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Abstract. This paper brings together and examines a lot of parameters that, usually,
are not taken into account either during the design of a bridge or because some
assumptions are supposed by the designer to hold true for the design and the
calculations of a bridge. Some of the more serious of these parameters are the
irregularities of the surface of the bridge's deck, the vehicle model selected, or the
neglect of some forces that arise by the movement of the vehicle on the bridge. We will
find out that the effect of those parameters is, sometimes, very remarkable.

1. HISTORICAL REVIEW

The study and the determination of the influence of dynamic loads on elastic
structures is a very old and complicated problem. Especially the determination of the
dynamic effect of moving loads on elastic structures and particularly on bridges is a very
old and complicated problem. Many systems in civil engineering and mainly on the
design of bridges can be idealized as a flexible beam under a moving mass. The existence
of a moving mass makes the problem very difficult because of its non-linearity, which
arises exactly by the moving mass.

A number of works has been reported during the last hundred years trying to present
reliable solutions for such a multi-parameter problem by using two different methods:
The first one is to perform tests and the second is that of pure theoretical investigation. In
recent years transport engineering has experienced serious advances characterized by
increasingly higher speeds and weights of vehicles, as a result of which vibrations and
dynamic stresses larger than ever before have been developed. From the historical
viewpoint, the problem of moving loads was first considered approximately for the case
where the mass of the girder was negligible compared to the mass of a single moving
load of constant magnitude [1], [2] and [3]. The other extreme case in which the mass of
the moving load was negligible compared to the mass of the girder was originally studied
by Krylov [4] and later on by Timoshenko [5] and Lowan [6]. The more complicated
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problem including both the parameters, the load mass and the mass of the girder, was
studied by other investigators among whom we should mention Steuding [7],
Schallemcamp [8], and Bolotin [9]. A very thorough treatise on the dynamic response of
several types of railway bridges traversed by steam locomotives was presented by Inglis
[10] using harmonic analysis. Interesting analyses were also presented by Hillerborg [11]
using Fourier's analysis and by Biggs, Suer and Louw [12] using Ingliss technique. The
problem of the dynamic response of bridges under moving loads is reviewed in detail by
Timoshenko [13], and later on by Kolousek in1956, 1961, and 1967 [14]. We should also
mention the extended review reported by Fryba [15] in his excellent monograph on this
subject. These analyses have been extended to simple frames subjected to moving loads
by Karaolides and Kounadis [16] and thereafter to a two-bar frame under a moving load
in which the effect of axial motion has been taken into account by Sophianopoulos and
Kounadis [17]. Some partial results regarding the effects of the mass of a moving load on
the dynamic response of a simply supported beam were recently presented by Michaltsos,
Sophianopoulos and Kounadis [18].

From the above short historical viewpoint, one can see that the problem of moving
loads was first considered for the case where the mass of the girder was negligible
compared to the mass of a single moving load of constant magnitude. The second also
extreme case in which the mass of the moving load was negligible compared to the mass
of the girder was the second step in the study of the moving loads.  The more complicated
problem, including both the parameters, the load mass and the mass of the girder, was the
third step in the study.

Today, the investigation on the dynamic behaviour of the bridges has moved on from
this infantile period and more complicated models and also a difficult non-linear
mathematical analysis for the studied problems is used.

2. DESCRIPTION OF PARAMETERS

The most significant parameters that affect the dynamic response of light (steel)
bridges can be classified in two great categories:

a. Those which are connected to the design, the shape of the bridge and the
characteristics of the vehicle and which can be called physical parameters, and

b. Those which depend on the acceptances and on the necessary simplifications
connected to the difficulties met, each time, during the forming of the
mathematical models of the problem. The above can be called design parameters.

2.1.   Physical parameters.

In the first category are classified the characteristics of the cross-section of the bridge,
the static system, the roughness of the deck's surface, and the probable existing
irregularities of the deck that are accidental or purposely constructed by the designer
(they are often desired for a lot of different reasons).

