Vol.2, No 10, 2000 pp. 1111-1135
UDC 534.01:531.53(045)
RHEONOMIC COORDINATE METHOD
APPLIED TO NONLINEAR VIBRATION SYSTEMS
WITH HEREDITARY ELEMENTS
Katica (Stevanović) Hedrih
Faculty of Mechanical Engineering University of Niš
Ul. Vojvode Tankosića 3/22, Yugoslavia, 18000 Niš, telefax: +381 18 41-663
e-mail: katica@masfak.masfak.ni.ac.yu
Abstract. Results pointed out in this paper, are inspired by papers of O. A. Goroshko and N. P. Puchko (see Ref. [13] and [14]), about Lagrange's equations for the multybodies hereditary systems, and rheological models of the bodes properties presented in the monograph written by G.M. Savin and Ya.Ya. Ruschitsky (see Ref. [24]), as well as a monograph on rheonimic dynamics written by V.A. Vujičić (see [6]). By using rhelogical body models for designing deformable rheological hereditary elements with hybrid rheological elastoviscosic and/or viscoelastic properties (see Ref. [23], [24] and [18]), discrete oscillatory systems with hereditary elements as constraints, are designed, as systems with one degree of freedom as well as with many degrees of freedom. For these oscillatory hereditary systems, the integro-differential equations of the second and/or third kind are composed. The solutions of these integro-differential equations are studied.
Equations of dynamics of a disrete system with finite constraints and standard hereditary elements are composed.
Covarinat integro-differential equations of the motion of the discrete hereditary system are composed.
The rheonomic coordinate method is applied to dicrete hereditary systems, and the modified system of the covarint integro-differential equations of motion of discrete hereditary systems with rheonomic constraints are composed.
For example, the rheological pendulum on the wool's thread with changeable length is modeled by rheonomic coordinate as well as by rheological hereditary element. By using defined rheological pendulum basic properties of the rheonomic coordinate in the sense of the Vujičić's, rheonomic coordinate are introduced. The force, as well as the power of the rate of rheological and rheonomic constraints change are determined.
For the designed discrete hereditary systems with corresponding rheological and relaxational hereditary elements the integro-differential equations second and/or differential equations of the  third order are composed. On the basis of the analysis of the discrete hereditary oscillatory systems the Goroshko's definition on dynamically determinated or indeterminated discrete hereditary systems was confirmed.
Key words: Discrete hereditary system, standard hereditary element, oscillatory hereditary systems, rheological elements, rheonomic coordinate, rheonomic coordinate method, rheological pendulum,
rheological and relaxational kernels, covariant coordinate.

METODA REONOMNE KOORDINATE
U PRIMENI NA NELINEARNE OSCILATORNE SISTEME
SA NASLEDNIM ELEMENTIMA
Rezultati prikazani u ovom radu inspirisani su radovima O. A. Goroshko i N. P. Puchko (vidi Ref. [13] i [14]), o Lagrange-ovim jednačinama za nasledne diskretne sisteme (više tela) i reološkim modelima tela koji su prikazani u monografiji G.M. Savin-a i Ya.Ya. Ruschitsky (vidi Ref. [24]), kao i monografijom V.A. Vujičić-a (vidi [6]). Koristeći modele reoloških tela za opisivanje deformabilnih reoloških, naslednih elemenata sa hibridnim reološkim-elasto-viskoznim i/ ili visko-elastičnim svojstvima, postavljeni su modeli diskretnih naslednih sistema sa jednim i više stepeni slobode kretanja. Za takve oscilatorne nasledne sisteme integro-diferencijalne jednačine drugog, i/ili diferencijalne jednačine trećeg reda su sastavljene.
Sastavljene su jednačine dinamike diskretnog sistema sa konačnim vezama i standardrnim naslednim elementima. Sastavljene su integro-diferencijalne jednačine kretanja diskretnog naslednog sistema u kovarijantnom obliku. Prikazana je metoda reonomne koordinate u primeni na diskretne nasledne sisteme. Izveden je prošireni sistem integro-diferencijalnih jednačina kretanja, u kovarijantnom obliku, naslednog sistema sa reonomnim vezama.
Dat je veći broj primera reološko-reonomnog oscilatora, kao i reološko-reonomnih klatna.
Ključne reči: Diskretni nasledni sistem, standardni nasledni element, oscilatorni nasledni sistem, reonomna koordinata, reološka koordinata, metoda reonomne koordinate, reološko-reonomno klatno,
reološko i relaksaciono jezgro, kovarijantne koordinate.