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Abstract. Lagrange-Charpit method has been employed to construct a generalized
Lyapunov functions for the Lienard-type nonlinear system, which is important as a
reprenzentative system expressing the general RLC electric circuits and networks, and
mechanical spring systems etc. The functionincludes particular nonlinear terms as
arbitraty functions, by which quadratic term appearing in the Lure-type Liyapunov
function can be extended, By changing the forms of the arbitrary functions, the result
yields all the conventional Lyapunov functions as special cases.
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1 Introduction

In stability analysis of systems, it is common to utilize the Lyapunov method,
and the energy-type Lyapunov function is widely used. The Lyapunov method
has two main uses, i.e., establishment of the stability of a null solution of the
system and determination of a stability region for the system. The latter is often
important to system engineers, because a lot of systems appearing in engineering
have nonlinearities in which only local stability is discussed. Moreover, the
Lyapunov method gives only sufficient conditions for obtaining the stability.
Hence, a Lyapunov function which gives good approximation to the true stability
boundary is desired.

Most of the research in the area of stability of nonlinear systems has only
dealt with the simple system given by Liénard’s equation [1] - [5]. Liénard-type
Nonlinear System given by n second-order differential equations, a generaliza-
tion of Liénard’s equation, has not been thoroughly discussed. Stability of that
type of system has been studied to some level in [6] — [10].
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This paper, which is derived from our work in [11], presents a generalized
Lyapunov function for the Liénard-type Nonlinear System given by n second-
order differential equations, using the Lagrange-Charpit method [4] which is a
well-known technique for solving partial differential equations. The function
includes an arbitrary function, by which the quadratic term appearing in the
Luré-type Lyapunov function is extended. All Lyapunov functions presented so
far are obtainable by means of changing the form of the arbitrary function. The
Lyapunov function includes extended terms which contribute to the extension
of the obtained stability boundary.

2 Liénard-type nonlinear system

The Liénard-type nonlinear system considered here is of the form [7]

i+ G@y+v(y) =0 (1)
where g is an n vector, G(y)(> 0) is a nonlinear damping defined by

g1(o1) O
Gy)=D 0 BT = D {diaglgi(0:)]} B

0  gmlom)

D and B are n X m matrices, y(y) = Bf(o),0 = BTy and fT(0) =
[fl(al)a f2(‘72)a *t [.fm(o'm)]

The nonlinear functions g;(o;) and f;(o;) are assumed to be continuous,
differentiable and to satisfy the following conditions:

(i) . gi(o;) > 0foro;: #0
(i) . oif1(o1) > 0foro; #0

(111) ‘L\Il ( ,)] > OO 35 |a'&|a—> oo

where gi(oi)
Making the replacements Y = x1,1Y = T2, we can rewrite system (1) in the
form of first-order simultaneous equations as

& = h(z); (h(0)=0)
2
where = [z7, a:z T, h(z) = [bT,hT)T, z; = [zi1, 702, - - @] Ty e =
[Ri1, Rio, - -+, hin) 75 (3 = 1,2) and @& = O is the equilibrium state which is
asymptotically Stable.
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3 Lyapunov function for Liénard-type
nonlinear systems

The problem concerning the stability analysis of the equilibrium state of the
system (2) is formally taken up by the search for a Lyapunov function
V = V(x) which satisfies the partial differential equation

F(z,V,P) = PTh(z) + y(z) =0
3)

where P = 8¥ = [PT, PT], P; = [Pi1, Piz, - - - , Pin]T and () is an
arbitrary non-negative function whose opposite sign may be the time
derivative of the obtained Lyapunov function. Separation of P into P, P
simplifies the application of the Lagrange-Charpit method to second-order
differential equations.
In this section, we derive the generalized Lyapunov function for Liénard-type

nonlinear systems.

3.1 Generalized Lyapunov function for Liénard-type
nonlinear systems

Stability of Liénard-type nonlinear system (1), which is a generalization of
Liénard’s equation, has been studied in [7] for the case D = B and DTB =
diag[A;] (A;: positive constants). In this section, we construct a generalized
Lyapunov function which includes all Lyapunov functions presented so far,
using the Lagrange-Charpit method.

