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Abstract. This paper discusses the general problem of stability and other solution
properties of descriptor systems that contain fuzzy logic components, and presents a
general methodology for such an analysis. The approach is based on the second method
of Lyapunov and the generic concepts which describe system behaviour. Fuzzy logic
components are allowed in the system model description. These and other system
nonlinearities are used to enhance system analysis. Different algebraic conditions are
presented for verification of specific time-evolution properties for all system descriptor
variables. These conditions are based on partial algebraic constraints contained in the
model.

INTRODUCTION

Mathematical modelling of the behaviour of numerous technical and other systems
has been revived in the last four decades mainly due to the introduction of some new
methodologies, such as artificial neural networks and fuzzy logic (FL). This paper will
discuss an approach to formulate the stability problem and to analyse it for systems that
contain FL components. Instead of the ordinary state-space models, we will consider far
more general descriptor models.

FL gained in popularity mainly due to the ability of representing rough models of
system behaviour via linguistic description of rules governing that behaviour. It found
numerous successful applications in many engineering and science fields. It is important
to note that FL components can always be represented in terms of their input-output
behaviour, thus avoiding an explicit indication of their internal FL operational
mechanisms. Also, if the strict mathematical analysis of the dynamic behaviour of a FL
system is required, then the description of the internal FL type functioning of the FL
blocks, by use of membership functions, fuzzy inference rules and defuzzification
methods, is not always sufficiently transparent for efficient analysis. In this paper we
discuss this problem in the context of stability analysis and argue for the approach that, in
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a simple way, converts qualitative analysis of a very general class of FL dynamic systems
to a 'conventional' qualitative analysis.

A number of techniques have been proposed for the qualitative analysis of FL systems
[1-17]. In principle, from the input-output point of view, a FL block can be considered as
a nonlinear algebraic transfer element [7-8]. Hence, without loss of generality, we can
replace any such FL block with a nonlinear function and perform the analysis in a
standard fashion. This provides the background for the most efficient analysis of the class
of FL dynamic systems to be considered in this paper, and this approach will be followed.

MODELS OF FUZZY LOGIC COMPONENTS

Before we define the class of models to be analysed, let us consider arbitrary FL
components whose internal behaviour is governed by

),,,([),,,( ******** uDxxxFuzzInferenceDefuzzuDxxxG ddfuzzy != . (1)

Here xd is a function that describes the desired behaviour of the descriptor vector x .
Variables **** ,,, uDxxx d represent the instantaneous crisp values of x, xd, Dx and u,
respectively. Operators Fuzz, Inference and Defuzz represent an arbitrary fuzzification
mechanism, the associated inference rule base, and the arbitrary defuzzification process,
respectively. Gfuzzy is a vector function that represents the crisp output of the FL
components.

If the operators Fuzz, Inference and Defuzz are specified, then (1) defines a composite
FL component (one that contains a number of others) that can be uniquely represented by
its input-output constitutive relation as

s
dfuzzyd

rnpn RuDxxxGuDxxxRRRR ∈→∋××× ),,,(),,,( .                   (2)

We will consider the situation where xd : t → xd(t) and u : (t,x) → u(t,x). Thus,
Gfuzzy(x,xd(t),Dx,u(t,x)) may be replaced by G*(t,x,Dx) for the purpose of analysis.
Moreover, we introduce

Assumption 1.
Vector G* can be decomposed as G*(t,x,Dx) = [GdT(t,x,Dx) GaT(t,x)]T.
This assumption need not necessarily cause any practical problems, since many

components of the descriptor vector x  are frequently constructed by using the relation
xi+1 = Dxi. If, in a particular selection of descriptor variables, such decomposition is not
possible, we can always expand the set of descriptor variables and reindex them, so as to
allow the above-mentioned decomposition of G*. We need to point out that the
description of the FL components (2) allows a specification of different control problems
for dynamic systems that contain FL components. For example, (2) can be considered as
a composite FL controller in a vector form.

