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A Point Source in the Presence of Spherical Material
Inhomogenity: Analysis of Two Approximate Closed Form

Solutions for Electrical Scalar Potential
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and Nenad N. Cvetkovíc

Abstract: A brief review of derivation of two groups of approximate closed form
expressions for the electrical scalar potential (ESP) Green’s functions that originate
from the current of the point ground electrode (PGE) in the presence of a spherical
ground inhomogenity, is presented in this paper.

The PGE is fed by a very low frequency periodic current through a thin isolated
conductor. One of approximate solutions is proposed in thispaper. Known exact so-
lutions that have parts in a form of infinite series sums are also given in this paper.
Here, the exact solution is solely reorganized in order to facilitate comparison to the
closed form solutions, and to estimate the error introducedby the approximate solu-
tions. Finally, error estimation is performed comparing the results for the electrical
scalar potential obtained applying the approximate expressions and accurate calcula-
tions. This is illustrated by numerous numerical experiments.

Keywords: Electrical scalar potential, Green’s function, point ground electrode,
spherical inhomogenity.

1 Introduction

PROBLEMS of potential fields related to the influence of spherical material in-
homogenities have a rather rich history of over 150 years in different fields

of mathematical physics. In the fields of electrostatic field, stationary and quasi-
stationary current field, and magnetic field of stationary currents, problems of a
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point source in the presence of a spherical material inhomogenity are gathered in
the book by Stratton (1941, [1]) and all later authors that have treated thismatter
quote this reference as the basic one. The authors of this paper will also consider
the results from [1] as referent ones.

The exact solution shown in [1, pp.201-205], related to the point chargein the
presence of the dielectric sphere, is obtained solving the Poisson, i.e. Laplace par-
tial differential equation expressed in the spherical coordinate system, using the
method of separation of variables. Unknown integration constants are obtained sat-
isfying boundary conditions for the electrical scalar potential continuity and normal
component of the electric displacement at the boundary of medium discontinuity,
i.e. on the dielectric sphere surface. The obtained general solution for the electrical
scalar potential, besides a number of closed form terms, also consists of a part in a
form of an infinite series sum that has to be numerically summed.

Among work of other authors that have dealt with this problem, the following
will be cited in this paper: Hannakam ( [2,3]), Reiß( [4]), Lindell et all. ([5–7]) and
Veličković ( [8,9]). The last cited ones, according to the authors of this paper, gave
an approximate closed form solution of the problem. This is also characterized in
this paper.

In paper [2], author, through detail analysis manages to express a part of a
general solution in a form of infinite sums by a class of integrals whose solutions
can not be given in a closed form, i.e. general solution of these integrals have to
be obtained numerically. In paper [4], the author considers a problem ofthis kind
with an aim to calculate the force on the point charge in the presence of a dielectric
sphere. In order to solve this problem, he uses the Kelvin’s inversion factor and
introduces a line charge image, which coincides with results from [2].

Starting with the general solution from [1], authors in [5] and [6], using dif-
ferent mathematical procedures, practically obtain the same solutions as in [2],
considering separately the case of a point charge outside the sphere ( [5]) and the
case of a point charge inside the sphere ( [6]).

In papers [8] and [9, pp. 97–98], the author deduces the closed form solution
for the electrical scalar potential of the point source in the presence of sphere inho-
mogenity in two steps. In the first one, the author assumes a part of the solution that
corresponds to images in the spherical mirror and approximately satisfies boundary
conditions on the sphere surface. In the second step, assumed solutionsare broad-
ened by infinite sums that approximately correspond to the ones that occur as an
exact general solution in [1], i.e. in other words, approximately satisfy theLaplace
partial differential equation. Afterwards, unknown constants under the sum symbol
are obtained satisfying the boundary condition of continuity of the normal compo-
nent of total current density on the sphere surface. These solutions enable summing
of infinite sums and presenting the general solution in a closed form. Well known
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mathematical tools from the Legendre polynomial theory were used for the sum-
ming procedure.