All the above parameters are taken into account by the designers except for the two
last ones. We, on the other hand, will focus our examination on the two last ones. By
doing this we do not mean to say that the influence of the first group of parameters is not
significant (as one can see in figure 1 the form of the bridge's axis, for example, has a
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very serious influence on its dynamic behaviour [19]) but because there are not many
studies about the two last ones.

Fig. 1. The influence of the curvature of bridge's axis on the 1st dimensionless
eigenfrequency:Case a: C1 = 0 (warping parameter), T = 0 (mass rotatory param.)

Case b: C1 = 10−3 (warping param.), T = 0.2 (tortional param.)

2.2. Design parameters

In this second category are contained the model of the considered vehicle and the
assumptions of the design.

A real vehicle can be simulated from the simplest up to the most complicated model.
This depends on the design's phase (preliminary study or final study) and, as for the
investigation, on the ratio of the vehicle mass and dimensions to the mass and dimensions
of the bridge.

The assumptions of the design presuppose simplifications. By design simplifications
we mean the completeness of the used equations of motion.

In all the above in paragraph 1 studies, the response of  laterally vibrating beams and
frames due to moving loads was established on the basis of standard  dynamic analysis
which neglects the effects of both Centripetal force, Coriolis force and the Rotatory
Inertia, associated with the mass of the moving load which follows the transverse motion
of the flexural vibrating beam.

3. THE CHOSEN MODEL

It is determinative, as for the exactitude of the results, to choose each time the right
model. The choice depends on various parameters. Among them we can refer to the use
of the bridge (highway or railway), the material from which it is made (concrete or steel)
and therefore its weight, the static system, the density of the traffic, and the most serious,
the length of the bridge.

For long-length bridges we prefer the one-axle models (see figure 2 from a to f). For
shorter bridges one can choose one of the models g, h or i  (fig. 2). For long-length bridges
and heavy traffic, there are still the models j and k .

Models g, h, i, and k take into account the influence of the vehicle's mass-rotatory
inertia  J = Md2e , where M is the mass of the vehicle, d is the length of the vehicle and e
the so called shape factor of the vehicle, which usually, extends from 0.08 to 0.10.
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Fig. 2. a. Simple load b. Load-mass c. Load-mass with spring d. As in c, with additional
load-mass instead of axles and spring instead of tyres e. Load-mass with spring and
damper f. As in e with additional load-mass instead of axles and additional spring
and damper instead of tyres g. Simple vehicle with springs and dampers (Drosner
model) h. As in g with additional springs and dampers instead of tyres (Veletsos
model) i. Locomotive model for railway bridges of short or middle length j. Moving
distributed load-mass for long-length bridges k. Moving distributed load-mass with
moments caused by mass-rotatory inertia

4. THE UNEVEN DECK

The influence of the uneven deck of a bridge could be significant or not significant.
The used model of the bridge and that of the vehicle are shown in figure 3.
The corresponding equation of motion is:
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where:
MV : the mass of the moving load-

mass
k: the coefficient of the vehicle

spring
cb: the coefficient of the bridge

damping
cV : the coefficient of the vehicle

damping
r(x): the function that gives the

uneven surface of the deck
Pimpact : the arising impact force, which

is produced by the impact of
tyre-masses on the irregularities
(see fig. 4).

Fig. 4. Impact while the tyre enters an irregularity with speed υ

4.1.  The roughness of the deck's  surface.

From the above it is clear that roughness can be considered a special case of an
uneven deck and therefore can be studied through equations (1) and (2).

The influence of an uneven deck is expressed by two terms (see equation 2). The first
term, which contains r(x), has very little influence (in the case of roughness) on the
dynamic behaviour of a bridge. The second one, which contains the impact forces has
greater  influence and  depends on the  flat part "b" of the tyre (and then  on the angleϕ of
figure 5), which is in contact with the deck (see also fig.5). This last term is expressed by:

Fig.  3. Hinged single-span bridge
with uneven deck
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where δ is the Dirac's function 2d is
the distance between two irregularities
of the asphalt surface of the deck
expressing the surface quality and ti is
the time that the wheel is on the point
i which is at a distance αi  from the
left end of the bridge. Finally the
influence of the roughness is very
small amounting to a smallest ratio of

the final deformation of the bridge and therefore it is negligible. (The roughness has a
significant influence on the car's vibrations and the so caused seasickness to the
passengers).