GENERAL MODEL OF FL SYSTEMS CONSIDERED

Let t ∈  R, u ∈ Rr and x ∈ Rn denote time, the input vector and the vector of descriptor
variables, respectively, that are to be used in modelling system behaviour. Let also
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D ≡ d/dt stand for the ordinary derivative operator. We will consider a general form of
models of time-continuous systems given by a set of implicit differential equations

p
fuzzy RuGDxxtf ∈= 0),,,,( (3)

where p ≠ n may be allowed. Gfuzzy ∈  RS represents the vector of crisp outputs of FL
components contained in the system. Systems with such models are denoted as fuzzy-
descriptor (FD) systems, although the term "fuzzy implicit differential systems" is
equally appropriate. Let aT be the transpose of a vector a  and let us assume that the
vector of descriptor variables x is decomposed as x = [yT zT ]T In the special case the
models (3) contain the canonical form of models linear in Dy , and these are of the form

,0),,,,(

),,,,,(),,,,(

=

=

uGzytg

uGzytfDyuGzytP

fuzzy

fuzzyfuzzy (4)

where the second equation in (4) can be considered as the ''output'' equation for the
system. The vector z represents the so-called ''redundant'', i.e. ''unwanted'', descriptor
variables. From this viewpoint, if it is possible to eliminate z from (4), then y is a
candidate for the vector of the state variables. Such a process is aimed at the elimination
of z from both equations in (4), and then inverting the matrix P which multiplies Dy. In
most cases this elimination procedure, which results in the model reduction, is not
possible. It should be pointed out that the matrix P can even be rectangular and this
introduces additional problems. Some examples of physical systems where P can be
rectangular are known; for example in electrical-electronic circuits. The results of this
paper do not require such model reduction, i.e. the elimination of the redundant variables.

Models (3) and/or (4) appear in a natural way in modelling physical systems when the
model equations are written in the sparse form. They are here altered by the explicit
introduction of the input-output description (2) of FL components, since we are interested
in the analysis of FD systems. The descriptor models have become more popular in the
last 20 years, due to the following advantages over the models in state-space form:
•  there is a great simplicity in deriving the equations (3) or (4) and in this regard there is

no necessity for the elimination of the unwanted (redundant) variables, as there is no
need for the formulation of the state variable models; consequently, most of the
problems associated with the existence of the state variable models are surmounted;

•  there is a tight relation between the system's physical variables and the variables in
models (3) and (4);

•  the models (3), (4) preserve the sparsity of system matrices (that is many of the
entries in the system matrices are equal to zero);

•  the structure of the physical system is well reflected in models (3) and (4).
However, although descriptor model formulation has these evident advantages over

state-space formulation, descriptor models generally suffer the disadvantage of not being
supported by developed methods of analysis of their dynamic behaviour, as is the case
with the state-space models. The surveys of different results concerning both continuous
and discrete descriptor systems can be found in [18-26]. A systematic introduction and
presentation of the results relating to the application of Lyapunov's direct method (LDM)
for the analysis of descriptor (implicit) differential systems is given in [19] and [25-27].
In [19] and [27] it is shown that the algebraic constraints imposed by the model
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nonlinearities can be used efficiently to enhance the qualitative analysis of descriptor
systems. In this paper we will combine this approach with the concept of FL blocks as
algebraic transfer elements. And we will present new results on the general methodology
for the qualitative analysis of FD systems that are based on the utilisation of algebraic
constraints of the system model and components. The particular problem in any
descriptor system is to have an estimate of time-evolution of all, redundant and non-
redundant, descriptor variables. We will present sufficient conditions that will guarantee
such information for the whole descriptor vector x. The algebraic conditions presented
are easily applicable in such an analysis. As will be shown, the presence of FL blocks in
the system does not pose additional difficulties in our analysis, as long as we do not
explicitly involve the internal functioning of the FL components in the analysis.

As far as is known to the author the results presented in this paper are the first ones
that relate to the general stability problem and the qualitative analysis of FD systems. The
results are based on previous contributions given in [28].

FL COMPONENTS AND BASIC REQUIREMENTS OF FD SYSTEMS

We will consider the system model (2-3) converted to the form
pd RGDxxtF ∈= 0),,,( , (5)

ka RGxtg ∈= 0),,( ,  (6)

where Ga (according to Assumption 1) does not contain Dx explicitly and where xd and u
are given in advance. We do not require that (6) contains all algebraic constraints
obtainable from (3). Let the time interval of interest be T = {t ∈  R: a ≤ t < σ}, a, σ ∈  R ,
where R  is the extended real number system. Let (2) and (5-6) define a FD system Σ.
We denote by ψ a solution of Σ. Uniqueness of solutions is not required. When xd and u
are known functions then the notation ψ(t,t0,x0) will denote a value of the considered
solution ψ at the moment t, which at the moment t0 emanates from the point x0. Since
uniqueness is not required we may have many solutions that emanate from (t0,x0). The
family of such solution can be denoted by Ψ(!,t0,x0). The abbreviation for the value of a
solution ψ at the moment t is ψ(t). The points p* = ψ*(t) of Rn at some t ∈  T, obtained
using all solutions ψ*of Σ that exist on T, constitute the set S(t) The following assumption
regarding the solutions of Σ is necessary.

