Vol.2, No 10, 2000 pp. 1035-1048
UDC: 531.314 (045)
FORMS OF
HAMILTON'S PRINCIPLE
FOR NONHOLONOMIC
SYSTEMS
Valentin Vitalievich Rumyantsev
Academician, Computing Center of RAS,
Russia, Moscow, 117967, ul. Vavilova, 40
Abstract. The conditions under which
the three forms of Hamilon's principle were derived for nonholonomic systems
with linear constraints by Hölder, Voronets and Suslov are analysed in
the general case of nonlinear constraints. It is proved, that these three
forms are equivalent and transformable to each other.
The analogous questions are analysed for
the case of nonlinear quasi-coordinates and quasi-velocities. In addition
the forms of Hölder, Voronets and Suslov are excibited in the case of Legendre
transformation reducing the motion's equations to canonical form in quasi-coordinates.
Also the conditions under which Hamilton's principle for nonholonomic systems
has the characterictics of the principle of stationary action are derived.
OBLICI HAMILTONOVOG
PRINCIPA
ZA NEHOLONOMNE
SISTEME
Analiziraju se uslovi pod kojima su izvedena
tri oblika Hamiltonovog principa za neholonomne sisteme sa linearnim ograničenjima
po Hölder-u, Voronets-u i Suslov-u u opštem slučaju nelinearnih ograničenja.
Dokazano je da su ova tri oblika međusobno ekvivalentna i da se mogu transformisati
jedan u drugi.
Analizirana su i analogna pitanja za slučaj
nelineranih kvazi-koordinata i kvazi brzina. Sem toga oblici Hölder-a,
Voronets-a i Suslov-a su prikazani u slučaju Legendre-ove transformacije
redukovanjem jednačina kretanja na kanonički oblik u kvazi-koordinatama.
Takođe su izvedeni i uslovi pod kojima Hamiltonov princip za za neholonomne
sisteme ima karakteristike principa stacionarne akcije.