Finally, the author of this paper has, analysing problems of this kind ( [10]),
started from the general solution from [1] and, primarily, reorganized certain parts
in the following way. A number of terms that correspond to images in the spherical
mirror with unknown weight coefficients are singled out. Remaining parts of the
general solution are infinite sums whose general, n-th term presents a product of an
unknown integration constant, factored function of radial sphere coordinater−(n+1)

and rn, and the Legendre polynomial of the first kindPn(cosθ). Afterwards, all
unknown constants are determined satisfying mentioned boundary conditions, but
in such a way that the condition for the electrical scalar potential continuity is
completely satisfied, while the condition for the normal component of total current
density can be fulfilled approximately. Approximate satisfying of this boundary
condition is done in a way to sum a part of the general solution expressed by infinite
sums in a closed form. This technique is well known and was very successfully,
although under certain assumptions, used by many authors especially in the high
frequency domain. For example, one of them is explicitly considered in [11], and
one is implicitly given in [12] and [13].

Among five quoted solutions, three will be analyzed in this paper, i.e. the ac-
curate one from [1] as the referent one, approximate one from [8,9](which will be
characterized in detail since this was not done in [8,9]) and the second one, also an
approximate model, proposed in this paper ( [10]).

In the second section of the paper three groups of cited expressions for the ESP
distribution will be given with minimal remarks about their deduction. In this part
of the paper, general expressions for the evaluation of the ESP calculation error will
be also presented.

A part of numerical experiments whose results justify the use of approximate
solutions and also present the error level done along the way, will be presented in
the third section of the paper.

Finally, based on the presented theory and performed numerical experiments,
corresponding conclusion will be made and a list of used references willbe given.

2 Theoretical Background

2.1 Description of the Problem

Spherical inhomogenity of radiusrs is considered. Sphere domain is considered as
a linear, isotropic and homogenous semi-conducting medium of known electrical
parametersσs, εs andµs = µ0 (σs - specific conductivity,εs = ε0εrs - permittivity
and µs = µ0 - permeability). The remaining space is also a linear, isotropic and



268 P. D. Raňcić, et al.:

homogenous semi-conducting medium of known electrical parametersσ1, ε1 =
ε0εr1 andµ1 = µ0.

The spherical, i.e. Descartes’ coordinate systems with their origins placed in
the sphere centre are associated to the problem. At the arbitrary pointP′, defined by
the position vector~r ′ = r ′ẑ, a point current source is placed (so-called Point ground
electrode - PGE), and is fed through a thin isolated conductor by a periodiccurrent
of intensityIPGE and very low angular frequencyω , ω = 2π f .

The location of the PGE can be outside the sphere,r ′ ≥ rs, or inside of it,r ′ ≤ rs,
which also goes for the observed pointP defined by the vector~r, at which the
potential and quasi-stationary current and electrical field structure aredetermined,
i.e. for r ≥ rs the point is outside the sphere, and forr ≤ rs, inside of it.

In accordance with the last one, the electrical scalar potentialϕ..(~r), total cur-
rent density vector~J..(~r) and electrical field vector~E..(~r), will be denoted by two
indicesi, j = 1,s where the first one ”i” denotes the medium where the quantity
is determined, and the other one ”j” the medium where the PGE is located. For
example:ϕs1(~r) presents the potential calculated inside the sphere,r ≤ rs, when
the PGE is located outside the sphere,r ′ ≥ rs. Also, in order to systemize text and
ease its reading, the solutions that correspond to references [1], [8,9] and [10], will
be denoted in the exponent as follows: S–Stratton, V–Veličković and R-Raňcić,
respectively. For example:ϕS

11(~r) presents the solution for the potential according
to [1]–Stratton outside the sphere,r ≥ rs, when the PGE is located at pointP′ that
is also outside the sphere,r ′ ≥ rs.
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Fig. 1. The PGE outside the sphere.
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Fig. 2. The PGE inside the sphere.

Problem geometry is illustrated graphically in Figs. 1 and 2, where Fig. 1
corresponds to the case when the PGE is placed outside the sphere, while Fig. 2
refers to its location inside of the sphere. Images in the spherical mirror thatare
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singled out, i.e. pointsP′′ with corresponding position vector~r ′′ = r ′′ẑ, where
r ′′ = r2

s/r ′ is the Kelvin’s inversion factor of the spherical mirror, are also given
in figures. Distance from the PGE, pointP′, to the observed pointP is denoted by
r1, r1 =

√
r2 + r ′2−2rr ′ cosθ , and distance from the image in the spherical mirror,

pointP′′, to the pointP by r2, r2 =
√

r2 + r ′′2−2rr ′′ cosθ .
Finally, the following labels were used in the paper:σ i = σi + jωεi - complex

conductivity of thei-th medium,i = 1,s; ε ri = εri − jεii = εri − j60σiλ0 - complex
relative permittivity of thei-th medium,i = 1,s andλ0 - wave-length in the air;
γ

i
= (jωµ0σ i)

