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Abstract. The new heuristic method generalizing the classical construction of
v−function from first integrals is described. There is shown the generalized method
keeps the feature of the classical one. It means v−functions are constructed as solutions
of some completely integrable partial differential equation. The form of this equation
and its order are defined by nondegenerate multiparameter function V(x,a)+ααααq, x ∈  Rn,
α ∈  Rq−1 (α−−−−vector of parameters) identically. Function V is the generalization of
classical linear integral sheaf.
The representations of v−functions are described. Classical representations (method of
Chetaev integral sheaf, the construction of these functions as non-linear functions of
the integrals) are supplemented by geometric structures of v−functions as envelopes of
some subsets of function V(x,a) + αq.
The most of the investigated stability problems from classical mechanics are covered
and put in order by a new method. By this method, some algebraic unsolvable stability
problems of ordinary differential equations are investigated.

1. The classical method of the construction of v−−−−functions. It is well known that
the investigation of the stability problems of ordinary differential equations needs the
construction of v−functions. The classical method of the construction of these functions
from first integrals is the more effective one. The basis of it have been put by J. Lagrange
[1], A.M. Lyapunov [2], E. J. Routh [3,4]. If the system with known sign definite integral
is investigated, it is the simplest case. The stability of the system is followed from the
first Lyapunov theorem. The Chetaev method of integral sheaf is used in other cases as a
rule. It closely connects with Routh−Lyapunov theorem which is used for the
investigation of the stationary motions of mechanic systems. By that classical method,
ample hamiltonian systems are researched (for example, [5−16]).
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It has been shown [17,18], that the classical method is of universal importance to the
investigation of stability of the hamiltonian and reversible systems because v−functions
satisfying the first Lyapunov theorem must be the sign definite first integrals.

For a number of non−hamiltonian systems, v−functions belong to the space of first
integrals of some comparison systems. In this case, the energy integral of comparison
system is used as v−function ordinary. By integral sheaf of comparison hamiltonian
system, the stability of mechanic systems with dissipation is investigated [19−24].

The formal description of classical method is given below. Let us consider the
stability of trivial solution x = 0 of differential equations

nR∈= xxXx    ),(! (1.1)

with smooth right−hand sides.
For the construction of v−function, consider some comparison system

)(0 xXx =! . (1.2)

If (1.1) is the hamiltonian or reversible system, we identify the equations (1.2) with
(1.1). Let F1(x),...,Fm−1(x), m ≤ n be the known first integrals of system (1.2). According to
classical method, v−functions being found belong to the set M = {F(x): F = B(F1,...Fm−1),
B ∈  C r(Rm−1,R1)}.

There are two classical ways to construct desired functions:
I) v(x) is the linear function of integrals Fj(x)

II) v(x) is the non−linear function of integrals Fj(x); v(x) is represented as Chetaev
integral sheaf as a rule:

∑ ∑µ+λ=
j j

jjjj FF 2v , λj, µj = const. (1.3)

You can use new ways for construction of these functions also. Unfortunately, they
have no applications but they are needed for the complete description of classical method.

The set M is connected with partial differential equations [25]. Let W(x,C) =
C1F1 + ... Cm−1Fm−1, C = (C1,...,Cm−1) be the nondegenerate integral sheaf. The set M then
is coincided with smooth solution space of some completely integrable system of partial
differential equations of first order:

j
j

n
mn x

zpRHH
∂
∂=∈== −+    ,   , 0),(,,0),( 11 ppxpx " , (1.4)

Here, W + Cm is the complete integral of (1.4). It means, the system pj = ∂W/∂xj
(j = 1,..., n) is solvable for (m − 1) parameters Cj identically. The elimination of these
parameters from the remaining (m − n + 1) equations reduce them to the form being the
same as (1.4). Hj are the linear functions of p because W + Cm is linear function of Cj. If
m = n, the system (1.4) is equivalent to one equation

0)(
1

0 =∑
=

j

n

j
j pX x . (1.5)

It is known [25] that arbitrary solution z(x) of equations (1.4) can be derived from
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complete integral W + Cm by Lagrange method of variation of parameters Cj :
)()()()()()( 1111 xxxxxx mmm CFCFCz +++= −−" , where (C(x),Cm(x)) is the solution of

Pfaffian equation

∑
−

=
=+′

1

1
0

m

j
mjC dCdCW

j
. (1.6)

The geometric interpretation of this method is known also [25, 26]. Let π be arbitrary
regular l−surface from the space of parameters C1,...,Cm (0 ≤ l ≤ m−1); let (W + Cm)π be
the restriction of the family (W + Cm) to this surface. The arbitrary solution z(x) of
equations (1.4) is the envelope of certain l−parametric family (W + Cm)π locally. In the
case l = 0, the envelope is the function (W + Cm)π by definition. Hence it follows, the
solution space of (1.4) (that is, the set M) consists of the envelopes of various families
(W + Cm)π when index π passes by the set of regular l−surfaces (0 ≤ l ≤ m−1) belonging to
the space of parameters C1,...,Cm.

