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Abstract. The double impact oscillator represents two symmetrically arranged single
impact oscillators. It is the model of a forming machine, which does not spread the
impact impulses into its neighbourhood. The anti-phase impact motion of this system
has the identical dynamics as the single system. The in-phase motion and the influence
of asymmetries of the system parameters are studied using numerical simulations.
Theoretical and simulation results are verified experimentally and the real value of the
restitution coefficient is determined by this method.

I. INTRODUCTION

The one-degree-of-freedom impact oscillator is one of the simplest strongly non-
linear mechanical systems. It consists of an elastically suspended and periodically excited
mass (cf. one half of Fig. 1), which can impact against a rigid stop. Its dynamics has been
thoroughly investigated theoretically, experimentally and using simulation methods (see
references in (Peterka and Vacík 1992) and (Peterka 1981)). The influence of the
following parameters on the maximum velocity before impact during fundamental
periodic impact motion was studied (Peterka 1981): coefficient of restitution, viscous and
dry friction damping, static clearance, amplitude and frequency of the excitation force.
This fundamental motion is practically most important and is characterised by the
repetition of one impact in every period of the excitation force. There exist also other
periodic and chaotic impact motions. Each motion has the region of existence and
stability in the space of system parameters. Regions can mutually penetrate and create
hysteresis subregions. Several regimes of the system motion exist there. Motion initial
conditions (basins of attraction) or other conditions decide which motion will appear (see
the set of papers in (Peterka and Vacík 1992, [16])).
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Results obtained for the single oscillator
are applicable for two symmetrically ar-
ranged impact oscillators – the double im-
pact oscillator (Fig. 1), which can be con-
sidered as the model of a forming machine.

An advantage of such system, compared
to the single impact oscillator, consists in
the isolation of impact impulses from the
neighbourhood of a forming machine and
doubling of before-impact velocities.

The second degree of freedom intro-
duces asymmetry into the system motion, which is undesirable for the application. Dif-
ferences in initial conditions, driving forces or natural frequencies of subsystems cause
other asymmetries. Constructional or assembly imperfections can also introduce asym-
metries. It has been shown using numerical simulations and experiments, that small
asymmetries do not affect the optimal operation of this system.

2. THEORETICAL ANALYSIS

The theoretical analysis will arise here from the differential equations of motion of the
system. The solution of the simplest series of periodic impact motions and their stability
is introduced in (Peterka and Vacík 1992) and (Peterka and Szöllös 1996) for the
symmetric system without the viscous damping.

 2.1 Symmetric Case

The impactless motion is described by the system of transformed differential equations

)cos(2 ϕ+ητ=+′β+′′ XXX ,    (1)

)cos(2 ϕ+ητ=+′β+′′ YYY , (2)

where X = x.k/F0, Y = y.k/F0 and τ = Ωt( mk /=Ω ) are transformations of displacements
and the time, respectively, Ωω=η /  and )2(/ kmb=β  are the dimensionless frequency
and viscous damping, respectively; X'=dX/dτ ,  X"= d2X/dτ2 .

Impacts occur, when the following condition is met

X + Y  ≥   2 ρ , (3)

where ρ =r.k/F0 , is the dimensionless static clearance.
It is assumed that impacts are described by Newton's theory of impacts. Let  X'-, Y'-

and  X'+, Y'+ denote the before-impact and the after-impact velocities, respectively. Then:

 X'+ = [(1 − R) X'- − (1 + R)Y'- ] / 2 ,

 Y'+ = [(1 − R) Y'- − (1 + R)X'-] / 2  ,    (4)

where R = -(X'+ + Y'+)/(X'- + Y'-) is the coefficient of restitution (0 ≤ R ≤1).