4.2. The surface deck irregularities

By irregularity we mean the change of the surface of the deck deviating from the
given form, each time, by function r(x) of equation (1). We suppose that the examined
irregularities have a shape that can be expressed in mathematical form. Two types of
irregularities are examined:

The first is shown in figure 1a, where the vehicle enters and exits the irregularity
abnormally, because of the non-horizontal tangents on the points A and B. This
irregularity, named Type Ι, has a form given by:

xfxfxw
""

2)( 2
201 −= (5)

The second, in fig. 1b, is the one which has the tangents on the points A and B
horizontal. This irregularity, named Type II, has a form given by:

fxfxfxw −−+−−= 2
2

4
402 )(2)()( "

"
"

"
(6)

Fig. 6. Types of irregularities:  a) Type I,  b) Type II

Fig.  5. Impact forces created by roughness
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The impact forces are produced at the instant that the mass mT (mass of tyre) strikes
with speed υ against the irregularity (which is assumed to have a mass equal to ∞ and
speed equal to zero) and also at the instant that the mass exits the irregularity. The mass
mT, after its impact, bounces in the direction wk1  (entrance) or wk2  (exit), (see fig.7).

Fig. 7. Impact forces while a mass enters and exits an irregularity

The produced impact forces are (see and figure 7):
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Fig 8. Single-span bridge with an irregularity at α and moving mass at d
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The equation of motion of the bridge of figure 8 has the form:
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From the solution of the above equation (9), and after some manipulations, one can
find dimensionless forms and study the influence of the shape of an irregularity,  its
length or  its position on the dynamic deflections of a bridge in connection to the weight
and the length of the moving vehicle.  The results of such an investigation [20] are shown
in plots of figures 9 and 10. The study of diagrams 1 to 20 of figures 9 and 10 leads to the
following general results:

1. Regarding the models of vehicles:
The use of the exact biaxial model is necessary in light vehicles, where the difference

goes up to 44% in relation to the one-axis model, when this difference reaches 85% in
relation to the simple moving load (without irregularity, spring, e.t.c.).

For short bridges, the deviation from the true values is about 25% and 62%
respectively.  For big lorries the exact model vehicle gives results less than 40% (for
short bridges) to 2-5% (for long bridges). But if we take into account that a significant
factor in the design of a long bridge is economy, then it is necessary to use the exact
biaxial model.

2. Regarding the type of irregularity:
The one of type I, gives an increment of the dynamic deflection of a bridge from 9 to

52% for light vehicles, but from 0 to 5% for the big lorries. The irregularities of type II
give minor rates of the increment on the dynamic deflection of a bridge from 2 to 12%
for light vehicles, but from 0 to 2% for the big lorries.

3. Regarding the position of the irregularity:
The existence of an irregularity at the beginning of a bridge gives more unfavorable

results, with significant difference (it doubles the influence), while the existence of an
irregularity at positions 2L/8 to 4L/8 is, also, quite dangerous.

Therefore, the construction (for the reduction of the speed of a vehicle) or the
accidental existence of an irregularity on the bridge, especially at its beginning, is the
worst design (or case) of all.

Finally, we would like to point out that the short irregularities up to 1 m, have the
most unfavorable influence. Therefore, we propose that the whole length of the
irregularity be from 2 to 4 m. A longer length has the effect of two irregularities instead
of one because the beginning and the end of the long irregularity act as two independent
irregularities, especially for that of type I (where we have the impact phenomenon).
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We, finally, note that the optimum length of an irregularity is connected with the par-
ticular characteristics of a bridge and, especially, with the specter of the eigenfrequencies.

