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Abstract. The paper is concerned with the nonstationary free convection near the
heated vertical wall with an arbitrary temperature distribution or thermal flux. The
present external magnetic field is homogenous and perpendicular to the wall. The
problem has been considered in Busineski’s approximation. By using the general
similarity method and introducing three sets of parameters a system of two universal
equations is obtained. Along with the universal equations, two integral equations of the
observed problem have been obtained. The system of universal equations has been
solved in a determined approximation in this paper. A part of the results obtained in the
paper is given in the form of diagrams.

1. INTRODUCTION

The problems of MHD-loose convection in the boundary layer are generally
nonautomodelling. However, at certain ratios of temperature change law and magnetic field
upon an overflowed surface, these problems are automodelling. For instance, for constant
thermal barrier conditions of the first kind the automodelling of the loose convection is
secured if the exterior magnetic field is changed according to the law Bx"* = const [1]. For
linear change of wall temperature it is B = const, and for constant barrier conditions of the
second kind it is Bx">=const. In the previous papers, the integral method has been
predominantely used for solving automodelling problems [2].

This paper is going to consider the nonautomodelling problem, more specifically the
unstable MHD-loose convection on the vertical wall with arbitrary temperature changes
or thermal flux on the wall. The problem is considered in the Busineska approximation.
To solve the problem, a general similarity method will be formed, and for the formation
of this method, the ideas given in the papers [3], [4], [5], [6] will be used. We have opted
for the formation of general similarity method because of its advantages over other
methods. With this method, the integration of the universal equation is performed only
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once and the obtained results are conveniently stored. The obtained universal results can
be used for reaching general conclusions about the development of the boundary layer,
but also for calculations of particular problems with the boundary layer.

2. MATHEMATICAL ANALYSIS

MHD-loose convection equations in a laminary unstable boundary layer on the
vertical wall (plate) have the following form

2
a—u+ua—u+va—u=VZ—L;+B@(T—TOO)—NL¢
y

ot Ox dy
2
a_T+ua_T+Va_T:aa_Z+lu2 (1)
ot ox 0Oy - ¢,
a_u Q =0
Ox Oy

and the boundary and initial conditions of the first kind are:
u=0,v=0,T=T,(x,t) for y=0
u-0,T T, for y > o
u=u(x,y), T=T(xy) for 1=t
u=uyt,y), T =Tyy) for X = Xg.

)

The denotations used in the equations (1) and the boundary and initial conditions (2)
are customary for this theory: x, y - longitudinal and transversal coordinate, respectively,
t - time, u, v - longitudinal and transversal velocity of the boundary layer, respectively,
Vv - coefficient of the kinematic viscosity, B-coefficient of thermal expansion of fluid,
g - gravity acceleration; 7, T, T - temperature on the wall, boundary layer and infinity,
respectively; N = GBz/p, 0 - electroconductivity of fluid, p - density of fluid, B - magnetic
induction, c, - specific heat at constant pressure; a = V/Pr, Pr - Prantle's number;
u=u(x,y), T=T(x,y) - distribution of longitudinal velocity and temperature in the
boundary layer at time t=¢,, respectively; u=uy(t,y), T=To(t,y) - plottings of
longitudinal velocity and temperature in the cross section of the boundary layer x = x,,
respectively.

Boundary and initial conditions of the second kind could also be used. There would
be no significant differences at the formation of the method, even the obtained universal
equations would be the same.

Further on, we introduce into consideration the function of flow W(x,y,f) with the
relations

Chad =u, Chd =— (3)
dy Ox
and the equations (1) and boundary and initial conditions (2) to new expressions. Then,
new dimensionless variables are introduced into consideration
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where n - dimensionless transversal coordinate, @ - dimensionless flow function, U -
velocity ratio, S - dimensionless temperature in fluid, ©® - dimensionless temperature
decrease, 0 - transversal coordinate ratio. Note that with the use of boundary conditions
of the second kind, O is represented differently.