Fig. 1. Scheme of the double impact
oscillator
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For plastic impacts (R = 0) have the masses equal after-impact velocities  X'p

X'+ = - Y'+ = (X'- − Y'-) / 2  = X'p    (5)

and there are two possibilities of the after-impact motion, according to the polarity of the
after-impact relative acceleration  X"+ Y" :

a) When the condition   
X"+ Y" ≤  0 (6)

is met, then no forces press the masses together and the after-impact motion is described
by Eqs. (1), (2) as for the motion with elastic impacts, when  X'+ + Y'+ ≤ 0 .

b) When the condition (6) is not met, then the masses move together according to
equation

02 =+′β+′′ JJJ ,    (7)
with initial conditions

J(0) = X(τi) - ρ    and    J'(0) = X'(τi) = X'p ,    (8)

where τi is the instant of the plastic impact and J is the displacement of the masses from
the centre (j = 0 in Fig. 1).

The time interval of such motion is named the after-impact dead zone of the masses
relative motion. It ends at the instant τe, when the press force Fp disappears. This force is
proportional to the fictive positive acceleration X"+ Y", which is evaluated during
numerical simulation of the motion (Fig. 2(a)).

The motion is described then by Eqs. (1), (2) with initial conditions

X(0) = J(τe) + ρ ,     Y(0) = − J(τe) + ρ ;    (9)

X'(0) = - Y'(0) = J'(τe)

The motion of the system with asymmetric initial conditions, plastic impacts and
after-impact dead zones is introduced in Fig. 2. Figure 2(a) shows, that polarity of force
Fp (condition (6)) decides about the after-impact dead zone and its duration. The first
plastic impact does not meet the condition for the joined motion of masses after impact.
Dead zones appear after remaining three impacts. The motion of the general impact-dry-
friction pair of bodies is described in more detail in (Peterka 1999).

2.1.1. Transformation of the system coordinates

The transformation of coordinates X, Y into coordinates U, V,  according to Eqs.

U = X + Y ,   V = X – Y , (10)

introduce clear view of the double impact oscillator behaviour. U and V are coordinates
of the anti-phase and in-phase motion of the system, respectively. This transformation is
introduced in (Landa 1996). Equations (1), (2) are transformed into Eqs.

( )ϕ+τη=+′β+′′  cos2 2 UUU , −′−=′+ URU , (11)

0 2 =+′β+′′ VVV ,     −+ ′=′ VV , (12)

It follows from Eq. (11), that anti-phase motion corresponds to the single impact
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oscillator motion with double excitation force amplitude. The in-phase motion (Eq. (12))
is the free damped vibration, which introduces the asymmetry into the system motion.
The presence of viscous damping eliminates this asymmetry, as it seen in Fig. 2(b).
Therefore the symmetric impact motion gradually stabilises.

It follows from this analysis, that all known results obtained for the simple impact
oscillator describe the behaviour of the symmetric motion of the double impact oscillator,
but before-impact velocities should be doubled.

Fig. 2. Time series of motion during 3 and 30 excitation periods T with asymmetric
initial conditions X(0) = −1, X´(0) = 1.5, Y(0) = −3, Y´(0) = 2.5, ϕ = π/4 and
dimensionless parameters η = 0.95, β = 0.1, ρ = 0.7 and R = 0

2.1.2. Regions of existence of different impact motions in the plane of parameters ρ, η

The dimensionless frequency η and static clearance ρ are important parameters of the
system, which decide about the regime of motion. Therefore the regions of existence and
stability of motions are usually evaluated in plane η, ρ. The map of regions of motions
with plastic impacts, is shown in Fig. 3, for example.

Regions are labelled by the quantity z = p/n, which denotes the mean number of
impacts in one excitation period T (p and n are the number of impacts and the number of
periods T in the impact motion period, respectively). The value z = 1j or 2j means, that
during the z = 1 or z = 2 impact motion appears after impact dead zones (see Fig. 2 for the
motion z = 1j). Values z = 0÷1 and z = 0÷2 denote regions of the periodic subharmonic
and chaotic impact motions, which are named regions of beat impact motions.