1/2 - complex propagation constant of thei-th medium,i = 1,s; ni j =
γ

i
/γ

j
, - complex refraction index of thei-th and thej-th medium,i = 1,s; andR1s,

T1s, Ts1 - quasi-stationary reflection and transmission coefficients defined by the
following expression:

R1s =
σ1−σs

σ1 +σs
=

n2
1s−1

n1s+1
= T1s−1 = −Rs1 = 1−Ts1.

The time factor exp(jωt) is omitted in all relations.

2.2 Exact ESP Solution According to [1]

2.2.1 Electrical scalar potential (ESP)

The ESP function for any position of the PGE must satisfy the Poisson, i.e. Laplace
partial differential equation, which are, in accordance with introduced labels for the
spherical coordinate system, as follows:

• The PGE outside the sphere,i = 1,s, r ′ ≥ rs, Fig. 1,

∆ϕi1 =
1
r2

∂
∂ r

(

r2 ∂ϕi1

∂ r

)

+
1

sinθ
∂

∂θ

(

sinθ
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∂θ

)

=

=







− IPGE

2πσ1

δ (r − r ′)δ (θ)

r2sinθ
, r ≥ rs

0, r ≤ rs;
(1)

• The PGE inside the sphere,i = 1,s, r ′ ≤ rs, Fig.2,
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1
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∂θ

(

sinθ
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0, r ≥ rs

− IPGE
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δ (r − r ′)δ (θ)

r2sinθ
, r ≤ rs;

(2)
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whereδ (r − r ′) andδ (θ) are Dirac’sδ –functions.
After differential equations, for example (1), are solved applying the method

of separation of variables, the unknown integration constants are determined so the
obtained solution satisfies the condition for the finite value of the potential at all
pointsr ∈ [0,∞], except at~r =~r ′. Remaining integration constants are determined
from the electrical scalar potential boundary condition,

ϕ11(r = rs,θ) = ϕs1(r = rs,θ), (3)

and the one for the normal component of the total current density on the disconti-
nuity surface, i.e,

σ1
∂ϕ11(r,θ)

∂ r

∣

∣

∣

r=rs

= σs
∂ϕs1(r,θ)

∂ r

∣

∣

∣

r=rs

. (4)

Finally, according to [1], the exact solution for the potential distribution, Sec-
tion 3.23, pp. 204, Eqs. (20)-(21), is for~r ≥~r ′:

ϕS
11(~r) =

IPGE

4πσ1

[ 1
r1

+
∞

∑
n=0

n(σ1−σs)

nσs+(n+1)σ1

r2n+1
s

r ′n+1

Pn(cosθ)

rn+1

]

, r ≥ rs, (5a)

ϕS
s1(~r) =

IPGE

4πσ1

∞

∑
n=0

(2n+1)σ1rn

nσs+(n+1)σ1

Pn(cosθ)

r ′n+1 , r ≤ rs, (5b)

wherePn(cosθ) is the Legendre polynomial of the first kind.
Keeping in mind the duality of electrostatic and quasi-stationary very low fre-

quency current fields, in relation to the solution from [1, Eqs. (20) and (21)]:

• Labels introduced in expressions (5a) and (5b) fit the described geometry and
used labels;

• q/ε2 is substituted byIPGE/σ1; and

• instead of permittivity, corresponding indexed complex conductivities are
used, i.e.σs instead ofε1, andσ1 instead ofε2.

When expressions (5a) and (5b) are reorganized in such a way so they can be
compared to approximate expressions, and additionally labelled by S-Stratton, the
following exact solution is obtained:

ϕS
11(~r) = Vs

[ rs

r1
+R1s

rs

r ′

( rs

r2
− rs

r

)

−

− R1sT1s

2

∞

∑
n=1

1
n+T1s/2

( r ′′

r

)n+1
Pn(cosθ)

]

, r ≥ rs,
(6a)



A Point Source in the Presence of Spherical Material Inhomogenity... 271

ϕS
s1(~r) = Vs

[

T1s
rs

r1
−R1s

rs

r ′
−

− R1sT1s

2
rs

r ′

∞

∑
n=1

1
n+T1s/2

( r
r ′

)n
Pn(cosθ)

]

, r ≤ rs,
(6b)

whereVs = IPGE/(4πσ1rs), andR1s, T1s are reflection and transmission coefficients,
respectively.