On the basis of the idea of general similarity method in a somewhat simplified,
special form, the solution of the problem can be assumed as follows

W= Ué(b[r] > (fk,n)’ (lk,n)a(gk,n)]

%
S = S[n 5 (fk,n )’ (lk,n )’ (gk,n )]
where the similarity parameters have the following forms
B ak+n@
k_2k+nk-1
=gz © ,(k,n=012,..;k0n#0
Jen =8 aror )
0 +n 2
I, =grz2 ek , (k,n=0,1,2,..;k On #0) (6)
' axkor"
k=1+n
g, =g ek 0 — N , (k,n=0,1,2,..;k 20)
' oax" " or"
It can be noticed from the last expressions that the first parameters have the forms
Jio :gzza_eafm -29 0, _deza_z
’ Ox "o a Ox 7
0z
Iy, _26 » 810 = 2N

Using now dimensionless variables (4) and the assumed solutions (5) of the equation
(1), expressed by means of flow function, it is transformed into a new form.

a¢+@( llogl’aqJ @( llo%a_%l,o+fo,l+%lm%+
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where for the sake of shorter expression the following denotations have been introduced:

1
R, =l(k=1)f1, "'5(2]‘ +m) o1 i+ Sesins
1
Ly, =[kfo +E(2k =2+ ol s s
1
A, =k =D fo, +5(2k )l 1 fin + Sronsts

1
By, =[kfos + E(Zk =24+m)ly Vi * frnsrs
(k,n =012,k On #0)

_ 1
Zin =lk=D fip +E(2k =1+m) 018k 0 + &kein»

1
Cpn =k =1) fo4 +E(2k —1+m)lo, g0 * &t
(k,n =012,k #0)

X(xléxz):aﬁ oo _9® 00
Ox, 0ndx, 0x, 0x;0n

9% 05 _ 0% 95
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The corresponding boundary conditions have the form of
®=0,S5=1 forn=0
qD—»O,S—»O fOl"n—»oo

and they have been obtained from the boundary conditions (2).

(€)

(10)

The obtained equations (8) do not explicitly depend on the distribution of
temperatures or thermal flux on the vertical wall, nor on the exterior magnetic field, so
that they can in that sense be regarded as universal equations of the observed problem.

The boundary conditions (10) are also universal.

Equations (8) in an approximation, i.e. with a definite number of addends on the
righthand sides and boundary conditions (10) are integraled once and for all. On the basis
of the obtained universal results general conclusions about the development of the
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boundary layer can be drawn. Thus obtained universal results should be conveniently
preserved for the use in calculations of particular problems. With the integration of
equations (8) with the boundary conditions (10) and storing of the obtained results, the
first phase of the method has been completed.

In order to solve the problem completely in every individual case the following values
have to be determined, f;.(x,?), /,(x,f) and g .(x.f), and with that &(x,f). Solving this
problem is the second phase of the method. Appropriate integral equations are necessary
for the realization of the second phase of the method, particularly the equation of impulse
and the equation of energy. The mentioned integral equations are obtained by the
integration of equations (8), element by element along n from 0 to o, and by means of
integration of the first, the impulse equation is obtained and by the integration of the
second, we obtain the energy equation. In order to have simplified equations, for & we
select the following value

® ., 00
0

which is the functional of the distribution of velocity and temperature in the cross
sections of the boundary layer.

By introducing the thickness of impulse loss & and thickness s, which are in this
case defined with the relations

S -[E . -

we obtain a system of two integral equations

(12)
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The first equation of the system (13) is the impulse equation of the observed problem,
and the other equation of the same system is the energy equation. In the last equations:

e

on’
dimensionless thermal flux on the wall surface.
6 -

[0;(fk,n ),(lk’n),(gk’n)] is dimensionless friction and g_i[();(fk’”)’(lk’” ),(gk,n)]

Fig. 1. Values A,C and 1,y in function of parameters

As has been already stated, the first phase of the method is completed with the
integration of equations (8) in a corresponding approximation and storing of the obtained
universal results. Further on, in this paper the influence of the parameters f; ;; /o; /10 and
gio and the influence of other parameters will be disregarded. The influence of
derivatives along parameters f;1; /10; o1 will also be disregarded, and thus, from the
equation (8) the following equations are obtained

o’ 1 %D
= fiohoX(Ns fio) +— llOgIOX(n g0t fioloy ——*=l1&10o
ondfi, 2 ondg (14)
Dz:f1olloy(ﬂ;fm)+lllogloy(ﬂ;gl0)+101f10—S+1101g106—S
T ' 27 ' TN Ofiy 27 0gyp

where, for the sake of brevity, [J; and [J, mark the lefthand sides of the first and second
equation (8), respectively.