The region of impactless motion (z = 0) is bounded by grazing boundaries ρ', where a
certain impact motion should arise. Boundaries ρ' are identical with the amplitude-
frequency characteristics of the impactless motion. The region of the periodic one-impact
motion without after-impact dead zone (z = 1) is bounded by the period-doubling stability
boundary s1, where the system motion transits into the beat motion region between
boundaries ρ' and s1. Region z = 1 is also bounded by the saddle-node stability boundaries
s2, where one-impact motion suddenly transits into impactless motion. Therefore two
responses (z = 0 or z = 1) of the system exist in regions between boundaries ρ', s2, named
the hysteresis regions. The region of the one-impact motion with after-impact dead zones
(z = 1j) is bounded from below by the boundary ρp ,=  −1, where the dead zone increases
to the whole excitation period T, because Fp = F0 . The impact motion vanishes and
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masses remain joined all the time in the static position ( j = 0 in Fig. 1).
The system motion with plastic impacts is described in more detail in (Peterka and

Szöllös 1996).

2.1.3. Bifurcation diagrams

The evaluation of the motion characteristics, e. g. along the section q of existence and
stability regions in Fig. 3, offers a deeper view of the system motion behaviour. The
quasi-stationary amplitude characteristics Xm(η) and the before-impact velocity
characteristics (X'-+ Y'-)(η) are shown in Fig. 4. They were simulated numerically at
increasing and decreasing frequency η  (see arrows along characteristics). Figure 4
contains also time series and phase trajectories of typical motions, which exist along line
q in Fig. 3 (z = 0 for η = 0.8 and η = 1.2, z = 1/2 for η = 0.87 and z = 1 for η = 1).

The impactless motion transits in point G1 into a narrow interval η of chaotic impact
motion. Then the periodic impact motions z = 2/4, z = 1/2 and z = 1 gradually stabilise.
The fundamental z=1 motion is stable in the interval η between points S1, S2 – points of
stability boundaries s1, s2 (Fig. 3). The impactless motion, which arises in point S2, slowly
losses the component of a free vibration for the sake of very small value β = 0.002 of the
viscous damping. The frequency η decreases from the value η = 1.4 up to point G2,
where the z = 1 impact motion suddenly appears again. The extreme E of before-impact
velocities exists in the hysteresis region between points G2, S2. This extreme regime can
be attained by the quasi-stationary increase of frequency η from the region of the definite
system response z = 1. If the extreme frequency η = 1.19 is constant, then it is necessary
to choose the motion initial conditions from the basin of attraction of z = 1 motion, for its
definite stabilisation.

Fig. 3. Regions of existence and stability of motions with plastic impacts
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Fig. 4. Bifurcation diagrams and trajectories of motions along line q in Fig. 3

Fig. 5. Basins of attraction of the impact motion (z = 1) and impactless motion (z = 0)
for parameters ρ=3, β=0.02 and ϕ=0 for different coefficients of restitution R
(a) R = 0, η = 1.19, (X'-+Y'-)max = 9.26; (b) R = 0.3, η= 1.31, (X'-+Y'-)max= 9.53
(c) R = 0.6, η = 1.47, (X'-+Y'-)max = 11.9; (d) R =0.9, η=1.78, (X'-+Y'-)max = 28.16
(e) R = 0.9, η = 1.5, X'-+Y'- = 13.65
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2.1.4. Basins of attraction of different motions in regions
with manifold response of the system

The basin of attraction of the z = 1 impact motion in point E is shown in Fig. 5(a). It
was obtained under the assumption that ϕ  = 0 and initial conditions of both subsystems
are identical. The basin of attraction of impactless (z = 0) motion is very small, so the
periodic motion with plastic impacts can be attained simply, e.g. from the zero initial
conditions. It has been shown in (Peterka and Szöllös 1996), that it does not depend on
the initial phase ϕ of the excitation forces.