In the same way, final solutions for equations (2), forr ′ ≤ rs, that satisfy con-
ditions (3) and (4) are:

ϕS
1s(~r) = Vs

[

T1s
rs

r1
−R1s

rs

r
−

− R1sT1s

2
rs

r ′

∞

∑
n=1

1
n+T1s/2

( r ′

r

)n+1
Pn(cosθ)

]

, r ≥ rs,
(7a)

ϕS
ss(~r) = Vs

[T1s

Ts1

rs

r1
−R1s

T1s

Ts1

rs

r ′
rs

r2
−R1s−

− R1sT1s

2

∞

∑
n=1

1
n+T1s/2

( r
r ′′

)n
Pn(cosθ)

]

, r ≤ rs.
(7b)

Comment: The last two expressions are not explicitly given in [1], as (5a) and (5b).

2.2.2 Quasi-stationary electrical and current field structure

Once the potential distributions (6a)–(6b) and (7a)–(7b) are determined, the struc-
ture of the quasi-stationary field vectors are:

• Electrical field vector:

~Ei j
∼= −gradϕi j = −∂ϕi j

∂ r
r̂ − 1

r

∂ϕi j

∂θ
θ̂ , i, j = 1,s; (8)

• Total current density vector:

~J tot
i j = σ i

~Ei j , i, j = 1,s; (9)

• Conduction current density vector:

~Ji j = σi~Ei j , i, j = 1,s. (10)

2.3 ESP Solution According to [8] and [9, pp. 97-98]

The ESP solution proposed in [8] considers the following. Firstly, for the case
r ′ ≥ rs, solution is proposed in a form:

ϕ11
∼= IPGE

4πσ1

[ 1
r1

+C1
1
r2

+C2
1
r

]

, r ≥ rs, (11a)
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ϕs1
∼= IPGE

4πσ1

[

C3
1
r1

+C4

]

, r ≤ rs, (11b)

whereC1–C4 are unknown constants that are determined satisfying the condition
(3) and the one that the solution (11) is also valid for the case of a sphere with great
radius. This solution is identical to the first three terms of the exact solution (6a)
and the first two of (6b).

Since solution (11) obtained this way does not satisfy the boundary condition
(4), the author broadened solutions (11a) and (11b) with two infinite series of gen-
eral form:

∞

∑
n=1

C5n

( rs

r

)±n
Pn(cosθ), (12)

whereC5n are unknown constants, for ”+n” in (12) the Eq. (11a) is broadened and
Eq. (11b) for ”−n”. Unknown constantsC5n are determined using the condition
(4), having the ESP final solution:

ϕV
11(~r) ∼= Vs

[ rs

r1
+R1s

rs

r ′

( rs

r2
− rs

r

)

+

+
R1sT1s

2

( rs

r ′

)

ln
r − r ′′ cosθ + r2

2r

]

, r ≥ rs,

(13a)

ϕV
s1(~r) ∼= Vs

[

T1s
rs

r1
−R1s

rs

r ′
+

+
R1sT1s

2

( rs

r ′

)

ln
r ′− r cosθ + r1

2r ′

]

, r ≤ rs.

(13b)

Label V–Velǐcković in the exponent denotes that solutions (13a) and (13b) cor-
respond to the ones from [8], andVs is previously introduced constant that appears
also in (6a) and (6b).

It should be noted that the introduced extension (12) for ”+n”, approximately
satisfies the general solution of the Laplace equation, i.e. Eq. (5a), where rs/r is
factored byn+1.

Similarly, the solutions for the potential when, i.e. the PGE is located inside
the sphere, are also given in [8]. The solutions are as follows:

ϕV
1s(~r) ∼= Vs

[

T1s
rs

r1
−R1s

rs

r
+

+
R1sT1s

2
ln

r − r ′ cosθ + r1

2r

]

, r ≥ rs,

(14a)

ϕV
ss(~r) ∼= Vs

[T1s

Ts1

rs

r1
−R1s

T1s

Ts1

rs

r ′
rs

r2
−R1s+

+
R1sT1s

2
ln

r ′′− r cosθ + r2

2r ′′

]

, r ≤ rs.