Assumption 2.
FL components (2) are such as to satisfy a set of conditions Γ  which ensure that

when xd and u are given functions, then ∀ t0 ∈  T the set S(t0) is not empty and solutions of
Σ that exist on T are differentiable.

Obviously, Assumption 2 restricts the choice of possible FL components. For
example, it may be convenient to have Gfuzzy continuous. In such cases the relay-type FL
components are excluded, which suggests that we may then restrict our choice to, say, FL
components of the Takagi-Sugeno type [13-14]. What actual class of FL components is
allowed depends simultaneously on the properties of (5-6) and Assumption 2. In
engineering problems we are normally interested in guaranteeing specific properties of
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solutions for a whole class Φ of the FL components (2) that satisfy Assumptions 1 and 2.
This fact will be emphasised in the properties that we are to investigate. Then we
introduce

Assumption 3.
Let ΦΣ denote an arbitrary class of FL components, whose input-output constitutive

relations are governed by (2) and which satisfy Assumptions 1 and 2. The class ΦΣ is not
empty.

In the qualitative analysis of FD systems we are generally interested in the following
two issues:

Question 1.
FL components (2) are predefined by the specification of operators Fuzz, Inference

and Defuzz. How are we to perform the analysis of the dynamic behaviour of the system
Σ?

Question 2.
The input-output constitutive relations (2) of FL components are known, i.e. we know

Gfuzzy as a function of (x,xd,Dx,u). Do we need the explicit usage of operators Fuzz,
Inference and Defuzz of the internal functioning of FL components in order to conduct a
qualitative analysis of the FD system Σ?

The answer to Question 1 leads to an algebraic exercise so as to derive
Gfuzzy(x,xd,Dx,u) from the knowledge of operators Fuzz, Inference and Defuzz. This is
always possible, although the mathematical expressions for a description of Gfuzzy may be
complicated.

The answer to Question 2 is that we do not need even to know the operators Fuzz,
Inference and Defuzz in order to successfully conduct a qualitative analysis of FD system
Σ; only the input-output constitutive relations (2) of FL components are required.
Assumption 2, which is also within the domain of general requirements regarding the
basic properties of FD systems, does not necessitate the usage of operators Fuzz,
Inference and Defuzz. One can, in principle, deduce some properties of the solutions of
FD systems by relying only on the constitutive relations of FL components and the
system topology; a similar approach as used in nonlinear circuit analysis.

PROBLEM OF STABILITY

Without entering into discussion on all possible different properties that solutions of Σ
may have, we will only note that the number of possible useful descriptions of solution
behaviour for any system is infinite and that it can be formulated in a quite general
framework through the abstract generic qualitative and quantitative concepts [26]. In
what follows we will consider only the form of concepts that relate to what is known in
conventional stability analysis as "absolute" concepts, since the properties involved hold
∀ Gfuzzy ∈  ΦΣ.

For a description of the response properties of Σ we will use two nonlinear vector
functions 1),(),(: 11

nn RxtqxtRTq ∈→∋×  and .),,(),,(: 2
0202

nn RxttqxttRTTq ∈→∋××
The next description of the time-evolution of solutions is convenient for our analysis.
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Definition 1.
The system Σ has type A bounds of response with respect to ),,,,,( 21 Tuxqq dΣΦ , where
xd and u are prespecified functions, iff

),,()),,(,(

)(  ),,(,,(),,(  ),(  ))((  )(

002001

002010000

xttqxtttq

GttttQttQTttttSxTt fuzzy

≤ψ

Φ∈∀εδ⊆ε∈≥∀∈∀∈∀ Σ (7)

Definition 2.
The system Σ has type B bounds of response with respect to (q1,q2,M,N,ΦΣ,xd,u,T),

where xd and u are prespecified functions, and where M and N are two subsets of the
descriptor space Rn, iff (7) holds for all solutions ψ with x0 ∈  N ∩ S(t0) as long as
ψ(t,t0,x0) ∈  N, and if there is a moment tf(t0,x0) ≥ t0, tf ∈  T, such that ψ(t) ∈  M for all
t ≥ tf , t ∈  T.

