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Summary: Ochratoxin A (OTA) a nephrotoxic mycotoxin, probably implicated in human Balkan Endemic
Nephropathy, induces renal carcinomas in rats, the males being more affected than the females. OTA induces DNA
adduct formation, but the structure of these adducts and their role in nephrotoxicity, genotoxicity and carcinogenicity
has only partly been elucidated. Earlier studies suggested that lipid peroxidation (LPO) is involved in the
carcinogenic and genotoxic effects of OTA and that enzymes implicated in arachidonic acid metabolism participate in
the biotransformation of OTA. Since 2-mercaptoethane sulfonate (MESNA) protect rats against nephrotoxicity and
carcinogenicity induced by oxidative stress by increasing free thiol groups in kidney, the potential protective effect of
MESNA on renal toxicity and carcinogenicity induced by OTA was examined of in a long term rat study. MESNA
decreased significantly OTA-induced karyomegalies (p=0.018) in the kidney of male Dark Agouty and Lewis rats and
also the number of individual DNA adduct, but did not protect against renal adenocarcinomas in male Dark Agouty,
even the incidence is increased. Some kidney OTA-DNA adducts persisted. Therefore other agents involved in
glutathion peroxidase activity have been tested in an acute study. Pretreatment of male rats by N-acetylcysteine
(NAC), (another agent which, like MESNA, reduces oxidative stress by increase of free thiol in kidney), buthionine
sulfoximine (BSO) (an inhibitor of glutathionesyntase) and acivicin (an inhibitor of gamma glutamyl transpeptidase
(GGT)) modified the repartition of individual spots as detected by 32P-postlabelling. Altogether these results
demontrate i) separate mechanisms for the induction of karyomegalies and tumours by OTA in rat kidneys, ii) that
OTA induced OTA-bound DNA adducts in addition of putative LPO-derived exocyclic DNA adducts iii) implication of
glutathion pathway in the formation of DNA-reactive OTA metabolites and iv) allow to pinpoint that a quinone
pathway is probably involved in renal genotoxicity and carcinogenicity by OTA.
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Introduction

Ochratoxin A (OTA) is a mycotoxin probably impli-
cated in Balkan Endemic Nephropathy (BEN) (1-6).
OTA was found to be nephrotoxic to all animal species
tested including birds and mammals. It induces kidney
carcinomas in rats, the male being more affected than
the female (7, 8).

Omar et al. (9) had first demonstrated that lipid oxi-
dation (LPO) was involved in the mechanism of action
of OTA. The implication of oxidative pathways in the
OTA-genotoxicity was further derived from the obser-
vation that superoxide dismutase and catalase given to

mice before OTA administration inhibited DNA adduct
formation in kidneys (10). DNA adducts were formed in
vitro, after incubation of OTA only in the presence of
rat kidney microsomes, containing high amounts of per-
oxidases, whereas no DNA-adducts were detected after
incubation with liver microsomes (10). Protection from
the OTA-genotoxicity by indomethacin and aspirin (in-
hibitors of cyclooxygenase (COX) and lipoxygenase
(LOX) enzymes) in the urinary bladder and kidney of
mice has been observed (11), DNA adduct formation
was also prevented by antioxidant vitamins, all these
findings support the implication of a peroxidase path-
way in OTA-biotransformation (12). Earlier studies
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have shown that the carcinogenic and genotoxic effects
of OTA are related to its biotransformation by enzymes
implicated in arachidonic acid metabolism, notably
COX, LOX-related glutathione-S-transferase (GST),
and the CYP 2C11-related epoxygenase (13,14). Re-
cently we have demonstrated that these two latter en-
zymes are both required for the expression of OTA-
genotoxicity (15). Reactive oxygen species (ROS) gen-
erated by peroxidase catalysis can initiate free radical
reactions which lead to the oxidation of xenobiotics
(reviewied in 16) and/or of polyunsaturated fatty acids.
LPO of the latter leads to the formation of aldehydes,
such as malondialdehyde and trans-4-hydroxy-2-none-
nal, which react with DNA to form exocyclic adducts
(17). Although, there is good evidences that OTA can
induce DNA adducts, their structure and role in the
nephrotoxicity, genotoxicity and carcinogenicity of
OTA remains to be elucidated (8, 10-15, 18, 19). Are
they resulting from ROS production or from direct co-
valent binding of OTA metabolites and how to relate
this to nephrotoxicity and carcinogenicity of OTA?