When the impacts become elastic and the coefficient of restitution R increases from
zero to one, then regions of impact motions become more complex (see e. g. Figs. 8, 11).
Hysteresis regions, as well as beat motion regions, enlarge. Fig. 3 shows it schematically
along line q for the hysteresis region. All stability boundaries s2 shift right and touch the
grazing bifurcation boundary ρ' in point Q. Points of the before-impact velocity extremes,
denoted by M for R=0.3, 0.6, 0.9 in Fig.3, similarly shift and approach more and more the
stability boundaries s2. Therefore it is more and more difficult to attain these optimal
regimes by the choice of motion initial conditions. This is graphically expressed in Figs.
5(a) − (d). Figure 5 shows also basins of attraction (e) in the centre of the hysteresis
region of the almost elastic impact motion (R = 0.9).

2.2. Asymmetric Cases

Asymmetries in the double oscillator can considerably influence, in general, the
system behaviour. Asymmetries of

1) motion initial conditions,
2) amplitudes of driving forces,
3) natural frequencies

are considered as an example.
ad 1) The oscillations become symmetric for asymmetric initial conditions, when

viscous friction is present. When viscous friction is missing, then the initial asymmetry
preserves in spite of a considerable amount of energy losses during impacts as has been
discussed in Chap. 2.1.1.

ad 2) Asymmetry of the driving forces amplitudes introduces a systematic asymmetry
of the motion, as follows from the transformation (10) of motion coordinates.

If a difference of 5% between excitation force amplitudes is assumed, then the
differential equations of motion

) (cos95.02
)cos( 2
ϕ+τη=+′β+′′

ϕ+ητ=+′β+′′
YYY

XXX
 (13)

are transformed into

)cos(0502
)cos(9512

ϕ+ητ=+′+′′
ϕ+ητ=+′+′′

.VVβ V

.UUβ U
 (14)

and the in-phase motion component V is present all the time.
ad 3) Let us consider the equations of motion

, )cos(95.0 2
)cos( 2
ϕ+ητ=+′β+′′

ϕ+ητ=+′β+′′
YYY

XXX
 (15)
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which express 2.5% asymmetry of natural frequencies. These equations are transformed
into

)(025.0) cos(2 2 VUUUU −+ϕ+τη=+′β+′′ , )(025.0 2 VUVVV −−=+′β+′′ . (16)

It follows from Eqs. (16), that anti-phase and in-phase components of the system
motion cannot be separated and the motion asymmetry preserves again.

The influence of asymmetries on the optimum impact regime of the system (Fig. 4)
has been investigated using bifurcation diagrams in the frequency interval 0.9 < η < 1.4
(Fig. 6). The comparison of the behaviour of asymmetric systems (Figs. 6(c) − (f)) with
the symmetric case (Figs. 6(a), (b)) shows, that small asymmetries do not influent
especially the before-impact velocity X'- + Y'- in the neighbourhood of the optimal
frequency η, which corresponds to points E.

The asymmetry manifests itself through resonance phenomena near the resonance
(η = 1) of the impactless motion of the single oscillator (see Figs. 6(c), (e) and 6(f)) and
it is more emphatic on the motion amplitude characteristics, than on the before-impact
velocity characteristics.

Fig. 6. Frequency characteristics of the optimal impact motion (z = 1) and impactless
motion (z = 0) for the symmetric subsystems (a), (b), asymmetric exciting force
amplitudes (c), (d) and natural frequencies (e), (f)

3. SIMULATIONS

Thirty years ago, analogue simulations allowed to obtain fundamental knowledge of
the impact oscillator dynamics (Peterka 1974), (Irie et al. 1974). The current numerical
simulations offer more extensive both qualitative and quantitative investigations. The
program NON-1-SIM (Peterka and Formánek 1994) has been prepared, especially for the
investigation of the single impact oscillator dynamics and it can be used also for
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educational purposes. The program NON-1-SIM shows the introductory picture (Fig.
7(a)), which explains in more detail the application possibility of this program. It consists
from two parts.