(14b)
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2.4 ESP Solution Proposed in this Paper [10]

If the general solution from [1] is reorganized under the sum symbol intoa form
that is forr ′ ≥ rs given by Eqs. (6a) and (6b), the following is obtained:

ϕ11(~r) =
IPGE

4πσ1

[ 1
r1

+C1
rs

r ′
1
r2

+B0
rs

r
+

∞

∑
n=1

Bn

( rs

r

)n+1
Pn(cosθ)

]

, r ≥ rs, (15a)

ϕs1(~r) =
IPGE

4πσ1

[

D1
1
r1

+A0 +
∞

∑
n=1

An

( r
rs

)n
Pn(cosθ)

]

, r ≤ rs, (15b)

whereC1, D1, Bn andAn, n = 0,1, . . ., are unknown constants. Starting from the
boundary condition (3) we have 1+C1 = D1 andBn = An, n = 0,1, . . .. The other
boundary condition givesC1 = R1s, soD1 = T1s. If the condition (4) is approxi-
mately satisfied, we also haveA0 = B0 = −R1s/r ′, and constantsBn, n = 1,2, . . .,
related to (4) are determined from the condition

−R1sT1s

2r ′

∞

∑
n=1

( rs

r ′

)n
Pn(cosθ) =

∞

∑
n=1

nBnPn(cosθ). (16)

In Eq.(4) remains a term in a form of a sum, i.e. the error ”e” of satisfying the
boundary condition (4) for the radial component of total current density is

e{J tot
11r} =

IPGE

4πrs

∞

∑
n=1

BnPn(cosθ) =

= −σ1Vs
R1sT1s

2r ′

∞

∑
n=1

1
n

( rs

r ′

)n
Pn(cosθ) =

= σ1Vs
R1sT1s

2r ′
ln

r ′− rscosθ + r1s

2r ′
,

wherer1s is r1 for r = rs, andBn, n = 1,2, . . ., from (16).
If we substitute the solution for,Bn = An, n = 0,1, . . ., from (16) into (15a) and

(15b) and using known tools from the Legendre polynomial theory, we have:

ϕR
11(~r) ∼= Vs

[ rs

r1
+R1s

rs

r ′

( rs

r2
− rs

r

)

+

+
R1sT1s

2

( rs

r ′

)( rs

r

)

ln
r − r ′′ cosθ + r2

2r

]

, r ≥ rs,

(17a)

ϕR
s1(~r) ∼= Vs

[

T1s
rs

r1
−R1s

rs

r ′
+

+
R1sT1s

2

( rs

r ′

)

ln
r ′− r cosθ + r1

2r ′

]

, r ≤ rs.

(17b)
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The ESP solution whenr ′ ≤ rs is obtained in a similar way. After obtaining the
unknown constants, satisfying the condition (3) and approximately satisfying the
condition (4), we have:

ϕR
1s(~r) ∼= Vs

[

T1s
rs

r1
−R1s

rs

r
+

+
R1sT1s

2

( rs

r

)

ln
r − r ′ cosθ + r1

2r

]

, r ≥ rs,

(18a)

ϕR
ss(~r) ∼= Vs

[T1s

Ts1

rs

r1
−R1s

T1s

Ts1

rs

r ′
rs

r2
−R1s+

+
R1sT1s

2
ln

r ′′− r cosθ + r2

2r ′′

]

, r ≤ rs.

(18b)

2.5 Analysis of the Presented ESP Solutions

• In contrast to the exact solution [1], both approximate ones have a closed
form.

• Obtained approximate solutions (17a) and (17b) are very similar to (13a) and
(13b). The only difference is between Eqs. (13a) and (17a) in factorrs/r that
factors the Ln-function. The same respectively goes for solutions (18a) and
(18b) when compared to approximate ones (14a) and (14b).

• Solutions (13a) and (13b) satisfy boundary conditions (3) and (4), but do
not have a general solution forr ≥ rs that follows from the solution for the
Poisson, i.e. Laplace equation [1]. The same goes for (14a) and (14b). A so-
lution to one technical problem of this kind, solved applying this “V” model,
is given in [14] and [15].

• Solutions (17a) and (17b) satisfy the general solution for the Poisson, i.e.
Laplace partial differential equation, satisfy boundary condition (3), and ap-
proximately satisfy boundary condition (4). The same goes for solutions
given by (18a) and (18b).

