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Enhancement of the Perceptive Quality of the Noisy
Speech Signal by Using of DFF-FBC Algorithm

Zoran N. Milivojevi ¢ and DragiSa Z. Balaneskovt

Abstract: This paper presents an algorithm for enhancement of thg sp&ech sig-
nal quality. This algorithm is based on the dissonant frequdiltering (DFF), F#, B
and C# in relation to the frequency of the primary tone C (IFMB€ algorithm). By
means of the subjective Mean Opinion Score (MOS) test, teetedf the enhance-
ment of the speech signal quality was analyzed. The analy#ie MOS test results,
presented in the second part of this paper, points out torthareeement of the noisy
speech signal quality in the presence of superimposedsidispecially good results
have been found with Husky Voice signal.

Keywords: Fundamental frequency estimation, dissonant frequepegch quality
enhancement.

1 Introduction

PERIMPOSINGOf an acoustic background noise (Babble noise, Car noise, Fac-
tory noise, Computer fan noise, acoustic echo, ...) leads to deterioratiom of th
speech signal quality which is, among the rest, manifesting as decreasimg of
telligibility [1-3]. The speech signal with superimposed acoustic disturbansie
transmited by means of communication lines, so that on the receptive sideldegra
ing may appear so exsessively that the reproduced speech becamtedligible
or rather unpleasant. In addition to the acoustic disturbancies, on thei@tad
transferring of speech by communication lines, speech degradationseccay
the appearance of an echo. A number of algorithms have been devélaged on
compensation, i.e. echo decreasing [4-6].
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In speech signal processing for the purpose of signal compressingell as in
systems for speech identification, the superimposed acoustic noise cabkjake-
grades performances of the processing algorithm. In order to improf@paces
of the processing algorithm it is necessary to do preprocessing of éleelsgignal
to decrease the noise components. Enhancement of the speech sajitaligja
actual problem and a great number of algorithms have been develojggditims
can be classified into three groups:

a) speech enhancement algorithms based on the short-time spectral estimation
such as the spectrum subtraction ( [7, 8]) and Wiener ( [9]) filtering-tech
nigues,

b) comb filtering and adaptive noise canceling techniques which exploit the
guasi-periodic nature of the speech signal [10], and

c) algorithms that are based on the statistical model of the speech signal and
use hidden Markov model (HMM) or expectation and maximization (EM)
for speech enhancement [11, 12].

The completely new speech enhancement algorithm for filtering of dissonan
frequencies is presented in [13]. This algorithm is based on speed pigrwess-
ing in the spectral domain: a) determining of fundamental frequency afiltieln)
ing of dissonant frequency in relation to the fundamental frequency octdlves.
Filtered are dissonant frequencies which in relation to the fundamentpleney
stand as the tone F# in relation to the tone C. F# is known in music as the Devil's
interval [14]. The results, based on the application of Mean OpinioneS&OS)
test, show that the proposed method provides a significant gain in audiblevieapr
ment especially for speech contaminated by Gaussian noise and a Husky Vo

In [15] the authors broaden the activity range of the algorithm deschibd3]
by increasing the number of the filtered dissonant frequencies (B amd feta-
tion to C). The subjective test results indicated that the proposed methodrddli
improvements in terms of both speech intelligibility and perceived quality when
compared with the unprocessed case. Therefore when the filter is emh@leyae
prefilter for speech enhancement, the output speech quality is morecexdhaer-
ceptually.

The efficiency of the algorithms described in [13, 15] depends of hewigpely
the speech signal fundamental frequency is estimated. A number of afgsrith
were developed for determination of the fundamental frequency wheradilysis
is performed in the time and frequency domain [16, 17]. The frequentliieabp
method for determination of the fundamental frequency is based on th@ngeak
peaks of the amplitude characteristic in the specific frequency rangenietied
is used for analyzing of the signal values in the spectrum on frequencieich
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the Discrete Fourier Transform (DFT) was calculated. Most often thlevedue of

the fundamental frequency is not there on the frequencies where Rialkcidated,

but lies between the two spectrum samples. That causes the frequénwties
error that lies in the intervaHFs/(2N) Hz, Fs/(2N) Hz], whereFs is the sampling
frequency andN is the DFT window size. One way of reducing the error is determi-
nation of the interpolation function and estimation of the spectrum charactgristic
in an interval between the two samples. This procedure gives the raoctistr