The obtained system of equations (14) represents a fiveparameter three times
localized approximation of the equation system (8). Integral equations (13) in the same
approximation have the form of

’P
on’
+ %1,0 + fou +Zlo,1 @D[w;ﬁ,o;f0,1;11,0§10,1§g1,0] _5_5 = (15)

S

—[0; ﬁo,fmslloslmsglo]"‘BZflo —11055—"'
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Fig. 2. Values H1 and H2 in function of parameters

For numerical integration of equations (14), first we substitute the derivates with
relations of finite differences and thus a system of differential equations is obtained,
which is resolved by the use of progonka method [7].

Solving the equations has been realised from the point f; o to the right point where is /;
and to left to the point where d5/0n(n =0)= 0. Solving of the equations mentioned above
has been carried out for the values of Prantl number Pr=0.72 but for several values of
unsteadiness parameter f;;. A part of the obtained results has been shown in the diagram
form, in the figures 1,2,3 and 4. Because of the shorter notification in the figures 1 and 3 the
following notifications are introduced (3°®/0n?),=C and (3S/0n),=A, where the
notifications ,, mean that the values refer to the values of the functions on the wall. On the

s

figures 2 and 4 the terms 6_* = ??adn, 6*5 = ?Sdr] are replaced with notifications H1
Oy p0on O 0

and H2, respectively.
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Fig. 3. Values A, C and 11,0 in function of parametres

In figures 1 and 2 the following denotations are introduced:
N for (g19=0; /o1 =05l =0); N3 for (g19=0; fo; =-0.02;45, =0);

N1 for (g1 =0.125; fo; =015, =0);  Nafor (g9 =0; fo; =0:l; =0.012);
N2 for (g1 =0; fo, =0.0650, =0);  N5for (g9 =0;fo; =0:l; =-0.06);

and on the figures 3 and 4 the notifications N to N3 have the next form:

N for(go =0.02; fy, =0.01;/,; =0.005) ;
N2 for (g =0.02; fo, ==0.01;/y, =0.005);
N1 for (g =0.02; o, =0.01;/; =-0.02);
N3 for (g, =0.02; fo; ==0.01;/,; ==0.02).

2,4 -
2,14
1,8
15
1,2

0,9

0.6 T T T T T T T T T —
-2,0 -1,5 -1,0 -0,5 0,0 05

Fig. 4. Values H1 and H2 in function of parameters
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3. NUMERICAL RESULTS

From the figures 1,3 can be noticed that for f;; <0 i.e., for the case when the
dimensionless fluid temperature © decreases with the time, also the dimensionless
friction on the wall surface C decreases, but the dimensionless heat flux on the wall
surface A increases with respect to the absolute values. For positive values of
unsteadiness parameter f; i.e., for the case of the increase of dimensionless temperature
difference O, from the same figure, can be noticed that the increase of paramter f;,
increases also the dimensionless friction on the wall surface, but the dimensionless heat
flux on the wall surface decreases at the absolute value.

From the figures 2,4 it can be seen that for the negative values of unsteadiness
parameter f;; the values of H1 and H2 decrease, but for the positive values of this
parameter the values of H1 and H2 increase. If the value of f;; is greater at the absolute
value, so the values of Hl and H2 are smaller, but the greater positive values of
unsteadiness parameter correspond to the greater values of H1 and H2.

With the increase of magnetic parameter g, o value C decreases, and term A increases
by the absolute value.
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METODA UOPSTENE SLICNOSTI ZA NESTACIONARNE
MHD PROBLEME SLOBODNE KONVENCIJE
NA VERTIKALNOM ZIDU

Viktor Saljnikov, Zoran Borici¢, DragiSa Nikodijevié¢

Ovaj rad se bavi nestacionarnim MHD problemima slobodne konvekcije u blizini zagrejanog zida
sa proizvoljnim rasporedom temperature, odnosno toplomog fluksa. Spoljasnje magnetno polje je
homogeno i upravno na zid. Problem je razmatran u Busineskovoj aproksimaciji. Koris¢enjem metode
uopstene slicnosti i uvodenjem tri skupa parametara dobijen je sistem univerzalnih jednacina. Pored
univerzalnih jednacina u radu su izvedene i dve integralne jednacine razmatranog problema. Sistem
univerzalnih jednacina resavan je metodom konacnih razlika. Deo dobijenih rezultata predstavijen je
u obliku dijagrama.