Let us introduce the further notations. Let M be the subspace of envelopes of families
(W + Cm)π when index π passes by the set of various regular l−surfaces belonging to the
space of parameters C1,...,Cm. It is obviously

#
1

0

−

=
=

m

l
lMM .

The subspace M0 has the simplest construction because it consists of the functions
W(x,C) + Cm, (C, Cm) = const. The other subspace Ml is filled by envelopes. In the case
n = m, the smooth structure of M is described in paper [27].

So, the classical method may be supplement. The Lyapunov functions are the
solutions of completely integrable system of partial differential equations; therefore they
have the following representations:

III) v(x) ),()()()()( 1111 xxxxx mmm CFCFC +++= −−"

where (Ñ1(x),...,Cm(x)) is the solution vector of (1.6)
IV) v(x) is the envelope of certain l−parameter family (W + Cm)π , dim π = l.
Thus, the classical method consists of four ways I) − IV).
It should be noted that the representation of Lyapunov functions as envelopes of

certain families of functions is typical for stability problems. Indeed, according to
Chetaev's method, Lyapunov functions must be seek as the integral sheaf (1.3). If

∑ ≠µ
j

j 02 , v(x) does not belong then to M0 . Hence, v(x) belongs to the subset #
1

1

−

=

m

l
lM . So,

v(x) is the envelope of a certain family (W + Cm)π . If v(x) is represented as arbitrary
non−linear function of known integral, we come to this conclusion also.

2. The generalized heuristic method of the construction of v−−−−functions from first
integrals. In spite of the effectiveness of classical method, its applied region is restricted by
construction of sufficient stability conditions of conservative system as a rule. Indeed, the
most of v−functions satisfying the asymptotic stability theorems or instability theorems are
not the integrals of the system being investigated as well as of the comparison system.

Let us consider the generalized heuristic method of the construction of v−functions
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free from the lacks above mentioned. The idea of this method is as follows: v−functions
being found belong to certain functional space generalizing the set M. Let us describe this
new space.

So, let
qV α+)a,(x , q ≥ m, ),(=a 11 −αα q"  (2.1)

be the smooth q−parameter function and

)1,min(rank a, −= qnVx

in every point of some range of values x and αααα. We will assume also that W(x,C) + Cm is
a special case of V, i.e.

1)(),( −λ
α+= mqVW Cx , (2.2)

Here ))(,)(a(1 CC q
m α=λ −  is a regular (m−1) surface from the space of parameters αj .

Let us introduce the notations: (*) is (x0,αααα0,αq0); π is the regular l−surface from the
space of parameters αααα, αq and (αααα0, αq0) ∈  π ; ][)( VKl

∗  is the set of envelopes of various
families (V + αq)|π at a point x0 when index π passes by the set of regular l−surfaces
which include the fixed point (αααα0, αq 0).

Definition 1 [28]. We will call the space

# #
)1,1min(

0 )(

)( ][][],[][
−−

= ∗

∗==
nq

l
ll VKVTVTVT

l

a functional extensions of the solution space of equations (1.4) and also define S = (q −−−− n)
to be a degree of this space.

It is obviously, M ⊆  T[V]. It follows from the definition that T[V] consists of
envelopes of various subfamilies of function V + αq. In the classical case (m − n ≤ S ≤ 0),
the definition of T[V] repeats literally the geometric description of the solution space of
the completely integrable system of partial differential equations provided V(x,αααα) + αq is
the complete integral of this system. Hence it follows, T[V] of the classical case is the
solution space of a certain system of type (1.4). The number of such system equals to
(n − q + 1).

Let us consider the non−classical case S > 0. It follows from condition (2.2), M and
T[V] have the "structural co-ordination" [28], i.e. M ⊆  T[V], in addition to it Ml ⊂  Tl [V], l
= 0,..., q − 1 . The set T0 [V] is the simplest subspace among other subspaces Tl [V]
because it consists of functions V(x, αααα)+αq , (αααα , αq) = const only.

The problem of the relation between the differential equations and new functional
spaces is discussed below. There are two aspects. Establishing the relation between T[V]
and the set of singular integral manifolds of linear Pfaffian equation with covariant
property to degree S represents the first aspect. Theorems connected T[V] with smooth
solution space of non−covariant partial differential equation of high order are the second
aspect.
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Let us consider Pfaffian equation associated with V:

∑
−

=
α >=α+α′

1

1
)(0)a,(

q

j
qj nqddV

j
x . (2.4)

Definition 2. If

nq <
∂

α∂
x

)a,(
rank , (2.5)

we call the solution (αααα(x),αq(x)) of equation (2.4) a singular solution.

