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Abstract. In this paper variations of some geometric magnitudes under infinitesimal
bending are studied. Infinitesimal bending of a curve is considered and infinitesimal
bending field is determined. Specially, the infinitesimal bending field that plane curve
includes in a family of plane curves is given. It is also proved that the area of the region
in the plane bounded by a closed curve is stationary under the infinitesimal bending of
a curve remaining plane. The variation of the volume bounded by rotational surface,
under infinitesimal bending of the meridian, remaining closed plane curve, is given.
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0. INTRODUCTION

It is well-known that variations of some geometric magnitudes that depend on
coefficients of the first fundamental form of the surface are zero under infinitesimal
bending of that surface at %3 [8]. For example variation of the arc length of a curve
on the surface is zero and also variation of the angle between curves on the surface is
zero under infinitesimal bending of that surface.
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V. A. Aleksandrov [2] has proved that variation of the volume, bounded by closed
rotational surface of the type 0 or 1 without plane parts, is zero. The meridian of
such a surface is C! smooth, non-containing a segment perpendicular to the axis of
rotation.

We are here calculating variation of the volume of rotational surface generated by
meridian that is closed plane curve under infinitesimal bending of that meridian.

It is known that area of a region on the surface is stationary under infinitesimal
bending of that surface, i.e. that variation of the area is zero. We are calculating
variation of area of the region in the plane under infinitesimal bending of a closed
curve that bounds that region. This work is based on works [9, 10, 11].

1. INFINITESIMAL BENDING OF A CURVE IN ®3

We begin by studying infinitesimal bending of a curve. More information about
infinitesimal bending of the curves and surfaces one can get from [1], [4], (8], [6], [7],

[9]-
Definition 1.1. Let us consider continuous regular curve

C:7=r7(u), (1.1)
included in a family of the curves

Ce: 7 =7(u) +€z(u), (e > 0,e > 0,e € RN) (1.2)

where u Is a real parameter and we get C fore =0, (C = Cy). Family of curves C;
is infinitesimal bending of a curve C if

ds? — ds* = o(e), (1.3)
where Z = Z(u) is infinitesimal bending field of the curve C.

Theorem 1.1. [4] Necessary and sufficient condition for Z(u) to be an infinitesimal
bending field of a curve C is to be

dr-dz=0. O (1.4)
The next theorem is related to determination of the infinitesimal bending field of
a curve C.

Theorem 1.2. Infinitesimal bending field for curve C (1.1) is

0) = [p(au) + a(w)bu)ldu, (1)
where p(u), q(u), are arbitrary integrable functions, and vectors a(u), I;(u) are unit
principal normal and binormal vector field of a curve C.

Proof. As
dr = r(u)du, dz = z(u)du,
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according to (1.4) for infinitesimal bending field of a curve C' we have
roz2=0, ie. zLr (1.6)
Based on that we conclude that z lies in the normal plane of the curve C, i.e.
£(u) = p(u)(u) + g(w)b(w), (1.7)
where p(u), ¢(u) are arbitrary integrable functions. Integrating (1.7) we have (1.5).

As L. s onm o
P GA) il URL L (1.8)

[rx 7|’ |7]|7 x 7|

infinitesimal bending field can be written in the form

2u) = /[p (r P — (r-1)r +g(u )

|r||r X 7

e
where p(u), g(u) are arbitrary integrable functions, or in the form

F(u) = /[Pl(u)F + Pa(w)f + Q(u)(F x 7)]du (1.5)
where P;(u),7 = 1,2, @Q(u) are arbitrary integrable functions, too. O

Example 1.1. Let us examine infinitesimal bending of a circle

7= (cosu,sinu,0), (or z?+y? =1). (1.9)

Here R =1 and u = s, i.e. the curve can be parameterized by the arc length and
we have

= n=— = Ri". 1.10
n==Rr (1.10)
From (1.9) we have

b= X" _ R x ) (L.11)

= ——— = R(# x ). )
B

As
7 = (—sinu,cosu,0); 7 = (—cosu,—sinu,0), 7 x ' =sin®uk + cos? uk =k
we obtain

i=1-#"=(—cosu,—sinu,0) = —7(u).
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According to'(1.5) and previous relations
i(u) = /[p(u)R(u)f-" + q(u) R(u) (7 (u) x 7' (u))]du

zZ(u) = /[p(u)(— cosut — sinuj) + g(u)k]du + C, (1.12)
where p(u), g(u) are arbitrary functions.

We will not study infinitesimal bending only analytically but we will do this by
drawing curves. Computer program Mathematica [5], [12] permits us to reproduce
any infinitesimal bending of a curve.

Let us consider some characteristic cases.