Primary function of glutathione peroxidase is to
counteract oxidative attack (20) using glutathione
(GSH) as electron donor. Some substances act as anti-
oxidant because they modulate the GSH-recycling. For
example, MESNA and N-acetylcysteine (NAC) effi-
ciently decreased, in vitro, the formation of exocyclic
DNA adducts (21) arising from the reaction of trans-4-
hydroxy-2-nonenal, a major LPO product, with deoxy-
guanosine (22) and protected rats from renal oxidative
damage induced by ferric nitrilotriacetate (23). Simi-
larly, MESNA can protect against the nephrotoxicity
from some antineoplastic agents such as cis-platin (24)
or ifosfamide (25), by increasing the level of free thiol
in renal epithelia (26). Thus, the potential protective
effect of MESNA and NAC against OTA induced
DNA-adduct formation were explored. The role of other
substances such as buthionine sulfoximine (BSO) and
Acivicin which interferes also with the recycling of
GSH and are efficient to reduce nephrotoxicity of hy-
droquinone and p-aminophenol, have been tested
(27,28).

Materials and methods

Chemicals
Long-term rat study: Ochratoxin A (OTA, benzene

free) was purchased from Food Science and Technology
Division, Pretoria, South Africa), MESNA from Asta
Medica (Frankfort, Germany), sodium bicarbonate,
from Merck (Darmstadt, Germany) was of analytical
quality grade. N-acetylcystein (NAC), acivicin and bu-
thionine sulfoximine (BSO) were from Sigma (L’Isle
d’Abeau, France).

32P-postlabelling assay for DNA-adducts: Proteinase
K, RNase A and T1, and microccocal nuclease were
purchased from Sigma (L’Isle d’Abeau, France); T4
polynucleotide kinase and [γ 32P-ATP], 222 Tbq /mmol

(3000 Ci/mmol) were from Amersham (Les Ullis,
France); spleen phosphodiesterase from Worthington
Biochemicals (Freehold, NJ, USA); nuclease P1 from
Boehringer (Manheim, Germany); rotiphenol from
Rothsichel (Lauterbourg, France); cellulose MN 301
was from Macherey Nagel (Düren, Germany); polyeth-
yleneimine (PEI) was from Corcat (Virginia Chemicals,
Portsmouth, VA, USA). The PEI/cellulose TLC plates
were prepared in our laboratory.

Treatment of animals for the carcinogenic study
Male Dark Agouty (DA) and Lewis rats were pur-

chased from the Zentral Institut für Versuchstierzucht
(Hannover, Germany).

The animals, 12-weeks old, were divided into 4
groups of 20 animals each and treated as follows. Group
1 received, three times a week (Monday, Wednesday,
Friday), intragastric intubation of 0.4 mg per kg body
weight of OTA as a solution in 0.1 M sodium bicarbon-
ate (NaHCO3),. Group 2 received the same treatment as
group 1 but in addition, MESNA was administered at
the concentration of 1 mg/ml in drinking water, every
day. Group 3 was treated by the MESNA solution in
drinking water alone and group 4, as control, received
solution of sodium bicarbonate alone, used as the vehi-
cle of OTA, in the same manner as in groups 1 and 2.
All animals were kept under standard laboratory condi-
tions (room temperature 21 ± 2 oC; relative humidity
60 ± 15%; air exchange rate 15 times/hour; 12h-12h
light-dark cycle) in the animal house of the Hannover
Medical School. A maximum of 2 animals of the same
sex were housed in Macrolon type 3 cages (810 cm3) on
absorbent softwood (H3/4, Hahn & Co., Kronsberg,
Germany). The animals received a standard diet 1324
(Altromin Gmbh & Co KG, Lage, Germany) and tap
water or the solution of MESNA in water, ad libitum.
Each diet charge was examined by the Institut für
Tiergeshundheit und Lebensmittelqualität Kiel (ITL) of
the Landwirtshaflishen Untersuchung- und Forschung-
santalt (LUFA) to ensure that it was OTA free. Rat were
sacrificed at the end of the long term study (2 years) by
CO2 and autopsied completely. The Half of them were
frozen at -80°C until DNA adduct analysis, the others
were preserved in 10% buffered formalin until his-
tological examination.

