FACTA UNIVERSITATIS
Series: Mechanics, Automatic Control and Robotics Vol.3, N° 11, 2001, pp. 159 - 166

NON-STATIONARY VIBRATIONS OF MULTILAYER PLATES
AND CYLINDRICAL SHELLS. DIFFERENT THEORIES

UDC 624.073.132+624.074.43:624.042.1:539.32(045)

Sergej. V. Ugrimov, Natalia V. Smetankina, Natalia V. Dolgopolova

Institute for Problems in Machinery of National Academy of Ukraine
2/10 Pozharsky St., 61046, Kharkov, Ukraine
E-mail: kantor@ipmach.kharkov.ua

Abstract. The paper presents the comparison of outcomes of research of the stress-
strained state (SSS) of multilayer plates and shells at impulse loading, which are
obtained on the basis of the different two-dimensional theories and three-dimensional
theories of an elasticity.

For definition of SSS are applied the classical theory of Ambartsumyan, the first-order
refined theory of multilayer plates and shells, and also non-classical refined theory of
multilayer plates based on kinematic hypotheses, supposing cubic relation for
tangential displacements and quadratic one for normal displacements from transversal
coordinate in each of layers.

The possibilities of the theories and the validity of results obtained is illustrated by
several examples of calculating vibration processes and the processes of propagation
of elastic waves. The influence of a compliance of filler on stresses in carrying layers of
plates and the variation of stresses on thickness of package at distributed and localized
effects are investigated. The results of investigations allow to establish a class of
structures and condition of their loading, at which the considered two-dimensional
theories give reliable outcome.

Also, the vibration of multilayer plates of complicated form under impulse loading are
considered. The approach offered is based on the elastic immersion method.

As a rule, two-dimensional theories are used for investigating the response of
multilayer structures [1-5, 7]. Reduction of a three-dimensional problem to two-
dimensional one can be realized by different ways. As noted in the papers of E.IL
Grigoliuk [2, 3], the theory of multilayer shells and plates is being developed along two
main lines. The first one is related to works in which the three-dimensional problem is
reduced to a two-dimensional one on the basis of hypotheses applied to the entire
package of layers as a whole [1]. It is accepted this direction to refer as continuous-
structural. The second, more general line is related to works in which hypotheses for each
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separate layers are used for deriving the equation [2-5, 7]. This approach is referred to as
discrete-structural.

The selection of a model adequately describing the response of a structure is made on
the basis of several criteria depending on the concrete problem. As a rule, the following
criteria are used: relative thickness 4/l (4 is the thickness, / is the characteristic problem
dimension), thickness ratio #/R (R is the shell radius), relationship of the layer elastic
properties, type of loading.

In the paper some two-dimensional mathematical models of multilayer plates and
shells concerning to different directions in the theories of multilayer structures are
considered. Continuous-structural direction is represented by the classical theory
S. A. Ambartsumyan (the non-deformable unified normal hypothesis for a package) [1],
discrete-structural direction is presented by the theory E.I. Grigoliuk and P.P. Chulkov
(hypothesis of the broken line for a package) [2] and refined high-order theory taking into
account the effects of transverse shear deformation, transverse normal strain, and a
nonlinear dependence of displacement on the transverse coordinate [7]. In further we
designate theories S.A. Ambartsumyan as AT, E.I. Grigoliuk and P.P. Chulkov as GCT,
and refined high-order theory as HORT. The hypotheses of GCT and HORT are
particular cases of the generalized theory based on definition of the law of change of
displacements for each layer as a power series on transversal coordinate
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ub ub is displacements of the plate (or shell) point in the ith layer in the direction of
coordinate axes Ox, Oy, Oz correspondingly; uy,usul, ui, are sought for function

depending on x, y, t; h; is the thickness of the ith layer; ¢ is time; [ is the number of layers
in a pack; K, L are numbers of the terms of a series. It is assumed that contact between
the layers excludes their delamination and mutual slipping, the coordinate plane Oxy
linked with the external surface of the first layer. At K =1, L = 0 hypotheses (1) coincide
with GCT hypotheses, and at K = 3, L = 2 coincide with hypotheses of the HORT. Thus,
behavior of each layer of a plate in the GCT theory is described by equations
S. P. Timoshenko, and in case of the HORT is described by of the K. H. Lo, R. M.
Christensen and E. M. Wu hypotheses.

The feasibility of the above mentioned theories is illustrated by several examples. It is
further assumed that strains are small, materials of the layers are homogeneous isotropic,
a transverse load is applied to the external surface of the first layer.

We shall consider a problem about influence of Young's modulus of a middle layer
on maximum stresses in rectangular simply supported three-layer plate at transient
loading. The carried layers are made of silica glass (SG), the mechanical characteristics
of this material: E; = 6,6700* MPa, p:i= 2,500° kg m>, v;=022 (i=13). Here E;, v;



Non-Stationary Vibrations of Multilayer Plates and Cylindrical Shells. Different Theories 161

are Young's modulus and Poisson's ratio of the ith layer, p;is the ith layer material
density.