1) For pu)=C=0, g(u)=1,
infinitesimal bending field is

z(u) = uk. {1.13)

Infinitesimal bending of circle C (1.9) is
C. : 7e = (u) + €z(u) = 7(u) + cuk, (1.14)
i.e. the circle is by infinitesimal bending included in a family of helices

e = (cosu,sinu, eu) (1.15)

(see Fig. 1.).

Fig. 1. Infinitesimal bending of a circle 1)

Let us examine if the relation (1.4) is in force i.e. if a field (1.13) is a field of
infinitesimal bending. ‘



Change of Geometric Magnitudes under Infinitesimal Bending 139

Calculating

dr - dz = (—sin udui + cos uduj) - (duk) = 0

we confirm this. Also, according to
ds? = dz? + dy? = (—sin udu)? + (cos udu)? = du?

and
ds? = ds? + e*du?

we have
ds? — ds? = e2du? = o(e),
i.e. we have (1.3).
For the circle (1.9)is K = £ =1, 7 =0 (plane curve). For deformed circle (1.15)
is g e
T 142’ T 14¢€?

Variation of curvature of a circle under infinitesimal bending is

K.

0K —2¢
0K = —Zeo = =0 =0,
O le=0 (1 +€2)2 le=0
and variation of torsion
or. 142 — 2¢2
é = S le=0 = — 7515 le= =]-,
TS e le=0 = Tz le=0
i.e. the circle does not remain plane curve.
2) Forp(u)=C=0, gq(u)=2r—u
according to (1.12) we get infinitesimal bending field
z(u) = u(27 — u)k. (1.16)

The curve we get under infinitesimal bending of a circle with this infinitesimal
bending field is

C, : 7. = cosut +sinu3 + eu(2r — u)l;:

This curve is on cylinder 22 4+ y?> = 1, but as z.(u = 0) = z.(u = 27) = 0, the curve
is closed. This curve is not a helix (Fig. 2). As

dr-dz =0,
and also

ds? — ds? = e?u?(27 — u)?du® = o(e)
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a field (1.16) is a field of infinitesimal bending of the circle (1.9).
Let us calculate variation of curvature and torsion. As

_ 2e(sin 2u + ™ — u)
T l4+4e(l+7)2 +ul 4+ 2(m — u)sin 2u — 7w’

Te

VI+4e(l+ a2+ )
(1 + 4n2e? — 8me?u + 4e2u?) 3’

K, =

variation of curvature and torsion is’

ér = %—[go =2(sin2u+nr—u)#0, K =0,

i.e. a circle deforms to a curve that is not plane.
3) Forp(u)=1, gqu)=1
Fo =7 +€Z=(cosu— €gcosu)i+ (sinu+ecosu)j + euk

i.e. circle is included in a family of helices that are not on cylinder z% + y? = 1.

Fig. 2. Infinitesimal bending of circle 2)
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2. VARIATION OF REGION IN THE PLANE BOUNDED BY A CLOSED PLANE
CURVE UNDER INFINITESIMAL BENDING OF THIS CURVE

2.0.1t is known that variation of geometric magnitudes that depend on coefficients
of the first fundamental form are zero. Variation of area of a region on the surface
under infinitesimal bending of that surface is also zero, as area depends on the coef-
ficients of the first fundamental form of a surface that is infinitesimally bending. We
are asking a question:

How is the area of a region in the plane bounded by a plane curve changing under
infinitesimal bending of this curve, staying in the plane?

The change of geometric magnitudes under infinitesimal bending is expressed by
variation and this question can be precised:

What is the variation of area in the plane under infinitesimal bending of a curve
that bounds this region?

2.1. We will consider closed plane curve at polar coordinates

K :p=p(0), 0€]l0,2n] (2.1)
Under infinitesimal bending this curve is included in family of curves
Ke:pe =pe(0), 6€{0,2n),(e>0, €—0). (2.2)
Equations of this curves are in vector form:
K :7=#0), 6€l0,2n] (2.3)

K. : 7. =7(0) +€z(0), @8 €[0,2n], (2.4)

where Z(f) is a field of infinitesimal bending. We shall consider piecewise smooth
curve. At the points where the curve is not regular we choose infinitesimal bending
field continuous along a curve, i.e.

zZ(0 — 0) = z(6 + 0). (2.5)
Theorem 2.1. Infinitesimal bending field that plane curve
K :p=p(0)

under infinitesimal bendings includes in a family of plane curves

Ke:pe=pe(8), (>0, €—50),

z(0) = /p(o)ﬁ(o)da +é. (2.6)

Proof. Necessary and sufficient condition for a field z(8) to be infinitesimal bending

field of a curve 7(8) is
di -dz=10 (2.7)
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#(9) - 5(6) = 0. (2.8)