The Information part contains ten groups 0–9 of problems, which can be solved. Each
of groups is supplemented by its own picture (see e. g. picture 8 in Fig. 7(b), explaining
one of roads from the periodic subharmonic impact motion into the chaotic motion).

Fig. 7. Study pictures of the NON-1-SIM programme of numerical simulations
of the impact oscillator motion
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The Simulation part contains five buttons A – E, which can determine 38 values of
initial conditions, system's parameters, picture's parameters, simulation parameters and
the table of the dependence R(v) of the coefficient of restitution on the before-impact
velocity X'- (R can be also constant or analytically defined).

There exist three simulation procedures. The procedure G simulates and displays time
series, phase trajectories and Poincarè maps of the system motion. The dimensionless
clearance ρ and the excitation frequency η can be interactively changed from the
keyboard. The same possibility have both procedures H, I, which simulate the frequency
or clearance characteristics (Xm(η), Xm(ρ), X'-(η), X'-(ρ)), as well as Lyapunov exponents
and autocorrelation functions. Pictures can be supplemented by trajectories of the impact
oscillator motion, as it is shown in Fig. 4. Procedure I can simulate also usual amplitude-
and phase-frequency characteristics of the impactless motion.

Fig. 8. Input and output boundaries of chaotic motion regions

The NON-1-SIM program offers the authors DEMO versions of mentioned simulation
procedures, which explain in more detail the simulation possibilities and can be executed by
the button F. The user can record own DEMO version of procedures, using button K, and
execute them by button J.

Boundaries of stability and existence regions (see e. g. Figs. 3, 8, 11) have very diverse
character and it is difficult to create a general program for their simulation. Therefore
different bifurcation boundaries should be evaluated interactively during the simulation.

Figure 8 shows, as an example, the diversity of boundaries of the chaotic impact motion
regions. Four input boundaries (1)−(4) characterise different ways into the chaos. Three of
them, (2)−(4), are specific to the impact motion. Ways (3) and (4) are caused by additional
impacts, which appear during the development of the period-doubling and saddle-node
instability of periodic subharmonic impact motions. The way (3) is shown in Fig. 7(b) and
the system behaviour along all boundaries is described in (Peterka and Kotera 1996) and
(Peterka 1997).
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4. EXPERIMENT

The experimental setup of the double impact oscillator is shown in Fig. 9. Its scheme
and block scheme of electronic equipment controlling and evaluating the motion are given
in Fig. 10. Masses 1 are clamped using blade springs 2 to traversable frames 5, which carry
also vibrators 4 (LSD V201). These vibrators excite masses by rods 3. The static clearance
2r is set up by the right–left screw 6 axially fixed to the foundation 7. Computer 10 deter-
mines both frequency and amplitude of harmonic signal of the generator 12 (H&P 3324A).
13 are amplifiers LDS PA25E. Vibrations are measured by accelerometers 8 (B&K 4366)
and integrating circuits 14 (RFT 036). The velocity of one mass is measured by the laser
vibrometer 15 (POLYTEC OFV-302). One mass is electrically isolated and impacts switch
on the circuit of the DC supply 16 (TESLA BS-525) for their indication. The computer
stores measured signals during the time interval 1s by the 16-channel-AD converter 11
(National Instruments AT-MIO-16E-10), which samples signals with frequency 2 kHz. The
natural frequency and viscous damping of separated systems are Ω = 12.6 Hz, β = 0.07.

Fig. 9. Mechanical model of double impact oscillator

Fig. 10. Scheme of experimental equipment

5. COMPARISON OF RESULTS OF NUMERICAL SIMULATIONS AND EXPERIMENTS

The results are compared by regions of existence of different system motions in the
plane ρ, η (Fig. 11, where regions of all evaluated impact motions are denoted by a value of
the impact number z) as well as by numerically simulated trajectories and experimentally
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measured quantities of typical periodic and chaotic impact motions (Figs. 12, 13). Figure 13
shows also the vibrations of the frame 5 (Fig. 10), which are of the order of µm and without
impact impulses.

