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Abstract. This paper is devoted to the application of the general principles of 
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1. INTRODUCTION 

Economic-ecological system (EES) is an economic system considered jointly with the 
ecosystem of a region. The EES notion includes two-way interactions between economics 
and environment (ecosystem) and supposes presence of a human control in the system. 

Modeling provides a preliminary explanation and prediction of EES behavior and adds 
new theoretical information about the nature, since there is always a gap between real influ-
ence on the nature and theoretical understanding of that influence. Therefore, all possible 
variants of EES control should be modeled for the purpose of decreasing undesirable 
ecological  consequences.   

Mathematical modeling has particular importance among modeling methods. The ad-
vantages of the modeling as compared to a real experiment are: 1) relatively low cost of 
modeling, 2) easy model modification, 3) possibility of multiple experiments with  changed 
parameters 4) taking into account the prehistory of ecosystem's evolution that is important 
for modeling of irreversible processes. 
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Modeling ought to begin at an earlier stage of study, so far as the analysis of numeri-
cal experiments suggests what kind of additional information is needed and what should 
be changed to achieve a better accordance with a real-life picture. 

A mathematical model should not be a copy of the real world, it is always a simplifi-
cation which assists in revealing a principal process which takes place in reality.  

In a decision-making process we have always used models because we have not pos-
sessed absolute knowledge of reality. Ideal models of the future first emerge in the human 
brain (mental models). Mathematical modeling methods are supplemented with mental 
modeling, and what is important is that a mathematical model cannot be better than a 
mental one on the basis of which it is created. Formal models are secondary with respect 
to the mental models but cannot substitute them.  

2. ANALYSIS OF ECONOMIC-ECOLOGICAL CONTROL PROBLEMS 

We start from the analysis of systems under study and their substantial problems. In 
this section, some general notes are made about goals, peculiarities and techniques of 
economic-ecological systems modeling. 

2.1. Features of economic-ecological interaction 

Mankind can not refuse a transformation of the natural environment but ecologically 
careful acting must compensate for the negative ecological and human activity, especially, 
of science and technological change cases an unreasonable and ecologically dangerous 
use of technology leads to ecological problems rather than the technology itself. Technol-
ogy creates a possibility that can be released under certain conditions. These conditions, 
in turn, begin to affect the direction of technological change having created an ecologi-
cally dangerous feedback. 

All consequences of human activity can be classified in accordance with their envi-
ronmental and ecological impacts as: negative, neutral and positive. 

Negative ecological impacts. Some achievements of science and technology (syn-
thetics, pesticides and others) play a negative role with respect to environment until an 
efficient means for their neutralization is created. 

Such negative scientific achievements as radio nuclides were caused by badly formu-
lated society goals rather than by the technological change. Many particular technical 
problems can be resolved today but their solutions cause negative ecological conse-
quences just because of local character of the problems statement. Contribution of science 
and engineering into resolving ecological problems is determined to a large extent by 
goals raised in human society. 

Negative ecological impacts can be divided into: real negative consequences of human 
activity and potential ecological dangers. 

Pollution in the environment, increasing levels of radiation, soil erosion and others are 
real negative ecological consequences of human activity. Other scientific achievements 
(nuclear power, mining mineral resources, and urbanization) are fraught with potential 
risk. 

Potential ecological dangers can also be subdivided into two categories: 1) possible 
future dangers that can appear if modern tendencies of technical and economic develop-
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ment remain (these are exhaustion of traditional natural resources, destruction of ozone 
layer and others); 2) the dangers that are possible at any time (such as intensive radiation 
pollution because of nuclear power stations). 

The potential ecological dangers are often more complicated and important than real 
ones. The real negative ecological consequences can be reduced (there were first suc-
cesses in prevention of environmental pollution) while the potential dangers are revealed 
suddenly, as a rule, and they have a tendency to accumulate and increase when a range of 
human activity is growing. Chernobyl disaster is an example of turning a potential danger 
into a real one. 

Positive ecological impacts. Some scientific achievements (electronics, computers, 
automation, biotechnology, and space exploration) give an opportunity to reduce the total 
negative ecological impact of human activity. 

People interact with nature in substance, power and information aspects. The informa-
tion interaction inherent in modern technology is most ecologically advantageous. At this 
point, ecological role of computers should be emphasized because computers allow us to 
treat such inexhaustible resource as information. 

Thus, further development of technology can eliminate or reduce a part of its own 
negative ecological consequences. 