of the spectrum on the base of DFT. The spectrum parameters are teemided

by analytic procedures (differentiation, integration, extreme values..l¢ul@ton

of the interpolation function by using of Parametric Cubic Convolution (PC&) w
represented in [18]. The detailed analysis of the fundamental freglestitna-
tion, as well as the advantage of the PCC interpolation, which can be seemn in th
speed of determining of the interpolation function parameters, is descrilibd in
paper [19]. The results of the application of PCC interpolation for deterigiofn
the fundamental frequency in the conditions of application of some windowein th
processing of the discrete speech signal, are presented in [20].

This paper presents an algorithm for noisy speech signal quality esimamt
based on the filtering of three dissonant frequencies and their harmordesen
octaves of audio range. The proposed algorithm is based on the algdaguribed
in [13] and [15] and represents broadening of the activity rangeomtrast to the
algorithm from [13], where one dissonant frequency which in relatiotiéofun-
damental frequencif stands as the tone F# in relation to C was filtered and the
algorithm from [15], where two dissonant frequencies which in relatichedun-
damental frequencly stand as tones F# and B in relation to C were filtered, we
have specified one more dissonant frequency which in relation to tharfuemtal
frequency stands as the tone C# in relation to C. The filtering algorithm proposed
in this paper includes dissonant frequencies which in relation to the fundame
frequency stand as the tones F#, B and C# in relation to C. The efficidrthg o
proposed algorithm was tested by processing of speech signals whkicuper-
imposed by: a) White Gaussian Noise (WGN), b) Computer Fan Noise, ¢)i&ab
Noise, d) Car Noise, and e) Husky Voice (clean speech for Male amaIgg.

The paper is organized as follows: Section 2 presents a musicologicatidefi
of dissonant frequencies. Section 3 presents algorithms for dissbregaency
filtering. The MOS test results performed on the filtered speech signal wttrs
imposed noises, are presented in Section 4. The analysis of the MOSstd i®
performed in Section 5. Concluding remarks are given in Section 6.
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2 Musicologic Definition of Dissonant Frequencies

The theory of music defines the fundamental features of the soundrag)aiy b)
intensity and cxolor. The expressionolor applies to the sound in a metaphorical
way, which points out to the complexity of this feature of the sound. Thecsour
of a sound generates a sound with the fundamental frequency (the ptona) as
well as the overtones (aliquoties in relation to the primary tone). Differemiusu

of the present aliquotiedaf. aliquoties - several times) and their various relative
intensity within the total sounding, determine the color of a sound.

The frequency of the musically defined tones in relation to the primary tone in
an interval of one octave is determined by:

Fo=Fp-2%, k=01,..12 (1)

whereF is the frequency of the primary tone afgd the frequency of thé-th
halftone. In relation to the primary tone, the halftones form intervals. Anvater

is defined by the relation of the frequency of a halftone and the frequeiihe
primary tone. Fractionby/Fo, for k=0,1,...,12, which present individual intervals
(1/1, 135/128, 9/8, 6/5, 5/4, 4/3, 45/32, 3/2, 8/5, 27/16, 9/5, 15/8, 2Hemt
approximation of the real value (Eq.1). Interval classification accortbnipeir
sounding is realized on the base of the fraction it describes it. If the fraiio
simpler, the interval, as an ackord of tones, more stable, i.e. more conshitiaa
fraction is more complex, stability of the interval is smaller, so that dissonance is
greater.

Consonace and dissonance are not sharply delimited but make togedf-on
ferentiated scale, from total stability on one end of the scale to total instability on
the other end. Within the scale we distinguish: a) perfect (complete) caocesn
(prima (1/1), octave (2/1), quinta (3/2) and quarta (4/3)), b) unpeffiecomplete)
consonaces (big tierce (5/4), big sixth (5/3), small tierce (6/5) and sml(§if5)),
c¢) unperfect (incomplete) disonaces (small seventh (9/5) and big ¢€8(8) and
d) perfect (complete) disonances (small second (135/138), threebomxcessive
guarta (45/32) and big seventh (15/8). From the view-point of expegigre. per-
ception of the sound, the musical interval is defined as being consotlaasibund
is pelasant or restful. The musical interval is dissonant to a great étieatsound
is unpleasant or rough.