The real value of restitution coefficient R = 0.9 of impacting bodies was determined by the
simulation of stability boundary s2 according to the experimentally obtained boundary s2,
because the course of boundary s2 depends expressively on R (see Chap. 2.1.4 and Fig. 3).

Fig. 11. Regions of impact motions simulated and experimentaly verified.

Fig. 12. Time series and phase trajectories of numerically simulated impact motions
in points (A)−(H) in Fig. 11.
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There exist a series of z = 1/n-impact motions. Five of them (n = 1 ÷ 5) are shown in
Figs. 12(A), (B), (D), (F), (H) and 13(A), (B), (D), (F), (H), corresponding to points (A),
(B),(D),(F),(H) in Fig. 11. Impact motions n≥2 create one of groups of periodic
subharmonic impact motions. Figures 11 − 13 contain, for example, also the periodic
z = 2/2 impact motion (point (E)), which is one of other subharmonic motions. It arises by
splitting of the z = 1 motion.

The first motion from the group of more impact motions z = p/n (p ≥ 2, n = 1) is shown
in Figs. 12(G) and 13(G). The chaotic impact motion z = 1/2÷1 is in Figs. 12(C), 13(E).

Experimentally ascertained regions have the same structure as those attained
numerically, but boundaries are shown only in a limited number of points denoted by
circles along the hysteresis region of z = 0 and z = 1 motions and along the z = 1/2
region. The agreement of numerical and experimental results is very good.

Fig. 13. Time series of experimentally obtained impact motions in points (A)−(H)
in Fig. 11.

6 CONCLUSION

The correctness of the mathematical model of the double impact oscillator and the
numerical simulation of its motion has been successfully verified experimentally. The
value of the restitution coefficient can be determined accurately using both methods.
Experiments confirmed also former results of the theoretical analysis and the simulation
of the single impact oscillator dynamics with respect to regions of periodic and chaotic
motions and their structure in dependence on the static clearance ρ and excitation
frequency η.
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DINAMIKA DVOUDARNIH OSCILATORA
František Peterka

Oscilator sa obostranim sudarom je mehanički sistem sa jednim stepenom slobode čija se masa
periodično pobuđuje. Istraživanje njegovog ponašanja počelo je pedesetih. Newton-ova elementar-
na teorija sudara je obično smatrana modelom sudara. Fundamentalni zakoni kretanja sistema su
danas poznati kao rezultat dubokih teorijskih i simulacionih istraživanja i oni su verifikovani
eksperimentima. Svi rezultati su primenljivi i za anti-fazno kretanje oscilatora dvostrukog sudara,
koji ima veliki značaj u oblikovanju sečenju itd.

Interes istraživanja je usresređen na dinamiku oscilatora sa mekim sudarom, kada se trajanje
sudara ne može zanemariti a disipativne sile između tela u sudaru su izabrane prema realnoj
situaciji. Kelvin-Voigt-ov model sudara je primenjen u prvom koraku ove studije Kada se zaustavna
krutost menja od nule do beskonačnosti tada se simulira prelaz od linearnog (bez sudara) kretanja
do strogo nelinearnog kretanja sa krutim sudarom. Dinamika oba granična slučaja je poznata i
sada je takođe poznat i razvoj nelinearnih svojstava kretanja kada se tvrdoća sudara raste. Ovde će
biti objašnjena dinamika oscilatora sudara. Biće prikazani i video zapisi analogne i numeričke
simulacije, kao i eksperimenti. Osnovna struktura članka je sledeća: teorijska analiza, eksperiment
i dinamika oscilatora se mekim sudarom.