2.2. Goals of economic-ecological control 

In a broad sense the main goal of economic-ecological control consists of harmoniza-
tion of relations between human activity and natural environment, creation of propitious 
natural conditions for human existence, rational planning of biosphere. The following 
ecological strategies of relations between society and nature can be separated: 

- defensible (creation of various purification tools and constructions, development of 
captive technologies, and so on), 

- correlative (co-ordination between production and natural ecological processes), 
- strategy of technologization of natural processes (exploitation of natural processes 

as technological ones). 
Three main global ecological problems can be highlighted chronologically: 1. short-

age of food (it has always been very important); 2. exhaustion of natural resources (arose 
in the XIX century); 3. pollution of the environment (arose in the XX century). 

All usually considered applied ecological and environmental problems are a reflection 
of some of the above problems on the local or regional level. 

Interconnection and interlacing of ecological problems do not permit solving a par-
ticular problem without encountering others. Reducing one negative consequence entails, 
as a rule, increasing the others. Therefore, there is no sense in achieving a complete and 
final solution for a particular ecological problem. It is only worth speaking about work-
ing-out recommendations and techniques for shifting a whole complex of particular eco-
logical problems towards an optimal interrelation between man and the environment. Let 
us consider an example of the situation mentioned above. 

Example: Rational exploitation of an agricultural ecosystem: Getting the highest pos-
sible yield leads to the creation of artificial single-crop ecosystems. However, such man-
made biogeocoenosis are not as stable as the natural multi-species ones, they are more 
vulnerable to vermin, diseases and climatic conditions. To increase their stability it is 
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necessary to use pesticides. Ecosystems themselves develop towards maximal stability 
with minimal productivity, and any increase in their efficiency demands expenses. Thus, 
the goal should be achieving optimal productivity of an ecosystem rather than maximum 
one with taking into account economic expenses, instability and contamination of the eco-
system. 

On the whole, a decision choice in EES development requires co-coordinating differ-
ent control goals and achieving a compromise between them. People play a key role in 
achieving such compromise and can not be substituted by formalized methods (including 
mathematical ones). 

2.3. Components of economic-ecological control 

Any control system includes three basic functional components: measuring (moni-
toring), modeling and controlling components. These three parts are inseparably linked 
and can not work without each other. 

EES modeling and controlling tools become senseless without a developed measuring 
part. Environmental monitoring is the first and probably the most expensive part of the 
EES control. In the literature dedicated to economic-ecological control, principal atten-
tion is given to elaboration of monitoring systems. 

Environmental monitoring is a multipurpose information system for observation of the 
biosphere, assessment and forecast of its state, evaluation of human influence on the envi-
ronment, and bringing to light the factors and sources of such influence. It includes three 
levels: bioecological monitoring (observation of environmental state from the viewpoint 
of its influence on man), geoecological monitoring (observation of ecosystem's evolu-
tion), and monitoring of biosphere (observation and forecast of the change in the bio-
sphere on the whole). 

The system of monitoring can cover local regions (local monitoring) or whole coun-
tries (national monitoring). The concept of global monitoring (for the whole globe) is also 
meaningful. 

The concept of monitoring implies observation and prediction functions rather than 
decision-making. A more general concept is a decision-support (or control) system. It 
implies a complex of hardware, software, mathematical, information and organizational 
means intended for efficient management of an economic-environmental system under 
control. 

On the other hand, the absence of the modeling component turns an EES control sys-
tem into a kind of information system. It is necessary to emphasize the importance of 
mathematical modeling in a broad sense as a basis of EES control decision-support. 

Modeling of EES control has two aspects: 
- modeling of current state and forecast of ecosystem functioning, 
- modeling of control decisions themselves. 
These problems are solved by means of various theoretical and mathematical methods.  
Mathematical modeling of large-scale systems like economic-ecological systems is a 

complicated scientific and technical process. In this paper, we mainly limit our attention 
to the following two stages: SP (statement of a substantial problem) and MP (statement of 
a mathematical problem). 

Interaction between these stages is illustrated in the following scheme: 
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SP (substantial problem) ⇒ MP (mathematical problem) 
Description of system dynamics → Mathematical model of the system; 
Goals of control (and modeling) → Objective functional (criterion); 
Identification of current state → Initial (and boundary) conditions; 
Control influences → Sought-for model variables (controls); 
Given parameters → Given (known) model variables (characteristics). 

Note that the concept of mathematical model (MM) is not identical to the mathemati-
cal problem (MP). After a MM has been created, there is still a lot of work needed to 
analyze and select goals and constraints of the problem, given and desired characteristics 
of the process, and so on.  