Treatment of rat by NAC, BSO, Acivicin
before acute OTA-treatment
 Male Lewis rats (IFFA CREDO, Les Arbresle

France) weighing 125 ± 10 g, aged seven weeks, were
given OTA (in 0.1 M aqueous NaHCO3 pH 7.4) at a
single dose of 2 mg/kg body weight by gastric intuba-
tion. Two hours before OTA administration, 3 groups of
three animals received by gastric intubation either NAC
(500 mg/kg b.w. in water), acivicin (10 mg/kg b.w. in
NaCl 9 g/l) or BSO (1g/kg b.w. in NaOH 0.1 M pH 8.5).
Control rats (n = 3) received the vehicle only. One
group (n = 3) received OTA alone.

All animals were kept under standard laboratory
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conditions (room temperature 21 ± 2 oC; relative hu-
midity 60 ± 15%; air exchange rate 15 times/hour; 12h-
12h light-dark cycle) and housed individually. All ani-
mals received the same diet ad libitum. Rats were sacri-
ficed by decapitation 48h after OTA dosing or vehicle
administration. Kidney were excised and frozen at
−80°C until further processing

DNA adducts analysis
DNA was extracted from kidney and purified as de-

scribed previously in Pfohl-Leszkowicz et al, 1991 (18).
The method used for 32P-postlabelling was that previ-
ously described by Reddy and Randerath, 1986 (29)
with minor modifications. In brief, DNA (7 µg) was
digested at 37°C for 4h with micrococcal nuclease
(183 mU) and spleen phosphodiesterase (12 mU) in a
reaction mixture (total volume 10 µl) containing 20 mM
sodium succinate and 10 mM CaCl2, pH 6. Digested
DNA was treated with nuclease P1 (6µg) at 37°C for 45
min before 32P-postlabelling. Normal nucleotides, py-
rophosphate and excess ATP were removed by chro-
matography on polyethyleneimine cellulose plates in 2.3
M NaH2PO4, pH 5.7 (D1) overnight. Origin areas con-
taining labelled adducted nucleotides were cut out and
transferred onto another polyethyleimine-cellulose
plate, which was run in 4.77 M lithium formate and 7.65
M urea, pH 3.5 for 4.5 h (D2). Two further migrations
(D3 and D4) were performed perpendicularly to D2.
The solvent for D3 was 0.6 M NaH2PO4 and 5.95 M
urea, pH 6.4 for 3h, and the solvent D4 was 1.7 M
NaH2PO4, pH 6 for 2 h. Autoradiography was carried
out at −80°C for 24 or 48 h in the presence of an
intensifying screen. Spots were scraped off and their
radioactivity counted by the Cerenkov procedure.

Statistical analysis
Comparisons of the incidence of tumours were car-

ried out with the Fisher exact test. The statistics for the
analysis of DNA adducts were performed using the
Wilcoxon Rank Sum Test.

Results
Effect of MESNA on long-term genotoxicity
and carcinogenicity of OTA treated rats:
The results of histological analysis performed in the

urinary tract are presented table 1. After OTA treatment
alone, 19/20 male DA rats and 16/20 male Lewis rats
had karyomegalies in kidneys. Malignant basophilic
adenocarcinoma in kidney were found in 6/20 male DA
rats and in 2/20 male Lewis. For the urinary bladder,
2/19 male DA presented malignant transitional cell car-
cinoma.

In the groups of animal receiving both OTA and
MESNA, the number of karyomegalies decreased sig-
nificantly (p = 0.018) to respectively 12/20 and 11/20 for
male DA and male Lewis. The number of renal tumours
in male DA rats increased significantly in group of
animal receiving OTA and MESNA as compared to those
receiving OTA alone (8/20 animals are affected versus
6/20) but no more bladder tumour were detected. In the
male Lewis rat groups treated by OTA and MESNA, only
one animal developed a renal tumour. Representative
patterns of DNA-adducts in kidneys from rats treated by
OTA for 2 years are shown in Figure 1. In general,
MESNA decreased both the number of individual DNA
adducts and the total adduct levels resulting in lower
inter-individual variability. In male DA rats, the strain
most susceptible to cancer, 4 to 9 individual adducts
instead of 3 to 19 were detectable in kidney.