The characteristic equation with gVE = 0 becomes

dxq1 _ . dxin _ dra, _ _ dxay,
hn(w) hln(w) h21(23) hgn(il})
_ —dPyy _ —dPi,  —dPs _ —dP;q
=T8F T T T8F T T B8F T T T BF (4)
8:!:11 8:!!1" 8:!21 8:!!2.,.,

From equation (4) , 2n equations can be derived containing P;, Pzand % as

Z' = aD{diag[$1(01)]}1 + Bz2 — P2 =0
Z? = a®'(0)z3 — B{G(z1)x2 + Bf(0)} + Pr — G(z1)Pa + 5L =0
(5)
where Z1= [le Zayeeey Zn]Ty Z?= [Zn+1, Zng2s s Z2-n]T) ‘D(a) =D
{diag|®}(c:)]} BT, ¢l(0:) = L";ﬂ a and B are arbitrary constants,
¢i(o;) are arbitrary functions and 1 is a vector with all elements 1.
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The conditions that functions Z,, Za, ...,
solution can be written in the form,
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Z2n—1 and F have common

2 T T
8Z; dZ; bZ;
Z,Z;] = J =0
(2, 23] 2:: ([ wk] 9P, [dwk] 3Pk)
2 T T
OF dF 1" 8Z;
Zi, Z;l = —_ =0
[ ’ J] ; ([daxk} Bpk l:d:l}k:’ 8Pk)
(6)
where 4,5 =1,2,---,2n — 1,72 # j and
dZ; _ 8Z; 8Z; (7)
d:‘Bk - 3:Ek ov
Applying (6) to Z1, Z2 and F gives
%y
(21, Z?) 2{BG(x1) — a®’(0)} — — =0
dz3
8%’ (o) 8G(x1)
[aaé 1) ﬁacgful)]w
[Z2 F] — [ 8:1:12 '6 8:1212 ] 62¢ T2
’ 82!:18$2
T 8%'(0) 2 B8G (1)
3 [*5e, ?zl,t Jz2
_ O +a8[2,~:1 Xi¢i(03) fi(os)] -0
3$1 81,'1
(8)
where [Z1, Z2]and [Z?2, F]have been defined as follows:
[ [Znt1, Z4] (Zn+1s Zn)
(z*.2°] = |: :
L [Z2'n9 Zl] [Z2n, Zn]
[ [Zn—l—l, F]
[z%,F] = :
[Z2'n, F]
9)

The condition [Z?, F] = 0 becomes identical with Z?2 =0.
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The unknown functions f%% and 1) are determined from (9). As the results,

we have

LA

52 = 2{BG(x1) — a®’(0)} x2 + BQx,)

¥ = 2T {BG(x1) — a®’ ()} w2 + QT (21)BTzz + a Y Migps(0:) fi(o:)
=1 (10)
= 67 {diag|Bgi(0:) — agi(0:)]} & + 2T (1) + Z Aipi(a;) fi(os)
i=1

where Q(x,) is the arbitrary vector function. In (10), inequalities

Bgi(o:) — agi(o:) > 0, agi(o;)fi(ei) > 0 (11)

must be satisfied. Then we choose §2(x1) as

—2{/Ki(o1)ahi¢1(01) fi(o1)
—2/Ki(o1)ah¢1(o1) f1(a1)

Qx1) = :
—2/Kj(o1)ar¢1(o1) Fa(o1)
(12)
in order for 1 to be the sum of perfect square forms, such that
i 2
¥ =3 [VE(o)s: — k(o) fi(es) (13)
i=1
where, K;(0;) (i =1—m) are given as K; (0:) = Bgi(0:) — adi(0o;).
Solving (5) for P; and Pa, we obtain
P, = oG(x1)D {diag|¢i(0:)|} 1 + a®’(0)x2 + BBf(o) — BQ(x1)
P, = oD {diaglgs(os)|} 1+ Bz
(14)

Choosing o = 1 and 3 = 1, the scalar function V', where

V() =/0m PTdzx, (15)
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is given as
1
V = ;{wzt D {diaglg:(0:)]}1}" {ws + D {diaglgu(c)]} 1}

+ g/oai K;(o:)\igi(o:)do; + /00 FT(o)do

+ 22_/0 VK@) hdi(03)F:(03) do (16)
=1
The time derivative of V is of the form
) ™ 2
V= —Z [\/Ri(o‘i)di - ﬁi¢i(ai)fi(ai)} (17)
i=1

Now, the conditions given in (11) result in

oigile) >0 (i £0)
Ki(o:) = ailor) — 2% 5 ¢

T

(18)

We can easily see that V in (17) satisfies Lyapunov’s criteria ;V(z) < 0 for =
# 0, and V(:n) is not identically equal to zero along any trajectory of the
system other than the origin.