The structure and basic characteristics of the mathematical problems (MP) applied to 
EES control are illustrated further in the study. 

3. MATHEMATICAL MODELS FOR MODELING EES 

At present, two tendencies can be pointed out in applied mathematical modeling: 
− The first tendency is to construct as simple models as possible and to attach them to 

initial data without a deep insight into the process investigated. Thus, linear equations 
have been used more and more widely. Such approach is rather popular in applied areas 
of modeling and gives good results in many cases. 

− The second tendency consists of the elaboration of mathematical models that reflect 
an internal structure of the systems under study in a complete manner, taking into account 
some delicate features. It leads, as a rule, to rather complicated mathematical problems. 
Such models are not always convenient for use in practice. Nevertheless, their elaboration 
reflects an internal logic of scientific development: improvement of both pure and applied 
mathematics would be impossible if new models were not created. 

Various mathematical tools are used in EES modeling, from linear algebraic equations 
to multicriteria optimization, fuzzy sets theory, expert methods, etc. A key adequacy crite-
rion for applied mathematical models is their successful approbation on real-life objects. 
This, however, does not depreciate the significance of their theoretical analysis and com-
parison with other alternative models. In this case the efficiency criteria of models are 
their capability to take into consideration different control factors and aspects of the proc-
ess under study. 

Real life often advances research of substantially new features of systems. In doing so, 
it is necessary either to develop new mathematical models or to modify considerably 
known models (often, by using a new mathematical apparatus). Such cases will be illus-
trated in the next parts of the book. 

Below, there are some notes about various types of mathematical models used in ap-
plied modeling. These notes are not exhaustive and reflect goals of the present mono-
graph. 

3.1. Deterministic and stochastic models 

Economic-ecological systems belong to complex systems with high dimensionality 
and uncertainty of relationships inherent in them. Nevertheless, the most widely used 
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models for description of general tendencies of the EES functioning and evolution are 
deterministic models rather than probabilistic (stochastic) ones. It is probably due to un-
justified complexity of mathematical description using stochastic factors without substan-
tial insight into interpretation of the essence of processes. Strictly speaking, deterministic 
models always operate with some averaging probabilistic performances of processes that 
take place in EES (the expected value of "population amount" instead of the real "popu-
lation amount", and so on). At least one can recommend restricting consideration within 
the deterministic models of EES at the initial stage of study of the subject. 

Stochastic (statistical) modeling is very useful for the analysis of repetitive processes. 
It requires a corresponding amount of initial data for the modeling (usually a large one). 
However, implementation of evolutionary processes in economics and ecology is often 
unique and is accompanied by a shortage of the data (especially, for large-size systems). 
This fact stresses the importance of construction of phenomenological models (i.e., based 
on substantial hypotheses) for evolutionary processes. Of course, a comprehensive analy-
sis (including statistical one) of all available information should be provided for such 
systems. 

3.2. Continuous and discrete models 

Depending on the techniques of process description, mathematical models are subdi-
vided into continuous and discrete models (which operate with continuous and discrete 
variables). 

Different types of data operated distinguish these models. The discrete models operate 
with vectors like x = (x1, x2,..., xn) ∈ Rn whereas the continuous models operate with 
functions x(t) of an independent continuous variable t (scalar or vector). Note that in dy-
namic models one of the independent variables usually means a time t defined on some 
interval t∈(t0,T). 

A general form of discrete models is 

 Fj(x1,x2,...,xn) = 0,  j=1,...,m, (1.1) 

where Fj(.) are some, in general, nonlinear functions of n scalar variables. 

A general form of continuous models is 

 Φ(x) = 0, (1.2) 

where Φ(.) is a functional of the function x(.). 
The functional is an operator putting a real value from R1 for each function x(.) from a 

certain functional space Ω. Some well-known examples of the functional spaces are: 
− C[a,b] - the space of all continuous functions defined on the interval [a,b]; 
− C1[a,b] - the space of all functions with a continuous derivative defined on the inter-

val [a,b]; 
− L∝[a,b] - the space of all functions defined and bounded almost everywhere on the 

interval [a,b]; and others. 

As a rule, a discrete analogue can be constructed for a known continuous model, and 
vice versa. For the most of continuous models of economic and ecological systems con-
sidered below, their discrete analogues are known and often used. The choice between 
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continuous and discrete models depends on model's capabilities in reflecting peculiarities 
of the problem and objects (processes) under investigation, as well as on the preferences 
of the researcher.  

