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Abstract. By using the semi-inverse method proposed by He, some new variational
principles are established for thermopiezoelectricity. The present theory provides a
more complete theoretical basis for the finite element applications, and the other
modern numerical techniques such as meshfree particle methods.

1. INTRODUCTION

Recent interest in piezoelectric materials stems from their potential applications in
intelligent structural systems. In 1988, Chandrasekharaiah [2] proposed a generalized
linear thermoelasticity theory for piezoelectric media. Based on his theory, Ashida &
Tauchert [1] studied an inverse problem for determination of transient surface
temperature from piezoelectric sensor measurement. There exist many other applications,
detailed discussion can be found in Refs. [1~5] and references cited thereby. The rapid
development of computer science and the finite element applications reveals the
importance of searching for a classical variational principle for the thermopiezoelectric-
ity, which is the theoretical basis of the finite element methods. Though it is easy to
establish a Gurtin-type functional (involving convolutions), it is very difficult to construct
a classical variational model due to the strongly coupled constitutive relations and the
terms of the first-order derivatives with respect to time involving in the heat conduction
equation, which leads to non-self adjoint of the system of the equations. The variational
model (not Gurtin-type) for the system is unknown at this time to the best of author's
knowledge. Therefore, it is urgent to establish a classical variational representation for
the system, in our approach we will apply the semi-inverse method [6~9], which appears
to be one of the best and most convenient ways to establish variational principles for the
physical problems, to arrive at our aim. To eliminate the convolutions in the functional, a
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new dynamic (continuous) differencing transformation technique [6] will be applied.

2. MATHEMATICAL FORMULATION OF THERMOPIEZOELECTRICITY

The basic equations in a generalized linear thermoelasticity theory for piezoelectric
media can be written down as follows [2]

a) Equilibrium equations

ttiijij uf ,, ρ=+σ , (2.1)

in which σij is the symmetric stress tensor, σij,j = ∂σij/∂xj, ui,tt = ∂2ui/∂t2,  fi represents the
mechanical body force.

b) Constitutive equations

θ−−γ=σ ijmmijklijklij bEea , (2.2)

iiijij EcbcS +γ+θ=ρ , (2.3)

θ+γ+ε= mijmijjmjm ceED , (2.4)

in which γij is the symmetric strain tensor Di is the vector of the electric displacement, Ei
is the vector of the electric field, S is the entropy. The elastic moduli aijkl measured at
constant (zero) electric field, and the piezoelectric moduli emij , and the dielectric
permittivity εij have the following symmetry properties , respectively

klijijlkjiklijkl aaaa === ,

mjimij ee = , and jiij ε=ε .

c) Strain-displacement relations
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,, ijjiij uu +=γ , (2.5)

where ui is the vector of the elastic displacement.

d) Maxwell's equations for piezoelectric materials

0, =iiD  or 0=⋅∇ D , (2.6)

iiE ,Φ=  or Φ∇=E , (2.7)
where Φ is the electric potential.

e) Fourier's law for heat conduction
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where θ = T − θ0, T is the temperature and θ0 is the initial temperature , Q is the strength
of the internal heat source, Kij is the inverse of kij.

Our aim of this paper is to establish a generalized variational principle for the above
discussed problem, whose stationary conditions should satisfy all the field equations and
boundary/initial conditions. The present paper deals in facts with the very difficult
inverse problem of the calculus of variations, the non-self adjoint of the system makes the
problem more difficult. In order to make the system self-adjoint, and avoid the Gurtin-
type variational principle, the time-derivative term in the coupled heat conduction
equations (2.8) and (2.9) should be expressed as follows[13,14]:
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where Ψ is an arbitrary function, )1(' −−= nttt .
 The equations (2.8) and (2.9b), therefore, can be re-written in the forms

α=−+γ+θθ iiiiijij qtEcbc ,0 ' , (2.11)

β=+τ+θ iiji qtKt )'(' ,  (2.12)

where QtEcbc n
ii

n
ijij

n ρ++γ+θθ=α −−− ')1()1()1(
0  and )1( −τ=β n

iij qK .

3. GENERALIZED VARIATIONAL PRINCIPLES

We have illustrated the basic idea of the semi-inverse method in the Part I and Part II
of this series of paper. An energy-like trial-functional with 8 kinds of independent
variations ( iiiiijij EDqu ,,,,,, θγσ  and Φ) can be constructed as follows

∫ ∫−=Φθγσ
)(

)1( dd),,,,,,,(
nt
ntiiiiijij tVLEDquJ +IB,  (3.1a)

where
FfuL ijiji ++σ= )( , , (3.1b)

in which F is an unknown function, L is a trial-Lagrangian.
Now we will identify the unknowns step by step.