The total adduct levels (expressed as adducts/109
nucleotides) observed in kidney from male DA varied
from 2.6 to 114 (in OTA-treated rats) to 10 to 20 (in
OTA + MESNA treated rats). The changes in number
and levels of adducts were due to the disappearance of
several spots (# 6, 10-12 ) and the reduction in intensity
of all remaining spots (except spots # 4 and 5). In male
Lewis rats after MESNA treatment, adducts spots # 2,
10, 15-17 disappeared and adduct spot # 4 became less
intense. Adducts # 5 and 7 were not modified but two
adducts, notably the adduct # 8, appeared. As compared
to male DA rats, the total level and the number of dif-
ferent adducts were lower.

Table 1

Male Dark Agouty Male LewisLesions observed
OTA OTA+

MESNA
MESNA NONE OTA OTA+

MESNA
MESNA NONE

Basophilic cell adenocarcinoma (malignant) 30 40 0 0 10 5 0 0
Small tubular epithelial adenoma (benign) 5 0 0 0 0 0 0 0
Multifocal tubular epithelial karyomegaly 95 60 0 0 80 55 0 0
Multifocal simple tubular epithelial hyperplasia 80 80 7 0 95 70 73 70
Chronic multifocal interstitial pyelonephritis 35 40 27 30 75 35 47 40
Multifocal nephrocalcinosis 70 45 73 60 50 35 53 30
Multifocal Yellow brown pigment deposits 90 93 67 40 20 10 0 0
Proteinaceous intracellular casts 15 10 0 0 75 25 20 90
Cortical Cyst(s) 0 0 0 0 50 30 27 20
Chronic progressive nephrosis 0 0 0 0 0 30 13 0
Focal hemorrhage 0 0 0 0 0 5 0 0
Bladder carcinomas 10 0 0 0 0 0 0 0
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Effect of NAC, BSO and acivicin on
OTA-induced DNA-adducts formation
in rat kidney acutely treated by OTA
Figure 2 shows representative example of DNA ad-

duct patterns obtained in kidneys from male Lewis rats
(n = 3) that were pretreated, two hours before OTA-
treatment, by several modulators of the glutathione
pathway. Twelve distinct adduct spots were observed
48h after OTA administration, reaching a total DNA
adduct level of 70 ± 5 adduct/109 nucleotides. Pre-
treatment by NAC (a compound which like MESNA,
reduces oxidative stress by increase of free thiol in kid-
ney) decreased the total adduct level by a half, some
adducts (# 6, 12) completely disappeared while others
were less intense and adduct # 8 newly appeared. Pre-
treatment by BSO (inhibitor of gamma-glutamylcys-
teinesyntase, depleting cellular GSH) two hours before
OTA treatment, reduced considerably the number of
individual adduct spots. Four of them persisted (adducts
# 1, 7, 8, 12) yielding a total level of 17 ± 3 adduct/109

nucleotides. When rats are pre-treated by acivicin, only
one adduct persisted (adduct # 7) reducing the total ad-
duct level to 8 ± 1 adduct/109 nucleotides.

Discussion
The first aim of this study was to determine whether

co-administration of MESNA, an antioxidant, involved
in the recycling of free thiol in kidney (30) affords a
protective effect against renal genotoxicity and carcino-
genicity induced by OTA.

MESNA significantly decreased karyomegalies in
kidney of all OTA-treated animals but had no beneficial
effect on renal tumour incidence. Even a significant
increase in renal tumor formation was observed in male

DA rats. In contrast, MESNA prevented bladder tumor
formation. MESNA modified also the DNA adduct pat-
terns in kidney of both male rat strains leading to a re-
duction in spot number and total adduct level but did not
prevent the formation of all the DNA adduct spots. This
suggests different mechanisms for OTA-induced
karyomegalies, renal carcinogenicity and DNA adduc-
tion. Changes in nucleus, notably karyomegalies, occur-
ring during necrosis have been attributed to LPO (31).
DNA adducts which are suppressed by MESNA could
be secondary LPO-derived exocyclic adducts, whereas
the persistent ones may be adducted OTA metabolites.