From here we conclude that z L 7 i.e. that 7 is in a normal plane of a curve i.e.
2(0) = p(8) + q(6)b, (2.9)

where p(6) and ¢(6) are arbitrary functions. In order to stay in the plane of the curve
we choose
q(8) = 0. (2.10)
So, we have
z(8) = p(6)a(0)

le. (2.6)
We will take ¢ = 0.
As the equation of a curve K in vector form is

K : 7(68) = p(8) cos 0 + p() sin 85 (2.11)

we calculate infinitesimal bending field of this curve according to (2.6).
Substituting 7 with respect to (1.8) at (2.6) we have

_ (pp — p* — 2p%)[(pcos 8 + psin )i + (psinf — pcos§)j]
z= [ p(9) ——— - de.
VP +p*lpp — p? — 257
As
p(8) cos 8 + p(8) sinf = (p(9) sin ), p(f)sin b — p(d) cos § = —(p(6) cos 8),
we choose
p(0) = 7 = \/p(0)? + i(6)”,

that gives

z(9) = /[(p(ﬂ) sin 0)7 — (p(8) cos 0)7]d8 = p(8) sin 87 — p(8) cos 63 . (2.12)

So we have determined infinitesimal bending field that plane curve includes in a family
of plane curves under infinitesimal bending. O

Corollary 2.1. If the plane curve
K:p=p(f), 6€[0,2n],

under infinitesimal bending stays at original plane, the equation of deformed curve
will be

Ke :pe(6) = p(0)V/1 + €2 (2.13)
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Proof. According to previous theorem we have

Fe =T+ ez = p(0)(cos 0 - esin 0)i -+ p(0)(sin 0 — € cos 0);

pe(0) = p(0)V/1+e2. O (2.14)

J

! —0.5\\;\\“/\\;/:1///
\___/

Fig. 3. Infinitesimal bending of the cardioid

Example 2.1. Infinitesimal bending field of the circle
p(0) =a, 0€]0,2n]ie.

I 2 #(0) = acos 01 |- nisin()]",

z(0) = p(0) sin 0i — p(0) cos 05 = a(sin 0i — cos 07).

A family of curves thatl are infinitesimal bendings of the circle K is
K 1 7:(0) = #(0) + €2(0) = a(cos 0 + esinf)i + a(sin 0 — € cos 0)].

The curves K, are concentric circles, because {rom (2.14):

pe =pV1+e? 0€l0,2n]

Example 2.2, For cardioid

p(0) = L4-sin0, 0 €|0,2n],
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K :7 = (1+sin0)cos i + (14 sin 6) sin 65

infinitesimal bending field is

z(0) = (1 4 sin ) sin §i — (1 + sin 6) cos 65
Curves that are infinitesimal bendings of the cardioid K are (Fig. 3.)
K¢ o7 =(1+sin8)(cos 6 + esin )i + (1 4 sin §)(sin 6 — € cos 6)7,

1.e. we have

pe = (L+sinf)V1+e2, 0¢€l0,2n].

2.2. We will examine the change of area of a region bounded by a plane curve
under infinitesimal bending of this curve (staying plane).
We will prove the next theorem:

Theorem 2.2. Area of the region determined by a plane curve being infinitesimally
bent staying plane is stationary.

Proof. Area determined by a curve (2.1) is

2m
P= %/,;2(0)(10. (2.15)
0

Area bounded by deformed curve K, is

27

P, = %/pg(e)da. (2.16)
0
As from

Te =2ei+yej = (z+€21)i+ (y+ez2)]

pe’ = (z+e21)’ + (y+e22)? = p? + 277 + €2

area determined by deformed curve is

1 2 2n 9 27
P. = —Q—/p'l(ﬁ)do +€/Fid0+ %/liﬁdﬂ (2.17)
0 0 0
and variation of the area is
2

6P = lim 2= F _ lim | 7zdd.
e—=0 £ e—0

0
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As

72 = (p(0) cos 01 + p(0) sin 07) - (p(0) sin 07 — p(0) cos 05) = 0,
we have
éP =0,
i.c. area of the region in the plane, bounded by curve that stays planc under infini-
tesimal bendings, is stationary. 3

3. VARIATION OF THE VOLUME OF A ROTATIONAL SURFACE
UNDER INFINITESIMAL BENDING OF MERIDIAN

In this part we confront following question:

How does the volume, bounded by a rotational surface, generated by a meridian
being infinitesimally bent, changes?

For infinitesimal bending field of a plane curve, which is a meridian of rotational
surface we choose infinitesimal bending ficld that meridian makes staying in the plane.

We shall consider plane, closed curve at 2Oy plane.