Fig. 9. Percentile comparison of the change of the displacement
of the middle of the bridge for irregularity of  type I.
______  (Woo-Wo) / Wo % biaxial model to one axis model
- - - - -   (Woo-W) / W % biaxial model to without mass moving force
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Fig. 10. Percentile comparison of the change of the displacement
of the middle of the bridge for irregularity of  type II.
______   (Woo-Wo) / Wo % biaxial model to one axis model
- - - - -   (Woo-W) / W % biaxial model to without mass moving force

5. THE INFLUENCE OF THE MOVING LOAD'S MASS.

The problem of the forced motion of a beam, subjected to a moving load, is associated
with serious difficulties when the effect of the mass of the load is taken into account.  The
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problem becomes, mathematically, non-linear and therefore we are unable to give an
exact and closed solution form.

Fig. 11. The influence of the ratio "mM /  (for various velocities) on the ratio PM ww /  (%)
of the dynamic middle-span deflections, where Mw  includes the load-mass M
while Pw  does not.

In spite of the above difficulties there are some recent publications dealing with this
problem. We can easily estimate this influence regarding the plot of figure 11 (where the
effects of Centripetal, Coriolis forces and of the mass rotatory inertia are neglected [18]).

The solution technique that is developed and applied in the laboratory of Dynamics of
NTUA, consists in the use of a solution (as a first approximation) of the form which is
produced by the movement of a simple load neglecting its mass influence. The
convergence, as is proved in [23], is extremely rapid and then a second step of approach is
not necessary.

5.1. The concentrated load-mass

We consider a beam that is traversed by a constant load P having mass M moving at
constant velocity υ. Hence, its position α, from the left end of the beam, at any time t is
equal to υt(= a), where t is measured from the instant the load enters the span. Before that
instant, the deflection throughout the length of the beam is assumed to be zero.
Continuing we adopt the assumptions of the theory of small vibrations, Navier's
hypothesis and Saint-Venant's principle.

Under these assumptions one can establish the governing differential equation of
motion for a slender beam, after neglecting the effects of longitudinal motion and
damping [21]:

)()]},(2),(),([{),(),( 2 α−δ′υ+′′υ+−=+′′′′ xtxwtxwtxwMMgtxwmtxwEI !!!!! (10)

where υ≤≤ /0 "t .

From the solution of the above equation (10), and after some manipulations, one can
find dimensionless forms and study the individual and coupling effects of Centripetal and
Coriolis forces, combined with various parameters such as load-mass and velocity, on the
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dynamic response of a single-span bridge.   The results of such an investigation [21] are
shown in plots of figure 12.

On the basis of the model chosen, one may draw the following conclusions:

1. The effect of Centripetal and Coriolis forces on the dimensionless dynamic mid-
span deflection increases with the increase of the dimensionless mass )2.0(>M of
the moving load. Such an increase which becomes more appreciable for 5.0>M
and for small dimensionless velocities 30.0<υ  may reach 60%.

Fig. 12. Relationship between the ratio D = (wc−wo) / wo % and the dimensionless velocity
υ for various values of the dimensionless load-mass M .

2. The increase of the dimensionless velocity υ  decreases the effect of the
aforementioned forces (on the dimensionless mid-span deflection) up to 30.0=υ
while this effect increases for  30.0>υ .  Such a decrease varies from 6% (for

1.0=M ) up to %25≈  (for 5.1=M ).
3. All the curves D vs. υ  regardless of the value of M  exhibit a minimum in the

vicinity of  30.0=υ  (Fig.12).

5.2.  The moving vehicle

Using the model of a locomotive like the one in figure 2i one can write the equation
of motion of a single-span bridge, that is traversed by the above vehicle as follows:
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From the solution of the above equation (11), through the described technique, one
can find dimensionless forms and study the individual and coupling effect of Centripetal
and Coriolis forces and of the mass rotatory inertia of the vehicle, combined with various
parameters.

The above problem is dealt in [22], in which the individual and coupling effects on
the dynamic response of Centripetal and Coriolis forces combined with various
parameters, such as vehicle-mass, distance of wheel axles (wheelbase) and velocity of the
moving vehicle are discussed in detail.