3.3. Linear and nonlinear models 

The choice between linear and nonlinear models depends on the behavior of the proc-
ess under study or its desired approximation. Sometimes a process is nonlinear, but it is 
convenient to describe it by a linear model because of its greater simplicity. 

A linear discrete model is the following system of linear algebraic equations: 

 Σaijxj=bi,   i = 1,...,m, (1.3) 
or 
 Ax = b, (1.4) 

where x=(x1, x2, ..., xn)∈Rn,  b=(x1,x2 ,...,xm)∈Rm, and A = {aij} is a matrix of the dimen-
sion mx n. 

The model (1.3) is a convenient and completely investigated mathematical object. If 
m=n and the determinant detA≠0, then the system (1.3) has a unique solution x (under 
given A and b) that can be found by very fast algorithms. 

A general theory of nonlinear discrete equations does not exist, and solving a concrete 
system of nonlinear equations (1.1) often runs into great theoretical or numeric difficul-
ties. The solution may be non-unique or non-existent in general. 

A linear continuous model is the model (1.2) with a linear functional Φ(.), i.e. such 
that preserves the linear operations of addition and scalar multiplication for all elements 
x, y of the functional space Ω: 

Φ (x+y) = Φ(x) +Φ(y), Φ(ax)= aΦ(x),  for a∈R1. 

In nonlinear continuous models the functional Φ(.) is nonlinear. 

3.4. Differential and integral models 

Depending on the type of the functional Φ(.), differential and integral models are 
separated in the continuous models (1.2). 

Integral models are more general but differential models are simpler and more effi-
cient in analytical and numerical study, so they are more common. The general selection 
rule is: if a process can be efficiently described by a differential model with a required 
accuracy, there is no sense to construct and use an integral model. 

Integral models. Let us restrict ourselves to the case of a linear model and one-di-
mensional independent variable t. It is known that, in general case, any linear functional 
Φ(x) with respect to the function x(t), t∈[t0,T], can be described by the following integral 

Φ(x)= ∫ab K(r)x(r)dr,  

where K(r) is a given function. Then an integral model of a linear process can be de-
scribed as: 
 ∫a

b K(t,r)x(r)dr = f(t),  t∈[a,b], (1.5) 
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where f(t) is a given function. 

The formula (1.5) describes the Fredholm integral equation of the first kind with respect 
to the sought-for x(t), t∈[t0,T]. The Fredholm integral equation of the second kind is 

 x(t)=∫a
b K(t,r)x(r)dr + f(t),   t∈[a,b]. (1.6) 

After discretization by the variable t, the model (1.5) gives the equation (1.4). The 
analogy between continuous integral models and their discrete analogues (system of 
equations (1.3)) is very useful for better understanding and interpretation of a model. 
However, the theory of linear continuous models is much more complex compared to 
linear discrete models. In particular, a big difference exists between integral equations of 
the first and the second kind. 

If we consider a dynamical process, then its current state depends on the past states 
only (it cannot depend on the future) and, hence, K(t,r)=0 for r>t. In this case we obtain 
from (1.5) the following model: 

 ∫a
x K(t,r)x(r)dr = f(t),    t∈[a,b], (1.7) 

that determines the Volterra integral equation of the first kind with respect to the sought-
for x. The Volterra integral equation of the second kind is defined analogously to (1.6). 

Once again, despite the similarity between the Fredholm and Volterra equations, their 
properties are quite different. 

Differential models. They are represented by a functional connection between a 
sought-for function and some of its derivatives. Such models were first developed for the 
description of dynamical processes (i.e., processes developed in a time t). They describe a 
special class of such processes (non-spatial processes, processes without after-effect, 
dynamic processes) when the dynamics of future development depends on the current 
state of the process only. Such approximation appears to be good enough for many physi-
cal, mechanical, economic and other real processes. The reason is that various filial per-
turbations are quickly damped in real processes and may be secluded from a process 
model. 

The example: a trajectory of a thrown ball is usually determined by the ball mass and 
vector velocity and external conditions (wind, and other), however, a completely exact 
model of the ball dynamics has to take into account the ball size and shape (as well as the 
player's fingers position and so on). 

4. MODELS OF CONTROLLABLE DYNAMICAL SYSTEMS 

In this section, the emphasis is placed on the deterministic models of dynamical systems 
(DS) in continuous time t. We understand the notion of DC in a wide sense (as an inertial 
system, system with memory, etc.) rather than in its strong sense (as dynamic system). The 
traditional mathematical tools for such DS description are differential and integral equations. 