For the case 4=B=0,5m (4, B - dimensions of a plate in the plan), h, = h, =
h3;=0,01 m and impulse loading

LT . Ty
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(here is accepted P, = 0,1 Mpa, H(¢) is Heaviside function) the relation of maximum
stresses calculated in the middle of outside surfaces of a plate from Young's modulus of
middle layer was shown. The Young's modulus of middle layer E,, given in the following
limits: 100 E<E,<E (E=E,=E3, V| =V, =V3, p; =P, = P3). The results of calculation
are presented in Fig. 1. The solid line corresponds to the three-dimensional theory [6],
dashed line relates to the HORT [7], dash-dot line designates the AT [1], dots relate to the
theory of GCT [2.,4].
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As is easily seen, the good coincidence of results obtained on the basis of the
considered theories is observed only for values E, close to E. So, the AT well agrees with
the three-dimensional solution at values E, satisfying to an inequality E > E, > 10 E, the
GCT —at E2 E,>10 *E, and HORT can be used practically for all values E,. Thus, the
account of transversal shear and normal strains (stresses) of layers expands the
boundaries of applicability of the theory. Note that in the considered problem the
distribution of displacement (stress) in carrier layers remained practically linear for all
values of Young's modulus of filler. Nonlinear character of distribution of the
displacements (stresses) with respect to the thickness coordinate, which is taken into
account in the HORT is displayed only for comparatively thick plates and shells, and also
at a localized loading [6,7]. In the latter case, nonlinear character of relation of stresses
from transversal coordinate is shown only in a small vicinity of loading area.

In spite of the fact that the HORT gives in all cases considerable degree of
approximation, its application in real problems is inconvenient and ineffective. In most
cases GCT suffices for description of non-stationary behavior of multilayer structures.

The functionability of a method based on the GCT and reliability of results for a
multilayer cylindrical shell of length /, radius R, is illustrated on the following examples.
The shell is referred to a right-hand system of orthogonal curvilinear coordinates x, ¢, z.



162 S.V. UGRIMOV, N.V. SMETANKINA, N.V. DOLGOPOLOVA

The coordinate surface is connected to an outside surface of the first layer and has radius
R.

For the case an impulsive loading of a cylindrical shell, the results of calculation by
using the GCT are compared to the analytical solution presented in the work [8]. The
single-layer infinite cylindrical shell (#/R=1/10) is subjected to a concentrated impulse
radially directed unit loading applied in the point ¢ =0, z= A:

P (9. =8(9)3(1),

where 8(¢), 8(¢) are Dirac delta-functions. Fig. 2 shows the relation u5(0,7) (Fig. 2a) and
04(0,4,1) (Fig. 2b) from time. The dimensionless time T is normalized on wave travel time

of membrane stresses along shell radius, T=tV/R, V =+ E/[p(1-v?)] . Here it is accepted

E= 6,12E|]O4 MPa, p=2,5 1o’ kg m'3, v =0,3. The solid line corresponds to the GCT,
dash-dot line relates to the analytical solution.

Due to wave character of the GCT, the stresses remain close to zero so long as the
wave extending from a point of loading, will not reach a considered point on the shell.

-100

Fig. 2

For cylindrical shells of finite length the comparison with the exact solution
introduced in [9] for v = 0.3; 4/R = 1/10; /R = 5 was conducted. The shell was subjected
to external instantly applied to an outside surface radially directed loading
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Here P, is intensity of loading (0.1 MPa), f($¢) and g(x) are distributions of loading
along coordinate ¢ and x, respectively.

In Fig. 3 (a, b) the response of a cylindrical shell to dynamic loading is shown. Fig. 3a
displays va-riation of radial displacement normalized on R on median surface in time. In
Fig. 3b the variation in time of hoop stresses on an external surface normalized on pV?,
V =, E/[2p(1+v)]is shown. The dimension-less time is normalized on travel time of

shear wave along shell radius, T =¢J/R. The material properties were selected as well as
in the previous problem. The solid line corresponds to the GCT, dash-dot line relates to
the analytical solution. Let us observe the good agreement between the theory GCT and
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theory of elasticity; the distinction between the appropriate results makes less than 0,5 %
near to a maximum.

Fig. 3

Now we consider some application of GCT to research of vibration of multilayer
plates of com-plicated form under impulse loading. The approach offered is based on the
elastic immersion method [5].

The multilayer plate is assembled from / layers of constant thickness. In the
coordinate plane x0y the plate occupies a simply connected domain Q having a boundary
L of an arbitrary form: x; =x(9), y. =(9), &9 < ¢ < ;. The plate is subjected to an
external impulse load P¢ = {p(x,y,)} (j =121 +3) distributed on domain Q, J Q.

The original plate occupied domain Q is immersed into an auxiliary enveloping plate
having an identical layer composition. An auxiliary plate occupies domain Q;,Q Q.
in the plane xOy. The enveloping plate is loaded within the limits of domain Q the same
way as the given plate. The contours Ly of enveloping plate and boundary conditions are
selected so that it was possible to obtain a simple analytical solution. Here as the
auxiliary plate we take a rectangular simply supported plate.