The mathematical model discussed in [22] is related to a real bridge with a span of
~100 m, weight per unit length of  ~40 KN/m and moment of inertia  I = ~1.50 m4, which is
traversed by a moving load with velocities =υ 50, 100, 150, and 200 km/h or in dimen-
sionless form velocities =υ  0.10, 0.20, 0.30, 0.40 respectively. The velocities are com-
bined with the dimensionless values of vehicle-masses =M  0.10, 0.20, 0.30, 0.40, and 0.50
and the dimensionless wheelbases  d2 = 0.10,  0.20,  0.30 and  0.40.

 From the plots of Fig. 13 to 16 one can see graphically the relationship between the
dimensionless wheelbases d2  and the deflection ratios D1 = (WC−WCM)/WCM %,
D2 = (WP−WCM)/WCM %, D3 = (W−WCM)/WCM %, in connection with the dimen-
sionless vehicle-masses M , where:
W:    are the dimensionless deflections of the middle of the bridge, including the

effect of Centripetal and Coriolis forces, for a moving load-mass M .
WP:   are the dimensionless deflections of the middle of the bridge for a vehicle-model

with dimensionless mass M  and dimensionless wheelbase d2 , in which the
effects of Centripetal and Coriolis forces are neglected.

WC: are the dimensionless deflections of the above vehicle-model, in which the
effects of Centripetal and Coriolis forces are included.

WCM: are the dimensionless deflections of the above vehicle-model, in which except
for the effect of Centripetal and  Coriolis forces the effect of the vehicle's mass
rotatory inertia is also included. This last model is considered (for the present
paper) as the real vehicle's model.

The above deflections concern the middle of the bridge (at ξ = 0.5).
From the above plots, we can easily get the following results:
c. The model of the single mass-load is accurate for  values up to M = 0.20. For

higher values of  M  (even if the speeds are low) the differences from the real model
are higher of 10% and we often meet values for the differences which amount  from
25 to 40% (see ratio D3).

b. The model of a vehicle with two axes and mass M  is more accurate than the above
model of one mass-load M . In this two-axis model the influences of Centripetal and
Coriolis forces are neglected. The differences from the exact model are high for low
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speeds (independently of the value of wheelbase) amounting from about –8 to 15%,
but they are low for higher speeds and masses amounting from about –4 to 5%.

c. The third model which neglects only the vehicle's mass rotatory inertia is the most
accurate of the others for low values of wheelbase (up to d2 = 0.20) independent of
speed and magnitude of mass. For wheelbases with values higher than d2 = 0.20,
the influence of the neglected parameter J becomes very significant and then the
differences from the deflections of the real model are from about 10 to 15%.

Fig. 13. Relationship between the ratios
D1, D2, D3 and the dimensionless
wheelbase  d2 for υ = 0.10.

Fig. 14. Relationship between the ratios
D1, D2, D3 and the dimensionless
wheelbase  d2  for υ = 0.20.
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Fig. 15.Relationship between the ratios
D1, D2, D3 and the dimensionless
wheelbase  d2 for υ = 0.30.

Fig. 16. Relationship between the ratios
D1, D2, D3 and the dimensionless
wheelbase  d2  for υ = 0.40.
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PARAMETRI KOJI UTIČU NA DINAMIČKI ODZIV
LAKIH (ČELIČNIH) MOSTOVA

G.T. Michaltsos

U prvom delu dat je pregled istorijskog razvoja oblasti. Zatim su razmotreni najznačajniji
parametri kao i teškoće koje se javljaju pri stvarnim ispitivanjima. Najznačajniji parametri su
klasifikovani u dve velike kategorije: oni koji su u vezi sa projektovanjem, oblikom mosta i
karakteristikama vozila i koji se mogu nazvati fizičkim parametrima i oni koji zavise od prihvatanja
i od potrebnih uprošćenja povezanih sa poteškoćama koje se susreću uvek pri formiranju
matematičkog modela problema (nazivaju se projektnim parametrima). Obe kategorije parametara
su detaljno objašnjene. Karakteristični primeri su prikazani za najnovija istraživanja u laboratoriji
Steel Bridge NTUA.