Theorem 1 [29]. Function z(x) belongs to the space T[V] if and only if the singular
solution (αααα(x), αq(x)) of equation (2.4) exists provided that

( ) )())a(,( xxxx qVz α+= . (2.6)

In the classical case m − n ≤ S ≤ 0, theorem 1 is known as Lagrange theorem of
variation of parameters method for system of first order partial differential equations. The
condition (2.5) is realised always here because differentials dαj(x) linear depend on from
each other by equation (2.4).

Let S = 1. The singular condition (2.5) has the form

0det =α x  (2.7)

because the differential dαq depends on the differentials dαj , j = 1,..., n by equation (2.4).
Let us differentiate the equality (2.6) with respect to x taking (2.4) into account, we

than have
))(a,( xxxx Vz = . (2.8)

Let us differentiate the equality (2.8) with respect to x also:

0det,a)( aa ≠⋅=− xxxxx VVVz .

Here the derivatives are calculated with respect to explicitly variables. Hence it follows,
αααα(õ) and V)xx are equivalent matrixes. Therefore, conditions (2.7), (2.8) have the following
form

)a,(   ,0))a,()(det( xxx xxxx VzVz ==− . (2.9)

The equation (2.9) is the n−dimensional analogue of Monge−Ampere equation. In
the particular case n = 2, the equality (2.9) is the classical Monge−Ampere equation:

222111
   ,   ,   , 22

xxxxxx ztzszrctbsrsrt ===ϕ+++α=− , (2.10)

Here the coefficients a, b, c, ϕ are the function of x1, x2, z and partial derivatives zx1,
zx2. In the case under consideration these coefficients are satisfied to additional condition

acbVddxadxbdxdxc −=ϕ≡+− 222
221

2
1    )),,(a,()(2)( xzxx . (2.11)

Therefore equation (2.10) has the parabolic type.
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If x is the fall point of rank of matrix (z(x) − V(x,α(x))xx , we will exclude it from
consideration for every function z(x) ∈  T[V].

Theorem 2 [29]. The space T[V] of degree S = 1 is the space of smooth solutions z(x)
of n−dimensional Monge−Ampere equation (2.9).

Let us consider the case S = 2.

Theorem 3. [30]The space T[V] of degree S = 2 is the space of smooth solutions z(x)
of some third order partial differential equation

F(x, z(x), zx, zxx, zxxx) = 0 (2.12)

The case S ≥ 3 isn't being investigated now.
As follows from [29], the increase of one of S leads to the extension of space T[V]

that it becomes a degenerate subset of this extension. That procedure generates the
inclusion of equation connected with T[V] of degree S as an intermediate integral of
equation connected with the extension space of degree (S + 1). So, equation (1.5) is the
intermediate integral of equation (2.9), equation (2.9) is the intermediate integral of
equation (2.12) and so on.

So, by generalized heuristic method, v−functions being found are the elements of
space T[V]. That is, when S ≥ 0, these functions are the integrals of some partial
differential equation of (S + 1) order; when S < 0, these functions are the integrals of
some system of partial differential equations of first order.

In classical cases (m − n ≤ S ≤ 0), space T[V] is a functional closed set. It means, if
{G1,..., Gk} ⊂  T[V] is an arbitrary collection of functions and B(x1,...,xk) is the arbitrary
smooth function, we then have B(G1,...,Gk) ∈  T[V].

However, if S > 0, the space T[V] isn't the functional closed set because T[V] is
described by non-linear partial differential equation. Nevertheless, the following lemma
establishes the "partial functional closure" of these spaces.

Lemma. Let V(x,αααα) + αq, ∑
−

=
α=

1

1
)(

q

j
jjUV x  (q > n ) be the nondegenerate family of

functions which linear depends on parameters αj ; let {G1(x),...,Gk(x)} (k ≤ n − 1) is the
arbitrary family of the independent functions from subspace T0[V]. Here, if B(ó1,...,ók) is
the arbitrary smooth function, we then have B(G1(x),..., Gk(x)) ∈  T[V].

Proof of lemma. From lemma, it follows that Gj has the following presentation:

)(
1

)(
11

)(
1

j
qq

j
q

j
j UUG α+α++α= −−$

Here, αi
(j) )( j

iα  are the fixed values of arbitrary parameters αi . Let (W* + Ck+1) be the
nondegenerate family of functions such that

)(
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1
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==

−

= =

∗ ,   Cj = const . (2.13)

From (2.13), it follows that (W* + Ck+1) is the partial case of function V(x,αααα)+αq that
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is why T[W*] ⊂  T[V]. The space T[W*] is the functional closed set. Indeed, if k = n − 1,
(W* + Ck+1) is the complete integral of the linear homogeneous differential equation of
type (1.5); if k < n − 1, it is the complete integral of the system of differential equations
of type (1.4). So, we have the classical case; therefore, if {G1(x),...,Gk(x)} belong to the
subspace T0[W*] ⊂  T[W*], we then have B(G1(x),...,Gk(x)) ∈  T[W*] ⊂  T[V]. This complete
the proof.