• Expressions (17)–(18) can be also obtained starting from the accurateones
(6)–(7) under a conditionn1s << 1. In that case, the addendT1s/2 in the
denominator under the sum symbol is|T1s/2| = |n2

1s/(1+ n2
1s)| << 1, so, it

can be neglected in relation to the sum indexn ≥ 1. For example, the sum
term in (6a) is then approximately

−
∞

∑
n=1

1
n

( r ′′

r

)n+1
Pn(cosθ) =

r ′′

r
ln

r − r ′′ cosθ + r2

2r
,

and consequently the expression (6a) becomes identical to (17a). Similarly,
we obtain remaining expressions (17b), (18a) and (18b). Accordance of the
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results obtained applying the approximate model “R” and the exact one “S”
is better for all values of the refraction coefficientn1s < 1, then for the case
of n1s > 1. This can be easily concluded analysing given expressions “S” and
“R”. This conclusion is also confirmed by numerical experiments.

2.6 Error Estimation Using the Approximate Expressions for the ESP

All the ESP expressions, accurate ones (6a), (6b), (7a) and (7b) according to [1],
approximate ones (13a), (13b), (14a) and (14b) according to [8] and [9] and ap-
proximate ones according to R-model proposed in this paper [10, 16, 17], evolved
towards the same form so they could be directly compared. Firstly, the terms that
associate to spherical mirror imaging are singled out, and they correspondto images
with weight coefficients multiplied by quasi-stationary reflectionR1s, or transmis-
sionT1s, coefficients. Remaining part of the solution is an infinite sum in the case
of the exact solution, and in the case of approximate ones, a closed form expressed
by Ln-functions.

Error estimation of the ESP calculation is done according to the general expres-
sion:

δQ = 100
∣

∣

∣

ϕS
i j (~r)−ϕQ

i j (~r)

ϕS
i j (~r)

∣

∣

∣
, in [%], (19)

wherei, j = 1,sandQ = V,R.
Relative error estimation of satisfying boundary condition (4) can be evaluated

according to the following expression:

δJ = 100
∣

∣

∣

e{J tot
11r}

−σ1∂ϕs
11/∂ r

∣

∣

∣

r=rs

, in [%]. (20)

3 Numerical Results

Based on presented ESP expressions a number of numerical experimentswere per-
formed in order to establish the validity of the proposed approximate solutions
compared to exact ESP calculations using expressions (6)-(7) according to [1].

The results presented graphically in the figures that follow will be denoted as:

• S-model, Eqs. (6)-(7), ref. [1];

• V-model, Eqs. (13)-(14), ref. [8,9]; and

• R-model, Eqs. (17)-(18), i.e. the ESP model proposed in this paper.

The first group of numerical results deals with the electrostatic problem of the
point charge (PCh) in the presence of the spherical dielectric inhomogenity. In
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Fig. 3. Point charge inside dielectric sphere. Normalized ESP and corresponding relative error versus
radial distancer for different values of angleθ and relative permittivityεrs taken as parameters.

this case,εi = ε0εri , i = 1,s, should replaceσ i in all the expressions, havingVs =
Q/(4πε1rs) andp1s = ε1/εs. Normalized ESP (R–model, solid line) versus radial
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Fig. 3. Continue. Point charge inside dielectric sphere. Normalized ESP and corresponding relative
error versus radial distancer for different values of angleθ and relative permittivityεrs taken as
parameters.

distancer for different values of angleθ = 0o,5o,45o and 90o, and different values
of relative permittivityεrs = 1,1.5,2,3,5,10,20,36,80 and 1000 as parameters, are
given in the left column of the Fig. 3. (the PCh inside the sphere:r ′ = 0.7rs).
For the sake of comparing, the exact normalized ESP values according to S–model

Fig. 4. Point charge outside dielectric sphere. Normalized ESP and corresponding relative error
versus radial distancer for different values of angleθ and relative permittivityεrs taken as parameters.

(solid circle) are presented in the same figures. Corresponding relativeerror δ in
[%], calculated for both R– and V– models is presented in the right column of
Fig. 3. Normalized ESP (R- and S-models) and corresponding relative errors (R-
and V-models) for the case ofr ′ = 1.5rs are presented in Fig. 4 (the PCh outside
the sphere).