In relation to the primary tone, half tones frequencies, which together with
the primary tome make consonances in all octaves within the audible range, are
defined:

Fi=F- 2" n=0,1..7; k={1611}, )

whereF, is the frequency of the primary tone,is the number of the octave and
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k is the number of half tones in individual octaves. Considering the tone Geas th
referent one, i.e as the primary tone, then its dissonant half tones ateaBdFC#
as well as their harmonics in all the octaves.

3 Filtering of Dissonant Frequencies

The speech is created by excitation of the vocal tract of a man [21]. rAicap
to the analogy of the speech signal with the musicological definition of thedsoun
there can be established the correspondence of the primary tone anurdpréaie
half tones an aligotes, with the fundamental frequelRcpand accompanying fre-
quencies of the speech signal. Hereby it is possible to define dissoaquéhcies
in relation toky.

In [13] we find a description of an algorithm for speech signal enhaecé: by
filtering of dissonant frequencies. This algorithm consists of the followtegs:
a) division of the speech signal into sequences whose lendthaizd calculation
of FFT for every sequence, b) determining of the fundamental frexyuEs) c)
determining of the dissonant frequegyin relation to the fundamental frequency
Fo (according to the relation C to F#), d filtering of the dissonant frequeracids
e) generating of the speech signal sequence by using of IFFT. Jafl&lgorithm
for the speech signal enhancement is described which was obtainedauehing
of the activity range of the algorithm from [13]. Broadening of the algonitiefers
to eliminating od dissonant tones F# and B in relation to C.

Further in this paper it is presented an algorithm (Figure 1) for dissdrant
guency filtering (DFF), F#, B and C# in relation to the frequency of the pgma
tone C. DFF-FBC algorithm is based on the algorithms from [13, 15]. DBE-F
algorithm consists of the following steps:

Sep 1. Speech signal division into sequences of lengtand determining of
FFT for each sequence,

Sep 2: Estimation of the fundamental frequengyby using of PCC,

Sep 3: Determining of the dissonant frequeniy,, Fq» andFys in relation to
the fundamental frequendy (according to relation of the tone C to F# and B to
C#) as:

Far=Fo-2"%, n=0,1,..7, (3)
Fao=Fo- 2", n=0,1,..7, )
Fao=Fo-2"%, n=0,1,..7, ©)

Sep 4: Filtering of the dissonant frequencies from the range (which cooredpto
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the half tone):

Fo-22 < Fyy < Fp- 22, n=1,2,..7, (6)
Fo- 2% < Fyp < Fp- 2%, n=2,3,...,7, @)
Fo- 2" < Fyg< Fp- 2", n=2,3,....7, (8)

Sep 5: Generating of the time sequence of the speech signal by using of IFFT.

Input FFT

speech signal

A 4

Fundamental Frequency Estimation
(FO)

Y

Dissonant Frequency Filtering
(Fd1, Fd2, Fd3)

v Output
speech signal

IFFT

Fig. 1. The algorithm for speech signal processing by filtering of theodest frequencies.

4 Experimental Results

For the testing of the effect of DFF-FBC algorithm to the perceptive cbariatics
of the speech signal and for the comparative analysis with the resulteetlsp
signal processing by algorithms from [13, 15] the file bases of spegohls were
formed according to the bases from [15] and the subjective MOS tespemas
formed.

4.1 Speech database

The database for performance evaluation consists of 14 speech fitataxhfrom
7 speakers (5 males and 2 fe-males), each one delivering 2 SerbianceEn Also
we obtained 6 Husky Voice files from 3 speakers (2 males and 1 femalehawso
worse quality than normal speakers. All utterances were sampled at\Bikiig bit
resolution. Speech input is windowed by 256-point Hanning window attied
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with 256 point zeroes. Hanning window is halfoverlapped 256 point wincar-
responds to 32 ms in which speech is considered to be stationary. Theypesd
of noises are adequate to noises from [15] (White Gaussian noise|eBadilke,
Car noise, Computer Fan noise). In our experiments we used a wideSaliRye0,