By selecting specific functions q1 and q2, one can achieve different descriptions for
solution behaviour. From these bounds, under appropriate conditions and using the
additional information from the purely algebraic equation (6), it is easily possible in some
cases to derive information on the behaviour of all components of x.

We can use a more convenient description tool that involves variable sets to
characterise solution properties. To illustrate this we define two sets Q1 and Q2 as

)},,()),,(,(:),,{(),,( 11 ετα≤τψ××∈τ=ετ txttqRTTxttQ n , ε××∈ετ∀ ATTt ),,( ,

)},,(),,(:),,{(),,( 22 δτβ≤τ××∈τ=δτ txtqRTTxttQ n , δ××∈δτ∀ ATTt ),,( ,

where α and δ are two suitably selected functions. Now we can introduce the following
two definitions which govern properties that can be deduced from the property described
by Definition 1.

Definition 3.
The system Σ possesses a generalised stability type behaviour with respect to

(q1,q2,ΦΣ,xd,u,α,β,T,Aε,Aδ), where xd , u, α and β are prespecified functions, iff

)( 0 Tt ∈∀  ),( 0 Tttt ∈≥∀  )( ε∈ε∀ A  )( δ∈δ∃ A  )),,()(( 0100 ε∩∈∀ ttQtSx
)),,(( 00 xt⋅Ψ∈ψ∀  )( ΣΦ∈∀ fuzzyG   )),,(,,(),,( 00201 εδ⊆ε ttttQttQ .

Definition 4.
The system Σ possesses a generalised boundedness type behaviour with respect to

(q1,q2,ΦΣ,xd,u,α,β,T,Aε,Aδ),  where xd , u, α and β are prespecified functions, iff

)( 0 Tt ∈∀  ),( 0 Tttt ∈≥∀  )( δ∈δ∀ A  )( ε∈ε∃ A  )),,()(( 0100 ε∩∈∀ ttQtSx
)),,(( 00 xt⋅Ψ∈ψ∀  )( ΣΦ∈∀ fuzzyG     ),,()),,(,,( 02001 δ⊆δε ttQttttQ .

Let ∂Q denote the boundary of the set Q. We also introduce the following two mild
assumptions.

Assumption 4.
Let xd , u, α and β be prespecified functions. Then

)( T∈τ∀  ),( Ttt ∈τ≥∀  )( ε∈ε∀ A  )( δ∈δ∃ A   ),,(),,( 21 δτ∈ετ∂ tQtQ .
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Assumption 5.
Let xd , u, α and β be prespecified functions. Then

)( T∈τ∀  ),( Ttt ∈τ≥∀  )( δ∈δ∀ A  )( ε∈ε∃ A  ),,(),,( 21 δτ∈ετ∂ tQtQ .

If the property described by Definition 1 is verified for the FD system Σ, then
Assumption 4 is needed additionally to infer properties given by Definition 3, while
Assumption 5 is required to infer properties given by Definition 4.

The concepts used in Definitions 3 and 4 can be easily extended to deal with the
property of the system Σ described by Definition 2.

Note that many conventional "absolute" stability types, such as absolute stability,
absolute uniform stability, absolute equi-stability, etc., can be obtained as special cases of
Definition 3. Similarly, from Definition 4 one can get numerous "absolute" boundedness
concepts including absolute boundedness, absolute uniform boundedness, absolute equi-
boundedness, etc. Properties given by Definitions 1-4 are all special cases of the generic
concepts from [26]. If the property given by Definition 1 is verified for the FD system Σ,
then the properties of Σ described by Definitions 3 and 4 can be verified only by checking
the additional Assumptions 4 or 5, as commented above. For this reason we will present
only results by which one can verify the properties given by Definitions 1 and 2. The
exception is Theorem 3 which relates to the non-existence of the finite forward escape
time of descriptor variables.

