3.1124

5.9686

0.5507

3.1520

5.8131

0.5546

3.1308

5.6742

0.6093

3.5664

6.8445

0.6016

3.6111

6.6637

0.6017

3.5740

6.5018

0.5

0.5317

3.0424

5.9356

0.5184

3.1495

5.9145

0.5111

3.1455

5.8220

0.5936

3.4869

6.8069

0.5757

3.6109

6.7824

0.5663

3.6061

6.6748

1.0

0.5398

3.0445

5.9365

0.5322

3.1526

5.9157

0.5293

3.1492

5.8234

0.6007

3.4887

6.8077

0.5882

3.6136

6.7834

0.5824

3.6093

6.6760

0.5476

3.0467

5.9374

0.5457

3.1556

5.9168

0.5465

3.1529

5.8247

0.6074

3.4906

6.8085

0.6004

3.6163

6.7844

0.5981

3.6125

6.6772

2.0

0.5554

3.0488

5.9383

0.5588

3.1586

5.9179

0.5631

3.1565

5.8260

0.6148

3.4925

6.8092

0.6124

3.6189

6.7854

0.6133

3.6157

6.6783

25

0.5630

3.0509

5.9392

0.5716

3.1617

5.9191

0.5792

3.1602

5.8273

0.6247

3.4943

6.8100

0.6241

3.6216

6.7864

0.6281

3.6189

6.6795

0.5

0.5364

2.9566

5.8524

0.5306

3.1256

5.9633

0.5264

3.1501

5.9217

0.5988

3.3869

6.7000

0.5897

3.5831

8.8389

0.5832

3.6112

6.7906

1.0

0.5458

2.9594

5.8536

0.5465

3.1295

5.9649

0.5468

3.1547

5.9234

0.6072

3.3893

6.7100

0.6041

3.5868

6.8403

0.6017

3.6153

6.7021

7 |15

0.5550

2.9621

5.8548

0.5620

3.1333

5.9663

0.5664

3.1593

5.9251

0.6155

3.3918

6.7121

0.6181

3.5898

6.8416

0.6196

3.6193

6.7936

2.0

0.5640

2.9651

5.8560

0.5771

3.1372

5.9678

0.5853

3.1639

5.9269

0.6236

3.3942

6.7132

0.6318

3.5931

6.8429

0.6370

3.6233

6.7951

25

0.5729

2.9676

5.8572

0.5917

3.1410

5.9693

0.6036

3.1685

5.9286

0.6317

3.3965

6.7142

0.6453

3.5965

6.8442

0.6538

3.6273

6.7966

UPROSCEN MODEL ZA DINAMICKU ANALIZU
KABLOVIMA PODRZANOG MOSTA

George T. Michaltsos

Ovaj rad se bavi modelom koji upros¢ava nalazenje prirodnih sopstvenih frekfencija kablovima
podrzanog mosta sa raspodelom gustine kablova. Tada je moguce prouciti vertikalne prinudne
oscilacije mosta. Konacno, dat je primer koji jasno prikazuje jednostavnost metode.