Here, the often-used term "control" is used in a pure mathematical sense and corresponds 
to "a control function" or "a set of control functions". 
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4.1. Differential models of DS 

Denote by u(t) and x(t) the input and output signals of DS respectively, where t is a 
time. Suppose that u=(u1,u2,...,um) is a m-dimensional vector and x=(x1,x2,...,xn) is a n-
dimensional one. Then the scheme of dynamical system (DS) is: 

Input  u(r),  r<t  ⇒   DS  ⇒  Output  x(t). 

Then a linear DC is described by the system of ordinary differential equations of first 
order: 
 dx/dt = A(t)x + G(t)u, (1.8) 

where A and G are the matrixes of corresponding dimensions, or by one of n-th order: 

 an(t)x(n)+...+a1(t)x(1)+a0(t)x = bm(t)u(m)+...+ b1(t)u(1)+b0(t)u. (1.9) 

If the parameters of DS are constant (stationary DS), then the coefficients of the mod-
els (1.8) and (1.9) do not depend on t (particularly, A(t)=A, G(t)=G). 

The exact analytical solution of the system (1.8) is of the form: 

 x(t) = Φ(t,t0)x(t0) + ∫tt0Φ(t,r)G(r)u(r)dr, (1.10) 

where the so-called transition matrix Φ(t,r) is defined by the differential equation: ∂Φ(t,r) 
/∂t=A(t)Φ(t,x), where Φ(t,r)=E is the identity matrix. 

Nonlinear DS is described by the system of nonlinear equations: 

 dx/dt = F(t, x, u), (1.11) 

where F is a n-dimensional function of n+m+1 variables t, x1, x2,..., xn, u1, u2,..., um. In 
most cases of nonlinear ODEs an exact solution can not be found and their solving re-
quires the use of approximate methods and computers. 

The modeling of pollution propagation in the environment requires accounting for 
space variables along with time t. Such problems are more complex and are described by 
means of partial differential equations.  

EES modeling often requires joint solving of a "pointed" problem of economic (tech-
nological) control described by ODEs and a space-distributed problem of pollution 
propagation prediction. 

4.2. Explicit integral models of DS 

The integral models assigning an explicit connection between DS input and output are 
traditionally used in automatic control theory. Thus, an arbitrary finite-dimensional linear 
DS is described by the integral model (IM) of the following form: 

 x(t) =∫ t-∞ K(t,r)u(r)dr, (1.12) 

where K(t,r) is termed the unit impulse response of DS. 

If function K(t,r) ≠ 0 for all t-r > 0, then DS is referred to as the DS with infinite 
memory.  
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In practice, the DS output x(t) depends on the input signals u(r) whose time instants r 
are distant from t at the most some time T>0, i.e. K(t,r)=0 for t-r>T. In this case we have 
the DS with finite memory which model is of the form: 

 x(t)=∫ tt-T  K(t,r)u(r)dr. (1.13) 

Such models are used for description of age structure of ecological populations. 
The integral models of DS take into account the after-effect (persistence, contagion, 

hereditary effects) when the continuous sequence of the DS past states u(r), r<t, influ-
ences on DS future evolution. These effects are not described by system of equations (for 
example, the solution of the system (1.9) depends on the initial DS state x(t0) only). The 
value T in the IM (1.13) is called the after-effect duration or the DS memory. 

An integral model of elastic persistence in the form (1.12) (where x - deformation, u - 
strain) was introduced by Boltzman in the XIX century. Vito Volterra developed the 
Boltzman theory and introduced the after-effect concept for other applications, specifi-
cally, in ecology. The after-effect is, in general, defined as an arbitrary nonlinear func-
tional of u(t), -∞<r≤t. 

Consider also the DS non-excited for t<0. Then u(r)≡0 at r<0 and the DS model is of 
the form: 
 x(t)=∫ t0 K(t,r)u(r)dr. (1.14) 

If DS is stationary, then its output x(t) depends only on the time for t-r after the input 
instant r: K(t,r) = K(t-r). Dynamics of the stationary DS is efficiently described by means 
of so-called transfer functions and DS natural frequency responses that represent respec-
tively the Fourier and Laplace transforms of the unit impulse response. In the case of no 
stationary DS this way runs into severe difficulties and the main characteristic of DS is the 
unit impulse response. 