QUALITATIVE ANALYSIS OF FUZZY DESCRIPTOR SYSTEMS

Let ϕ Idenote the inverse function of the function ϕ. In what follows DVΣ will denote
any convenient norm in the appropriate space and K will denote the class of strictly
increasing scalar functions ϕ, ϕ : R+ → R+, where R+ := R ∩ [0,+∞[, and where
ϕ(0) = min[ϕ(s) : s ∈  R+] The function V : T × Rn ∋  (t,x) → V(t,x)∈  R+ is assumed to be
continuous and differentiable, with DVΣ denoting the total time derivative of V in force of
the system Σ. The following theorems take into account some properties that (6) may have.

Theorem 1.
Let u(t,x) ≡ 0 on T × Rn and let xd be given in advance. Let Assumptions 1-3 hold; let

x = [yT zT ]T and let V : T × Rn ∋  (t,x) → V(t,x)∈  R+  be a continuous and differentiable
function. If there exist:
(i) a function ,0 K∈ϕ  such ),(|)(|0 xtVy ≤ϕ  when ,),( nRTxt ×∈
(ii) functions ϕ1 ∈  K and ω so that the total time derivative of V along the solutions of

Σ satisfies |)(|),( 1 zVtDV ϕ+ω≤Σ  when nRTxt ×∈),( ,
(iii) a function K∈ϕ2 , such that from (6) we can obtain the estimate |)(||| 2 yz ϕ≤

when ,),( nRTxt ×∈
(iv) a function m , integrable and bounded on T, such that VtmVVt )()(),( ≤ϕ+ω  when

,),( +×∈ RTVt  where )])([()( 021 VV Iϕϕϕ=ϕ ,
then the system Σ has response bounds of type A with respect to (q1,q2,ΦΣ,xd,0,T), where
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q1 = |y| , ])(exp),([
0

02 ∫ϕ= t
t

I dssmxtVq ; also |ψ(t)| is finite for finite t ≥ t0 and arbitrary

consistent initial conditions.

Theorem 2.
Let Q1(t,t0,x) ⊆  Q2(t,t0,δ(t,t0,ε))  on T × Rn and let xd be given in advance. Let

Assumptions 1-3 hold; let x = [yT zT ]T and let V : T × Rn ∋  (t,x) → V(t,x)∈  R+  be a
continuous and differentiable function. If there exist:
(i) two functions ϕ0,ϕ3 ∈  K, such that |)(|),(|)(| 30 yxtVy ϕ≤≤ϕ  when nRTxt ×∈),( ,
(ii) functions ϕ1 ∈  K and ω, so that the total time derivative of V along the solutions of

Σ satisfies |)(|),( 1 zVtDV ϕ−ω≤Σ  when nRTxt ×∈),( ,
(iii) a function ϕ2 ∈  K, such that from (6) we can obtain the estimate |z| ≥ ϕ2(|y|) when

nRTxt ×∈),(
(iv) a function m, integrable and bounded on T, such that VtmVVt )()(),( ≤ϕ−ω  when

,),( +×∈ RTVt  where )]),([()( 321 VV Iϕϕϕ=ϕ
then the system Σ  has response bounds of type A with respect to (q1,q2,ΦΣ,xd,0,T), where
q1 = |y| , ])(exp),([

0
02 ∫ϕ= t

t
I dssmxtVq ; also |ψ(t)| is finite for finite t ≥ t0 and arbitrary

consistent initial conditions.

Theorem 3.

Let xd
  and u be given in advance. Let Assumptions 1-3 hold; let x = [yT zT ]T and let

V : T × Rn ∋  (t,x) → V(t,x)∈  R+  be a continuous and differentiable function. If there exist:

(i) a set nR⊂Ω  such that cΩ is a bounded set ( cΩ being the complement in nR  of
the set Ω ),

(ii) a function K∈ϕ0 , such that ),(|)(|0 xtVy ≤ϕ  when ,),( Ω×∈ Txt
(iii) functions K∈ϕ1  and ω, so that the total time derivative of V along the solutions of

Σ satisfies |)(|),( 1 zVtDV ϕ+ω≤Σ  when ,),( Ω×∈ Txt
(iv) a function K∈ϕ2  and a constant ,0≥β  such that from (6) we can obtain the

estimate |z| ≤ ϕ2(|y|) + β when (t,x) ∈  T × Ω,
(v) a function m, integrable and bounded on T, such that VtmVVt )()(),( ≤ϕ+ω  when

,),( +×∈ RTVt  where ))]([()( 021 β+ϕϕϕ=ϕ VV I ,
then the system Σ has |ψ(t)| < +∞ for finite t ≥ t0 and arbitrary consistent initial
conditions.