In the case k = n, the lemma isn't correct. As follows from examples, the function
B(G1,..., Gn) doesn't belong to the space T[V] in general.

This lemma simplifies the search of v−functions from the space T[V] essentially. For
example, if we define the solutions of the partial differential equations as the integrals,
the construction of sign definite v−functions by the method of Chetaev integral sheaf is
possible. The Pozaritskii theorem [31] (which establishes the criterion of sign definite of
B(G1(x),...,Gk(x)) ) as well as the results of investigation of B(G1(x),...,Gk(x)) [32] by its
Hessian remains valid.

So, let V(x,αααα)+αq , ∑
−

=
α=

1

1
)(

q

j
jjUV x  (q > m ) be the nondegenerate family of functions

which linear depend on parameters αj. Let W + Cm , W = C1F1+...Cm−1Fm−1 be the partial
case of V(x, αααα)+αq and T[V] be the extension of M = {F(x): F = B(F1,...Fm−1),
B ∈  C r(Rm−1,R1)}.

The generalized heuristic method of the construction of v−functions from first
integrals is of the following form.

I) v(x) is the linear function of integrals Uj(x), j = 1,...q−1
II) v(x) is the non−linear function of the independent integrals Uj(x), j = 1,...,k,

k ≤ n − 1. Function v(x) may be constructed as Chetaev integral sheaf:

∑ ∑
= =

µ+λ=
k

j

k

j
jjjj UU

1 1

2v , λ j, µj = const

III) v(x) is the function from T[V] such that

)()()()()()(v 1111 xxxxxx qqq UU α+α++α= −−"

Here, (α1(x),...,αq(x)) is the solution vector of equation (2.4) satisfying the condition
of the degeneration (2.5).

IV) v(x) is the envelope of certain l−parameter family (V + αq)π where π =
(a(C1,...,Cl),αq(C1,...,Cl)) is the regular l−surface from the space of arbitrary parameters α,
αq .

As described above, the generalized method keeps all specific characteristics of
classical one and supplements it by the exit to the solution set of partial differential
equations of high order.

The difference of generalized method from the classical one is as follows. The set of
non−linear functions of integrals Uj(x) doesn it cover all space T[V]. In applied problems,
therefore, we need to use the items III), IV) of the method described. The formula (2.14)
gives us the more general presentation of v(x) as a function from T[V].

In keeping with [30], v−functions of most of well known stability problems belong to
space T[V] provided V is the deformed linear integral sheaf of some comparison system.
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Note, these deformations of linear sheaf belong to the restricted class of "trivial"
deformations [30]. That is why, the generalized method puts in order the most of well
known stability problems. Moreover, by the generalized method a algebraic unsolvable
stability problems at resonances 1:1 and 1:3 were investigated [33−35]. Despite of this
insolubility, some algebraic criterions of asymptotic stability were obtained.
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GENERALISANA KLASIČNA METODA KONSTRUISANJA
V-FUNKCIJA IZ PRVOG INTEGRALA

P.S. Krasil'nikov

Opisuje se nova heuristička metoda koja generalizuje konstruisanje klasičnih v-funkcija iz prvog
integrala kretanja. Generalizovana metoda prati tipičnu liniju klasične metode. To znači da su v-
funkcije konstruisane od nekih potpuno integrabilnih parcijalnih diferencijalnih jednačina (ili sistema
parcijalnih diferencijalnih jednačina prvog reda). Oblik ove jednačine i njen red su definisani
identično pomoću nedegenerativne višeparametarske funkcije V(x,a)+αq, x ∈  Rn, α ∈  Rq-1 (α - vektor
parametara). Funkcija V je generalizovana iz klasičnog linearnog integralnog snopa.

Opisane su reprezentacije v-funkcija. Klasične reprezentacije (metoda integralnog snopa
Chataev-a, konstrukcija ovih funkcija u obliku nelinearnih funkcija integrala) su dopunjene
geometrijskim strukturama kada se v-funkcije smatraju obvojnicom nekih podskupova funkcija
V(x,a)+ αq.

Pokazano je da je većina ispitivanih problema stabilnosti u klasičnoj mehanici pokrivena novom
metodom. Ovom metodom su ipitani neki algebarski nerešivi problemi običnih diferencijanih
jednačina.