To ensure fulfillment of real boundary conditions to an auxiliary plate on a trace of
boundary L some additional compensatory forces and moments Q°= {g(x,y,))} (=
1,27 +3, x,y 1 L) are applied. Hence, the initial problem of vibration of the plate Q affected by
a given impulse load is reduced to the problem of vibration of the rectangular plate Qy under
the action of same impulse load and compensatory loads Q° specified as curvilinear
distributions P = {p“(x,y,0)}, j =1,21+3

Pc(xryrt) :I¢; Qc(q)!t)é(x_xL!y_yL)r(q))dq) 5

where &(x—x;,y—y;) is the two-dimensional Dirac function.

Compensatory and given loads as well as displacements are expanded into
trigonometrical series in

domain Qf by functions satisfying simply supported conditions on the boundary Lz

Piy,0= % Y PiOB ), (%, )05, 3,00 = Y S pi(OB (%, ¥),j =1,21+3,

m=In=1 m=In=1
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where
Blmn = COS(G mx) Sin(Bny)’BZmn = Sin(amx) COS(Bny)’B?amn = Sin(amx) Sin(Bny)a
B3+i,mn = Blmn ’B3+1+i,mn = BZmn ’am =mT/ A’Bn =n1v/ B’l = L_I .

Compensatory loads are determined from the system of integral equations. For this
purpose compensatory forces and moments Q° are expanded into a single series along a
trace of the boundary L

qj = z fjau (t)bup (¢)5] = 192[ + 3 ’
a=T,2 1=0

where by, = sin[Hy(§)1b,, = cos[UY@LY(®) =21 - 0o) /(B —$,).0 < V(§) < 2.

A three-layer elliptical plate with parameters o = 0.2 m, B=0.1m, 4;=5x 10> m (i =
1, 2, 3) is considered (Fig.4). The first and third layers are made of SG. The mechanical
properties of material of the second layer are FE,=2.8 X 10°MPa, v, =038,
P, =12x10kgm™.
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Fig. 4

An impulse load is uniformly distributed over a circular area with radius » and
changes in time and coordinates according to the law

— — — —_ 2 2 2
PL=DP5 =3 = Piere =0, 6, 00Q,, Q i(x=x0)" +(y=yy) =77,
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PE(x,p,1) = 0.5R[1+sgn(ty —)]sin® (0/ 1) H(x)H (y) ,
where Py is load intensity, ¢, is impulse duration, H(x), H(y) are Heaviside functions. The
characteristics of impulse load have the following values: »=107m, Py=10MPa,

t1=7%10"s. The central point of loaded area coincides with the central point of the ellipse
Xo=A/2,yy=B/2, zy= 0. Dimensions of the enveloping plate are taken 4 =B =1 m.
The distribution of normal stresses along an axis of the elliptical plate at different

instants of time was studied: o} =03(x,5,2,0), 0, =0,(x,y,2,1), 42 -0 x< 42 +q,

y=BJ/2, z= &, t = t;. The calculation results are presented in Fig. 4. The stresses reach to
maximum values in the instant of time #; =4 x 10 *s. Further the effect of stress
concentration in both focal points F; and F, of the plate at ¢, = 1.9 x 107 s is observed.

The offered method allows to examine transient vibrations of multilayer plates of an
arbitrary plan form with different boundary conditions.
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NESTACIONARNE VIBRACIJE VISESLOJNIH PLOCA I
CILINDARSKIH LJUSPIL. RAZLICITE TEORIJE

Sergej. V. Ugrimov, Natalia V. Smetankina, Natalia V. Dolgopolova

Rad predstavija poredenje ishoda istrazivanja naponsko deformacionih stanja viseslojnih ploca
i ljuspi pri impulsnom opterecenju koji se dobijaju na osnovu ralicitih dvodimenzionalnih teorija i
trodimenzionalnih teorija elasticnosti.

Za definiciju naponsko-deformacionog stanja (NPS) se primenjuje klasicna teorija Ambartsu-
myan-a, prvog reda refinisana teorija viseslojnih ploca i ljuspi, kao i neklasicna refinisana teorija
viseslojnih ploc¢a zasnovanim na hipotezama kinematike, pretpostavijajuci kubnu relaciju za
tangencijalna pomeranja i kvadratnu relaciju za normalna pomeranja od transverzalne koordinate
u svakom od slojeva.
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Mogucnosti ovih teorija kao i vaznost rezultata koji su dobijeni, prikazani su sa nekoliko
primera procesa proracunavanja vibracija i procesa Sirenja elasticnih talasa. Uticaj savitljivosti
ispune na napone u nosecim slojevima ploca i promena napona na debljinu paketa pri
rasporedenim i lokalizovanim efektima se istrazuje u ovom radu. Rezultati istrazivanja dopustaju
da se utvrdi jedna klasa struktura i uslova njihovog opterecenja, kod kojih razmatrane
dvodimenzijske teorije daju pouzdane rezultate.

Takode, vibracija viseslojnih ploca komplikovanih oblika se razmatra pod dejstvom impulsnog
opterecenja. Pristup koji se nudi je zasnovan na metodi elasticnog zadubljenja.