Theorem 4.
Let xd and u be given in advance. Let Assumptions 1-3 hold. Let let x = [yT zT ]T and

V : T × Rn ∋  (t,x) → V(t,x)∈  R+   be a continuous and differentiable function. If there exists
(i) a set Ω = {x ∈  Rn

 : |x| ≥ e}, e ≥ 0,
(ii) two functions ϕ0,ϕ3 ∈  K, such that |)(|),(|)(| 30 yxtVy ϕ≤≤ϕ  when ,),( Ω×∈ Txt
(iii) functions K∈ϕ1  and ω, so that the total time derivative of V along the solutions of
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Σ satisfies |)(|),( 1 zVtDV ϕ−ω≤Σ  for ,),( Ω×∈ Txt
(iv) a function K∈ϕ4  and a constant 0≥β , such that from (6) we can obtain the

estimate β+ϕ≤ |)(||| 4 yz  when ,),( Ω×∈ Txt
(v) a function K∈ϕ2 , such that from (6) one can also obtain |)(||| 2 yz ϕ≥  when

NTxt ×∈),( , }||:{ eyRxN n ≥∈= , 0≥e ,
(vi) a function m, integrable and bounded on T, such that VtmVVt )()(),( ≤ϕ−ω  when

+×∈ RTVt ),( , where ))]([()( 321 β+ϕϕϕ=ϕ VV I ,
(vii) if +∞=σ  and 0)( <µ−≤tm  on T,
then the system Σ has response bounds of type B with respect to (q1,q2,M,N,ΦΣ,xd,u,T),
where xd , ])(exp),([

0
02 ∫ϕ= t

t
I dssmxtVq , and }||,||:{ 21 ezeyRxM n ≤≤∈= , where e1,e2 are

constants such that e1 > e, e2 = ϕ4(e1) + β. 

Comment.
The proofs of Theorems 1-4 follow, with obvious modifications, from the proofs of

Theorems 6.1-6.4 from [19].

DISCUSSION

Theorems 1-4 generalise the corresponding theorems from [27], as well as Theorems
6.1-6.4 from [19]. The results utilise specific properties of algebraic constraints (6), as
well as the input-output description of the FL components (2), and on that basis they infer
information on the time-evolution of the whole descriptor vector x  from the FD system
ΣΣΣΣ. Note that the conditions imposed on (6) do not demand solvability of (6) with respect
to any of its arguments and thus the implicit character of the model of ΣΣΣΣ is preserved.
Having in mind our comments on the relation of generalised stability and boundedness
types for the FD system ΣΣΣΣ, one can use Theorems 1 and 2 to derive many specific results
for verification of such concepts if, additionally, Assumptions 4 or 5 are used in
connection with Definitions 3 or 4.

CONCLUSION

This paper presents some general results of the analysis of qualitative behaviour of
solutions of FD systems Σ. The results use only input-output constitutive relations of FL
components and avoid direct utilisation of internal FL functioning. The efficient use of
the constraints implied by the algebraic equations (6) of the system model enhances the
qualitative analysis that is achievable only by analysing Lyapunov functions behaviour in
force of the system Σ. The results are of direct use in the analysis of singular electrical-
electronic networks with FL components [29].
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PROBLEMI STABILNOSTI FUZZY-DESCRIPTOR SISTEMA
Vladimir B. Bajić

U ovom radu razmatra se generalni problem stabilnosti i drugih svojstava rešenja descriptor
systema koji sadrže komponente fuzzy logike i predstavlja opštu metodologiju za takvu analizu.
Pristup se zasniva na drugom metodu Ljapunova i generičkim konceptima koji opisuju ponašanje
sistema. Komponente fuzzy logike su dozvoljene u opisu modela sistema. Ove i druge nelinearnosti
sistema se koriste da pojačaju analizu sistema. Za verifikaciju specifičnih svojstva koja se menjaju
tokom vremena za sve promenljive deskriptora predstavljeni su različiti algebarski uslovi. Ovi
uslovi se zasnivaju na parcijalnim algebarskim ograničenjima u modelu.