Step 1

Making the above trial-functional (3.1a) stationary with respect to σij results in the
following trial-Euler equation:
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We search for such F so that the above trial-Euler equation(3.2) satisfies one of its
field equations, saying, the equation (2.5). Accordingly we can set

1FF ijij +γσ=  (3.3)

where F1 is a newly introduced unknown function, which should be free from σij.
The trial-Lagrangian, therefore, can be renewed as follows

1, )( FfuL ijijijiji +γσ++σ= . (3.4)

Step 2

The stationary condition with respect to  γij reads

01 =
δγ
δ+σ

ij
ij

F . (3.5)

We set

22
1

1 )( FbEeaF ijmmijklijklij +θ++γ−γ= , (3.6)

so that the trial-Euler equation (3.6) satisfies the field equation (2.2). The trial-
Lagrangrian (3.4) can be further renewed as

ijijijiji fuL γσ++σ= )( , 22
1 )( FbEea ijmmijklijklij +θ++γ−γ+  (3.7)

where F2 is free from γij.

Step 3

The trial-Euler equation with respect to ui can be expressed as
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, =

δ
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ijij u

Ff . (3.8)

Supposing that the above equation is the field equation (2.1), we can identify the
unknown as follows

3,,2
1

2 FuuF titi +ρ= , (3.9)
where F3 is free from ui.

Step 4

By the same manipulation, the trial-Euler equation for δθ reads

03 =
δθ
δ+γ Fb ijij . (3.10)

We set

α−−+θθ=
δθ
δ

iiii qtEccF
,0

3 ' , (3.11)

so that the trial-Euler equation (3.10) satisfies the field equation (2.11). From the
equation (3.11) the unknown F3 can be identified as
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4,,02
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where m and n are constants, and satisfy the identity m + n = 1, F4 is free from θ.
The trial-Lagrangian, therefore, can be rewritten in the form

. ')'(       

)()(

4,,02
1

2
1

,

FqntqmtEcc

bEeafuL

iiiiii

ijmmijklijklijijijijiji

+θ+α−−+θθθ+

θ++γ−γ+γσ++σ=
 (3.13)

Step 5

Now the stationary condition for δqi can be expressed as

i
i q

Ftnm
δ
δ+θ+ 4

,')( =0. (3.14)

In view of the field equation (2.12), the unknown F4 can be determined as follows
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4 )'( FqqqtKF ijiij +β−+τ= . (3.15)

Substituting the equation (3.15) into the equation (3.13) yields the following modified
trial-Lagrangrian

ijijijiji fuL γσ++σ= )( , )( 2
1 θ++γ−γ+ ijmmijklijklij bEea

           iiiiii qntqmtEcc ,,02
1 ')'( θ+α−−+θθθ+ titi uu ,,2

1 ρ+ (3.16)

 52
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Step 6

Processing as the previous steps, the trial-Euler equation for δEm reads

05 =
δ
δ+θ+γ

m
mijmij E

Fce . (3.17)

In view of the equation(2.4), the unknown F5 can be determined as follows

62
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5 FEEDEF jijiii +ε+−= . (3.18)

Step 7

The stationary condition for δDi reads

06 =
δ
δ+−

i
i D

FE . (3.19)

We set
7,,6 FDDF iiii +Φς−Φξ=  (3.20)

with ξ + ζ = 1, where ξ and ζ are constants, so that the trial-Euler equation (3.19)
satisfies the field equation (2.7).
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Step 8

The trial-Euler equation for δΦ  reads

0)( 7
, =

Φδ
δ+ς+ξ− FD ii . (3.21)

We set
07 =F , (3.22)

so that the trial-Euler equation (3.21) satisfies the field equation (2.6). The Lagrangrian,
therefore, has the following final form

ijijijiji fuL γσ++σ= )( , )( 2
1 θ++γ−γ+ ijmmijklijklij bEea

                iiiiii qntqmtEcc ,,02
1 ')'( θ+α−−+θθθ+ titi uu ,,2

1 ρ+ (3.23)

                     ijiij qqqtK β−+τ+ )'(2
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jijiii EEDE ε+− 2
1 Φς−Φξ+ iiii DD ,, .

Note: If the electrical and heat effects are not taken into consideration, then we obtain
the Hellinger-Reissner principle in elasticity.

Now if we introduce an energy function A and its complementary B, which are
defined respectively as

=A )( 2
1 θ++γ−γ− ijmmijklijklij bEea jiji EE ε−

2
1

ii Ec θ+ , (3.24)

From the above definitions, we have the following relations

=
∂γ
∂
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A
ijijmmijklijkl bEea σ=θ−−γ  (3.25)

By constraining the obtained generalized variational functional , we can obtain the
following important functional:

IBdVdtufAuJ
nt
nt iii +−=Φ ∫ ∫−
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)1( 1 )(),( , (3.26)

4. CONCLUSION

In the paper, we have succeeded in obtaining a generalized variational principle with
some arbitrary constants, from which various variational principles can be obtained by
constraining the functional by selectively field equations. Details have been discussed in
Refs. [7,9].
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IZVOĐENJE UOPŠTENIH VARIJACIONIH PRINCIPA
BEZ KORIŠĆENJA LAGRANGE-OVIH MNOŽILACA

DEO III: PRIMENA NA TERMOPIEZOELEKTRIČNOST
Ji-Huan He

Korišćenjem polu-inverzne metode predložene od strane He-ija, nekoliko novih varijacionih
principa je ustanovljeno za termopiezoelektričnost. Sadašnja teorija obezbeđuje mnogo potpuniju
teoretsku osnovu za primene konačnih elemenata kao i za druge moderne numeričke tehnike kao što
su bezmrežne metode čestice.