The IMs (1.12)-(1.14) can describe invariable DSs as well as multivariable DSs - in 
the second case x(t) and u(r) are vector-functions and K(t,r) is a corresponding matrix 
function (see Section 1.4.1). 

The consideration of multidimensional DS corresponds to the passage from one-di-
mensional integrals to many-dimensional ones in the integral models (1.12)-(1.14). 

4.3. Implicit integral models 

Let us suppose that we know the structure of a DS and the characteristics of its ele-
ments. This usually happens to be the case for economic and technical systems. By the DS 
structure we mean a set of the connections among DS elements and their intensities. It is 
reasonable to define the structure connections of linear DS by their linear relation: 

 u(t) = Y(t)x(t)+u0(t). (1.15) 

If these connections are non-linear, then (1.15) defines them in a first approximation. 
The coupling types and intensities are determined by the matrix Y(t) = {yij(t)}. If yij(t)≠0, 
then there is the output i feedback in the DS (positive at yij(t)>0 and negative at yij(t)<0). 
If the DS has no active element (for example, in economics), then \ yij(t)\≤1 for all i,j. 
Different types of the DS structural connections can be described by choosing yij(t), in 
particular, parallel and series connections of DS elements. 
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Substituting the relation (1.15) into an explicit IM, for example into (1.14), we obtain 
the following implicit IM of linear DS: 

 x(t)=∫ t0 K(t,r)Y(r)x(r)dr + f0(t), (1.16) 

where f0(t)=∫ t00 K(t,r)u0(r)dr is the given DS input. 
From the explicit IM (1.12) we obtain the implicit IM (1.16) where f(t)= fo(t)+ϕ(t,0). 

Here the function ϕ(t,0) =∫0-∞ K(t,r)[Y(r)x(r)+ u0(r)]dr characterizes the influence of DS 
prehistory before instant t=0 on the output signal x(t) at current time t. 

The model (1.16) represents the system of Volterra integral equations of the second 
kind (VIEs) with respect to output x(t). These equations are transformed from the problem 
of the unite impulse response definition during the transfer from an explicit IM "input-
output" to the implicit model (1.12). If a certain part of output xi(t) is given and some 
elements yij(t) of matrix Y(t) are sought, then we obtain mixed systems of VIEs of the first 
and second kind. If the number of sought-for functions is greater than the number of the 
equations (1.16), than the problem may be closed by introducing an optimization criterion 
which means the transfer to an optimization problem (optimal control problem) for the IM 
(1.16). 

4.4. Integral models of DS with variable memory 

Let us denote by a(t) the lower integral limit in the integral models (1.12)-(1.14). Then 
we obtain the following uniform mathematical notation of these models: 

 x(t)=∫ ta(t) K(t,r)u(r)dt,      a(t)<t, (1.17) 
where a(t) = {-∞,t-T,0}. 

For no stationary DS the function a(t) may be an arbitrary: -∞<a(t)<t. Moreover, for 
economic applications this function can be an unknown (sought-for) control. Then the 
model (1.17) is referred as the IM with variable (or controllable) memory. 

Such models are used for the description of renovation processes in economic and 
economic-ecological systems. 

5. CONCLUSION 

In this paper, we would like to emphasize the similarity and basic characteristics of 
mathematical models that will be used for the description of various economic and eco-
logical processes and systems in the further investigation. Thus: the Verhulst-Pearl and 
Lotka-Volterra models describe ecological population dynamics and innovation proc-
esses; the evolutionary equation describes population age structure and equipment re-
placement in production systems; the diffusion equation describes individual migration 
and pollution propagation in air and water medium and propagation of technological in-
novations. 

In general, there is a deep analogy between biological and economic processes that is 
useful for the development of mathematical techniques in both these areas of modeling. 
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OSNOVNI MATEMATIČKI MODELI  
U EKONOMSKO-EKOLOŠKOJ KONTROLI 

Žarko Popović 

Ovaj rad je posvećen primenama opštih principa matematičkog modeliranja u nekim specifičnim 
oblastima ekonomsko-prirodnih interakcija. Za opis nekih ovakvih modela koristimo rezultate i 
algoritme iz [5] i [6]. U [7], [8] i [9] neki od ovih modela korišćeni su u analizi Pareto optimalnosti i 
eksternih efekata u ekologiji.  

Ključne reči:  ekonomsko-ekološki sistem, matematički modeli, deterministički i stohastički modeli, 
neprekidni i diskrene modeli, linearni i nelinearni modeli, diferencijalni i integralni 
modeli. 