Fig. 1. Autoradiograms of DNA adduct spots in the kidney of rat treated for 2 years by ochratoxin A , [A, B] OTA alone, [E, F]
in presence of MESNA treatment. [A, E] correspond to male DA rats, [B, F] to male Lewis rat. Adduct fingerprints were
obtained after 48h of exposure.

Fig. 2. Autoradiogram of DNA adduct spots in kidney from
Wistar rats treated by a single OTA-dose and pre-
treated by glutathione modulators: [A] control rats
(without any treatment), [B] OTA alone [C] pre-
treated by buthionine-sulfoximine [D] pre-treated by
N-acetyl-cysteine [E] pre-treated by acivicin. Adduct
fingerprints were obtained 48h after exposure.
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In case of halogenated alkenes, hydroquinone, bro-
mobenzene and p-aminophenol, renal toxicity and car-
cinogenicity is caused in the proximal tubular cells, by
some glutathione S-conjugates formed in the liver,
transported to the kidneys where they accumulated in a
GGT-dependant manner (32). After transport across the
plasma membrane, GSH-conjugates are subject to an
initial cleavage by GGT and subsequently to cleavage
by a dipeptidase to yield the S-cysteinyl derivative of
the compound. GGT which is essential for recycling
GSH promotes the toxicity of some xenobiotics by fa-
cilitating their re-absorption (33). Inhibition of GGT
activity, which is abundant in the proximal convoluted
tubules of kidney (33,34), was shown to block in renal
proximal tubular cells the cytotoxicity of hydroquinone-
S-conjugates arising from bromobenzene, para-amino-
phenol and menadione (27,35). Lau et al., 1990 (36)
have found that the renal proximal tubular necrosis in-
duced by paraminophenol or bromobenzene is a con-

sequence of oxidation of a quinol conjugate to the qui-
none followed by covalent binding to tissue macro-
molecules. The presence of a quinone pathway in the
metabolism of OTA, which is a chlorinated compound,
was recently shown (37). To confirm this hypothesis,
we have therefore tested in an acute OTA treatment, the
effect of (i) NAC a precursor of intracellular cysteine
and glutathione, an a ROS scavenger (21,23), (ii) BSO,
shown to protect rat against p-aminophenol (28) and
(iii) acivicin, an inhibitor of GGT which blocks the cy-
totoxicity of hydroquinone-S-conjugates (27). NAC
decreased only partially DNA adduct formation. After
treatment with MESNA or NAC, the same adduct spots
(# 4,5,7,8) persisted in the cancer susceptible male DA
and Lewis rats. After BSO treatment, which deplete
glutathione in kidney, only four adducts persisted
(# 1,7,8,12). Disappearance of adducts # 4 and 5 indi-
cated that these adducts were formed in the kidney via a
mechanism involving glutathione. The adduct # 7 was

Fig. 3. Scheme of some possible biotransformation reactions of OTA and putative structure of some reactive intermediates
Structure of metabolites include: OTA, ochratoxin A; OTB, dechlorinated OTA; OTC ethylester OTA; 4R, S,-OH-OTA,

hydroxylated OH in position 4, OP-OTA open-lactone; OTHQ, hydroquinone OTA; OTQ, quinone OTA.
Abbreviations: ROS, reactive oxygen species; LPO, lipoperoxidation; GSH, glutathion; UDP, uridin diphosphate.