If p and 0 arc polar coordinales, veclor form of this curve is

I #(0) = p(0) cos 01 4 p(0) sin 07, 0 € [0, 2x]. (3-1)

o m;

0y

Fig. 4. Infinitesimal bending of meridian

-
u'mv
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The equation of a curve that remains at 2Oy-plane according to the Theorem 2.1
and Corollary 2.1 is

3

K : %(0) = p(8)(cos 8 + esin 6)i + p(f)(sin & — e cos §)j, 6 € [0, 2n].
According to (3.1), parametric form of the equation of the curve K is:

K :x=p(f)cost, y=p(f)sind. (3.1)

Let us introduce a new coordinate system XO1Y ,where 0O; = h, Y =y+h, X =
z (Fig. 4.). Parametric equations of the curve K are

K: X =p@)cosb, Y =p(8)sinf+ h. (3.2)

Let us divide the curve K by end points A and B in the curves K; and K5. Then for
the volume generated by the curve K we have

b
V= 7r/ (Y7 - Y?)dX, dX =dz = (pcosd — psinb)de, (3.3)

where
Y=Y, 0¢€[0,0] for K,

4
Y=Y, 6d¢ [02,27!‘-{- (91] for K; (3 )

Further, we have :

62 2m+6;
V= 7r/ p(6)do - 7r/ p(6)d8,

9) 02

where
@(0) = (psind + h)%(p cos § — psin 6).

3
Deformed curve K has the equations:
z = p(cosf + esinf), §= p(sin 8 — € cos §).
£
At the new coordinate system the equations of the curve K are:
13

X = p(cos @ + €sin b), Y = p(sinf —ecosb) + h.

£
The volume bounded by the surface generated by rotation of deformed curve K is:

£ 55 13 €
v:ﬂ/ (Y2-YHdx



Change of Geometric Magnitudes under Infinitesimal Bending 147

€ 52 . 21\'+;1 R
V= 7r/‘ 5(6)d — n[ 5(6)d8,
8, 92

where

@(8) = (psin@ — epcos § + h)2(pcosf — psinf + epsin 6 + epcos ).

3 13
If we take that 6, < 0y +€7 =6 <0y =83 —eg <0y, where e1,69 > 0,61,65 = 0,
when € — 0 (in this case we take €1,e3 > 0, but we can take €1, €, grater or less then

£
0). We can express V in the following way

e 62 R 81+, . 62 .
¥ =[x / 5(0)d0 — = / 5(0)d6 — = / 5(6)do)
61 9 [

" 2mez (3.5)
w48, R [ R (2% .
_[r / 5(6)d0 + / 5(6)d8 + / 5(6)dd]
62 fa—c€2 0y
where
5(0) = p(0) + ENO) +c*u(6) + ¥ (0). (3.6)
Substituting at (3.5) we get
e (2% 231 62
V=V o / o(0)d0 + / o(6)d6]
9, 82—€2
[:2 2746, 014er [P}
ver[[  A(6)do — / A(6)d6 — 2 / A(6)d6 — 2 f A(0)d6]
8 9, 0, 82-¢3
8, 2m4+6, 61+e; 02
+527r[/ ,u(ﬂ)dﬁ—/ p(0)d0—2/ u(ﬁ)d@—?/ 14(6)d6]
8, 82 9, f2—c2

4, 2748, 814¢€1 62
+enl [ v(9)do - v (8)dd — 2/ V(8)dd — 2/ v(8)d9).
0, 2 6, f2—e2

The variation of the volume in this case is

sv =l [ A@)do - / 0 (3.7)
8, 02

where
MB) = (psinf + h)(—2ppcos® 6 + 3p?sinf cos @ + hpsinb + hpcosd + ppsin® 0).(3.8)

We have the next theorem:

Theorem 3.1. The variation of the volume, bounded by rotational surface, under
infinitesimal bending of the meridian doesn’t have to be zero and it is given by (3.7)
and (3.8).
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PROMENA GEOMETRIJSKIH VELICINA
PRI BESKONACNO MALOM SAVIJANJU

Ljubica S. Velimirovié¢

U ovom radu se razmatraju varijacije nekih geometrijskih velicina pri beskonacno malom

savijanju. Beskonacno malo savijanje krive se razmatra i odredjuje se polje beskonacno malog
savijanja. Specijalno, dato je polje savijanja koje ravnu krivu ukljucuje u familiju ravnih krivih.
Dokazuje se da je povrsina oblasti u ravni ogranicena zatvorenom krivom stacionarna pri
beskonacno malom savijanju krive koja ostaje u ravni. Odredjena je varijacija zapremine
ogranicena rotacionom povrsi, pri beskonacno malom savijanju meridijana, koja ostaje u ravni.