The second group of numerical experiments consider the quasi-stationary field,



278 P. D. Raňcić, et al.:

Fig. 4. Continue: Point charge outside dielectric sphere. Normalized ESPand corresponding relative
error versus radial distancer for different values of angleθ and relative permittivityεrs taken as
parameters.
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Fig. 5. The PGE inside the sphere. Normalized ESP,ϕis/Vs, i = 1,s, and corresponding relative errors
versus radial distance, for different values of geometry parameters and relationp1s = σ1/σs taken as
parameters.

i.e. the case of the semi-conducting spherical inhomogenity and the PGE fed by
the VLF current,f = 50Hz. The ESP is calculated as a function ofr, and angle
θ = 0o,45o and ratiop1s = σ1/σs = 0.1,10, are taken as parameters. The rest of
system parameters are given in figures. For the sake of comparing, the ESP values
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Fig. 5. Continue: The PGE inside the sphere. Normalized ESP,ϕis/Vs, i = 1,s, and corresponding
relative errors versus radial distance, for different values of geometry parameters and relationp1s =
σ1/σs taken as parameters.

obtained applying the R–, S– and V–models are presented in the same figures.
For each example, relative errorsδ in [%], done using the approximate models
are also calculated. The results for the case of the PGE placed inside the sphere,
r ′ = 0.9rs, are presented in Fig. 5, and in Fig. 6 the results for the case of the PGE
placed outside the sphere,r ′ = 1.1rs. Based on graphically illustrated results

Fig. 6. The PGE outside the sphere. Normalized ESP,ϕis/Vs, i = 1,s, and corresponding relative
errors versus radial distance, for different values of geometry parameters and relationp1s = σ1/σs

taken as parameters.

one can conclude that the relative error for the R–model is alwaysδ < 1% when
the refraction index isn1s < 1. For the other case,n1s > 1, the maximal error is
δ < 15%, but only for the worst case, i.e. when the field point P is on the sphere
surface,r = rs. This conclusion does not apply to the V–model, i.e. the errorδ is
for certain parameters in a wide range of radial distancer greater than 30% (see
Figs. 5 and 6).
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Fig. 6. Continue: The PGE outside the sphere. Normalized ESP,ϕis/Vs, i = 1,s, and corresponding
relative errors versus radial distance, for different values of geometry parameters and relationp1s =
σ1/σs taken as parameters.

Relative error (expressed in %) of the ESP calculation at points on the surface
of spherical discontinuity when the PGE is placed outside i.e. inside the sphere, for
different ratiop1s = σ1/σs, is presented in Fig. 7.

Large values of relative error correspond to the points where the potential is of
small value.
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Fig. 7. The relative error of ESP calculation on the sphere surface versus the spherical coordinateθ
wherep1s = 10 andp1s = 0.1.

4 Conclusion

A new approximate solution for the Green’s function of the ESP that originates
from the PGE current in the presence of a spherical ground inhomogenity, when
the PGE is fed by a VLF current through a thin isolated ground conductor,was
proposed in this paper. The obtained solution is compared to the exact one from [1,
pp. 201–205] and also, according to author’s opinion, to the approximatesolution
from [8] and [9, pp. 97-98].

This conclusion (regarding the V-model) is theoretically explained and numeri-
cally verified in this paper. Both approximate solutions are in a closed form, which
is not the case for the exact one according to [1].

Based on numerical experiments, one can conclude that using the proposed
approximate solution, smaller error in the ESP evaluation is then done when the
approximate solution from [8] and [9] is used, where the error is estimated inre-
lation to the exact solution from [1]. This is also evident analysing the presented
ESP expressions. The error is almost negligible in special cases, e.g. when the
refraction coefficient isn1s < 1.

Based on everything that was presented, one can conclude that the proposed
solution can be successfully used for modelling grounding characteristicsin the
presence of a spherical and also semi-spherical ground inhomogenity,but also for
other problems of this kind.

The proposed approximate R-model can be also applied to derivation of ex-
pressions for the Green’s function of electrical dipole in the presence of a spherical
material inhomogenity and also to other problems of this kind.
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[12] P. D. Raňcić and M. I. Kitanovíc, “A new model for analysis of vertical asymmet-
rical linear antenna above a lossy half-space,”Int. J. Electron.Commun. Archiv für
Elektrotechnik, vol. 51, no. 3, pp. 155–162, 1997, (in German).
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