Next we inspect the definiteness of V' in a region around the origin. Let us
rewrite the right-hand side of (16) except the first term, such that

Vo = Z /Om' H;(o0;)do; (19)

where

Hi(o:) = Ki(o:)Xipi(o:) + fi(0:) + VKi(o:) Aipi(0:) fi(o:) (20)

As H;(4 =1 — m) in (20) are arranged in the forms

v — [VEKi(a:)Xidi(0:) + /Fi(a:)]%; ;>0
Hi(e:) { —[V—=Ki(o:)Xidi(o:) — V—Fi(0:)]?%; ;<0

(21)

we have
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o;H;(0:) > 0 (22)

Hence, V, is verified to be a positive function. Thus, the scalar function V in
(16) satisfies Lyapunov’s criteria:-V () is a continuous scalar function which
has continuous first partial derivatives with respect to z, V()= 0 for =0,
and V(x)> 0 for £ # 0 and becomes the Lyapunov function of the system

(1).

If we choose

¢i(o;) = o /Oai gi(e)do; (0<a’'<1) (23)

(16) is equivalent to that obtained in [7]. The Lyapunov function given in
(16) is regarded as a generalized Lyapunov function for the system (1)
satisfying D = B and DT B= diag[\;], (Ai: positive constants).

3.2 Example

Let us consider a Liénard-type nonlinear system [7].

v1 + {91(01) + 92(02)} 1 + {91(01) — g2(02)}y2 + f1(o1) — f2(02) =0
g2 + {g1(01) — g2(02)} 41 + {91(01) + g2(02) }yj2 + f1(o1) + f2(02) =0

where o1 = y1 + Y2, 02 =Y2 -
We can rewrite the equation (24) in the form of (2) as

[Z;H} _11][91(001) gz(?n)H} _lle,’:;]
1 aes]=10] o
where

D=B:H “llJ, DTB={§ g} (26)

For the system (25), the generalized Lyapunov function (16) becomes
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VvV = %[1:21 + ¢p1(01) — ¢2(02))* + %[ibzz + ¢1(01) + @2(02))?

+ 2 Ki(o1)$1(o1)doy + 2 Ka(o2)92(02)dos
0 0
+ Fi(o1)doy + A f2(o2)dos
0

+ 2/061 V2Ki(o1)d1(o1) f1(o1)do

4 2 /0 " V2R (o) $a(02) Falea)do
(27)

with

V = —[VKi(e1)d1 — /2¢1(01) f1(01)]?
+ [VKz(02)d2 — V2¢2(02) f2(02)]* (28)

4 Conclusions

This paper has given the generalized Lyapunov function for the Liénard-type
nonlinear system which is important as the general system expressing LRC
electric circuits and spring systems etc.. The Lagrange-Charpit method which
is a well known technique for solving partial differential equations was applied
to construct the Lyapunov function. The proposed function includes arbitrary
functions, by which the Luré-type Lyapunov function is extended. The result
yields all conventional Lyapunov functions as special cases, selecting the
arbitrary functions appropriately.
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LJAPUNOVLJEVE FUNKCIJE ZA NELINEARNE SISTEME
LIENARD-OVOG TIPA

Hayao Miyagi, Josiah Munda

Lagrange-Charpit-ov metod je primenjen za konstruisanje generalisanih Ljapunovijevih
funkcija za nelinearne listeme Lienard-ovog tipa §to je znacajno kao reprezentativni sistem koji
izrazava opsta RLC elektricna kola i mreZe i sisteme mehanickih opruga itd. Funkcija ukljucuje
partikularne nonlinearne clanove kao proizvoljne funkcije pomocu kojih se moze prosiriti kvadratni
¢lan u Ljapunovijevoj funkciji Lure-ovog tipa. Menjanjem oblika proizvoljnih funkcija rezultat daje
sve konvencionalne Ljapunovljeve funkcije kao specijalne slucajeve.