compounds R1 R2 R3 R4 R5
OTA phenylalanine Cl H H H
OTB phenylalanine H H H H
OTC Esterified phenylalanine Cl H H H
4R-OH-OTA phenylalanine Cl H OH H
4S-OH-OTA phenylalanine Cl OH H H
4R-OH-OTB phenylalanine H H OH H
10-OH-OTB phenylalanine Cl H H OH
OTα OH Cl H H H
OTβ OH H H H H
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the only one that persisted after acivicin pre-treatment
implying that it is not generated by ROS, nor by GSH
conjugation. Its formation seems to involve biotrans-
formation by lipoxygenase as this adduct appeared as
the major adduct in OTA-treated cells when this LOX-
pathway was enhanced (14,15), and in kidney of mice
pretreated by Vitamin A, a known inducer of LOX (12).
Adduct # 8 which appeared in kidney of male Lewis rats
treated by MESNA and in Wistar rats pre-treated by
NAC seems to be formed by a ROS-independent path-
way as this adduct was found in cells expressing spe-
cifically human CYP 2C9 (14). Interestingly, the DNA
adducts which persisted (# 1,4,5,7) or appeared (# 8) in
kidney of OTA-treated rats had similar chromatographic
properties than those found in renal tumours from Bul-
garians patients suffering from BEN (38). These adducts
were also detected in pigs which had developed OTA-
related nephropathy (39) and were those that persisted
in kidney of OTA-treated mice and rats (18,40). Most
importantly, in the present study, these DNA adducts
(# 1,4,5,7) were commonly observed in both male rats
strains with OTA induced renal tumours a finding that
would explain the higher susceptibility of male rats.
These data support the notion that only some specific
OTA related adducts are relevant to renal carcinogene-
sis, while the total DNA adduct level may be related to
an overall (geno)toxic potency of OTA.

 The biotransformation of OTA, a chlorinated com-
pound, is complex and involves several biotransforming
enzymes such as cytochrome P450s (33), but also glu-
tathione transferases and lipoxygenase (13-15). The
metabolites conjugated to GSH and/or UDP are ex-
creted in bile and in kidney (34). At least 20 different
metabolites of OTA including OTB, OTC, OH-OTA,
OP-OTA, Otα, Otβ and metabolites of unknown struc-
ture were detected (34, 35). Based on our results from
this study we summarise known and hypothetical path-
ways for OTA metabolism in Figure 3.

Conversion of OTA into quinone (OTQ) by redox
cycling generates ROS that can lead to DNA breaks and
LPO-derived exocyclic adducts (pathway 2). The qui-

none can undergo either a two-electron reduction by
action of the NAD(P)H:quinone reductase to form hy-
droquinone (pathway 3), or a one electron-reduction to
yield a semiquinone (pathway 4), which in turn could
induce DNA breaks, LPO and exocyclic adducts (path-
way 2). OTA was shown to induce oxidative damage
due to the generation of hydroxyl radicals (HO*) (38-40)
by microsomes in presence of NADPH as a microsomal
reductant and O2 not requiring exogenous iron (pathway
2). Pathway 2, is thus inhibited by ROS scavengers as
MESNA and NAC and explains OTA-induced karyo-
megalies which have been observed and its reduction
which we have observed after MESNA treatment.
OTHQ could be formed directly by CYP and/or GST
(pathway 5) and be oxidized into OTQ (pathway 6).

One of the important enzymes in the genotoxicity
pathway of OTA is leukotriene C4 synthase (LTC4).
This enzyme is a member of the group of non heme Fe
containing enzymes, capable of oxidising glutathione
(GSH) to the oxidised form GSSG and simultaneously
generating superoxide anion radicals, which may con-
tribute to oxidative stress in cells but also participate to
glutathione conjugation of xenobiotics (47) (pathway 5).
In general glutathione-S-transferases are involved in
detoxifying pathways, but in some cases they contrib-
utes to the reactivity and toxicity of xenobiotics, notably
by formation of the thiyl radical which reacts with mac-
romolecules and is favoured by the formation of peroxyl
radicals (reviewed in 48) (pathway 2).

In conclusion, our present study demonstrated
(i) that two different mechanisms are implicated in the
nephrotoxicity and carcinogenicity induced by OTA,
since MESNA only prevented karyomegalies in rat kid-
ney but not renal tumors, (ii) OTA induced OTA-bound
DNA adducts in addition of putative LPO-derived exo-
cyclic DNA adducts (iii) allow to pinpoint critical
DNA-adducts, biotransformation enzymes and a qui-
none pathway that are probably involved in renal geno-
toxicity and carcinogenicity by OTA.
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