5, 10, 15, 20 dB. Special attention in this experiment was paid to babble noise
(i.e. the summed waveform of several simultaneous talkers). The spgeehfsr
communication is often formed in an environment where a number of spesieers
active. Babble is often used as a masker in studies of everyday spereepion in
noise. However, the masking effect of Babble is heavily dependenteonuimber
(N) of simultaneous talkers in the mixture [22]. Single-talker maskideslj and
speech-shaped noi§ = «) are the extremes of the babble continuum. In [1] they
suggest that babble is a more effective masker than speech-shaped Imothis
paper an analysis was performed for at SNR=0,5,10,15,20 dB. Carmeciseied
inside a car moving approximately at a speed of 90 km/h. Because of anaineq
energy distribution in the babble noise spectrum, car noise and computeraneis
classified into a group of colored noise [3].

4.2 MOS test

The quality of the reproduced speech was tested by the subjective Maaini©
Score (MOS) test. Twenty listeners participated in this test. The listeners were
sitting comfortably in a quiet room and listening to sentences played randomly.
Then the listeners on the base of their individual experience of the qualitg ara
evaluation in range from 1 (very bad) to 5 (excellent). The results of M€&3Gare
presented in Table 1 (White Gaussian noise), Table 2 (Computer Fan,Aailsk) 3

(Car noise), Table 4 (Babble noise) i Table 5 (Husky Voice). In the sableresults

of MOS tests are presented for: a) the unprocessed speech sigdalfeb), b) the
speech signal with eliminated F# intervals (M&@S(the algorithm from [13]), c)

the speech signal with eliminated F# and B intervals (Mg&¥y(the algorithm from
[15]) and d) the speech signal with eliminated F#, B and C# intervals (M£2%
(DFF-FBC algorithm proposed in this paper).

Table 1. MOS test results for speech signal with superimposed Whitesfaaumise.

SNR[dB] | MOSyp | MOSgy | MOSggg | MOSkgpc#
0 1.85 1.98 2.02 2.03
5 2.64 2.81 2.83 2.84
10 2.88 3.06 3.11 3.13
15 3.05 3.24 3.31 3.33
20 3.89 4.03 4.07 4.08
Clean Speechy 4.8 4.85 4.89 4.9
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Table 2. MOS test results for speech signal with superimposed Confarnevoise.

SNR [dB] | Unprocessed F# | F#,B | F#,B,C#
0 1.93 2.04 | 2.06 2.09
5 2.34 247 | 251 2.53
10 2.78 294 | 291 3.01
15 2.96 3.12 | 3.16 3.19
20 3.16 3.33 | 3.37 3.41

Table 3. MOS test results for speech signal with superimposed Car.Noise

SNR [dB] | Unprocessed F# | F#,B | F#,B,C#
0 1.87 2.05| 2.09 2.10
5 2.21 241 | 2.44 2.48
10 2.89 3.13 | 3.17 3.21
15 2.93 3.10| 3.14 3.17
20 3.05 3.20| 3.22 3.25

Table 4. MOS test results for speech signal with superimposed Bablse.No

SNR[dB] | N | Unprocessed F# | F#B | F#,B,C#
0 1 2.67 2.84 | 2.86 2.87
4 2.65 2.82| 2.84 2.85
8 2.64 2.80 | 2.82 2.84
5 1 2.74 2.87 | 2.89 2.90
4 2.71 2.88 | 2.90 291
8 2.69 2.86 | 2.88 2.89
10 1 2.83 3.00 | 3.03 3.04
4 2.82 2.99 | 3.02 3.03
8 2.79 2.96 | 2.98 2.99
15 1 2.86 3.03 | 3.06 3.07
4 2.82 299 | 3.01 3.03
8 2.81 3.98 | 3.00 3.01
20 1 2.98 3.15| 3.16 3.18
4 2.96 3.13| 3.14 3.16
8 2.95 3.11| 3.13 3.15

Table 5. MOS test results for Husky Noise.
Unprocessed F# | F#,B | F#,B,C#

Male 2.82 3.18| 3.32 3.34
Female 2.86 3.16| 3.25 3.26

For the purpose of a comparative analysis of the algorithms’ effect on the
speech signal quality, calculations were made for the percentage indseofen
MOS test values processefiMOSry, AMOSr4g, AMOSr4ac4) in relation to un-
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processedM|OS,ps9 speech signals according to:

100- MOS=#
AMO =—"-10 9
Sru MOSupss o) 9
100- MOSe45
AMO =——""-10 10
SriB MOSupss 0 (10)
100- MOS:4gc#
AMO =——— """ 10 11
SruBCH MOSUpss 0} (11)

where AMOSEy, AMOSkxg, andAMOSgxpcy are percentage increments of MOS
values for algorithms from [13, 15] and DFF-FBC algorithm, respectively

Percentage increments of MOS values are graphically presented in Eigaje
White Gaussian Noise, (b) Computer Fan Noise, (c) Car Noise, (d) Balmite
N=1, (e) Babble NoisdN=4 i (f) Babble NoiseN=8. Percentage increments of
MOS values in processing of Husky Voice are graphically presented uré-i)

Spectrogrames of the speech signal (the sentetigh Technical School’ pro-
nounced in Serbian) presented in Figure 4: a) Clean speech sign&bdn) €peech
signal with superimposed WGN SNR=5 dB, c) filtered F#, d) F#B and e 4B
dissonances; and Figure 5.: a) with 5 dB Babble NdIs8, b) filtered F#, c) F#B
d) and F#BC# dissonances.

5 Analysis of the Results

To analyze the effects of DFF-FBC algorithms on the subjective quality of the
speech signal, on the base of the data (percentage increments of M@Sudstin
relation to the result of an unprocessed signal (Eq. 9-11)) graphjmabented in
Figures 2 and 3, the mean values of the percentage increment of MOSltess v
are determined for all kinds of noises:

—— YrAMOS(SNR)
AMOSy =

S len(SNR) ’
whered=F#; F#B, F#BC#, SNR=0,5,10,15,20 dB ded(SNR) presents the num-
ber of elements in the sequence SNR, and presented in Table 6.

On the base of MOS test results graphically presented in Figures 2 amdi3 an
Tables 1-6 it may be concluded that:

12)

a) an algorithm for eliminating of dissonance F# in the speech signal with su-
perimposed noise generates a speech signal whose MOS test resudtis 5.6
7.72% higher than that of an unprocessed signal. This results is in acoerd
with the result of the algorithm from [13];
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Fig. 2. Percentage increments of MOS values for: (a) White Gaussi@ge N®) Computer Fan
Noise, (c) Car Noise, (d) Babble Noise=1, (e) Babble Nois&l=4 i (f) Babble NoiseN=8.

b) an algorithm for eliminating of dissonance F# and B in the speech signal
with superimposed noise generates the speech signal whose MOS uéist res
is 6.81-9.05% higher than that of an unprocessed signal. This result is in
accordance with the result of the algorithm from [15];
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Fig. 3. Percentage increments of MOS values for Husky Voice.

Fig. 4. Spectrogram of the speech signal: a) Clean speech signal &) §ileech signal with super-
imposed WGN SNR=5 dB, c) filtered F#, d) F#B and e) F#BC# dissorsance

Table 6. Percentage increment of MOS test results.

SNR AMOS4 [%] | AMOS:# [%] | AMOS: [%]
WGN 5.91 7.49 7.99
CFN 5.63 6.81 7.98
Car Noise 7.72 9.05 10.01
Babble Noise 6.09 6.82 7.31
Husky Noise 11.72 15.62 16.14
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kHz

kHz

Fig. 5. Spectrogram of the speech signal: a) with 5 dB babble Mbi: b) filtered F#, ¢) F#B d)
F#BC# dissonances.

c) an algorithm for eliminating of dissonance F#, B and C# (DFF-FBC algo-
rithm proposed in this paper) in the speech signal with superimposed noise
generates the speech signal whose MOS test result is 7.31-10.01% bigge
than that of an unprocessed signal;

d) the greatest effect DFF algorithms achieve with Husky Voice (Tablas),
follows: 11.72% (elimination of F#, the result from [13] is 11.955%), 15%25
(elimination of F# and B, the result from [15] is 15.277%) and 16.14% (DFF-
FBC algorithm), respectively.

The special quality of DFF-FBC algorithm is the enhancement of the sulgecti
quality effect of the sound with decreasing of SNR. This tendency is rdarkall
superimposed noises tested in this paper.

6 Conclusion

This paper presents DFF-FBC algorithm for eliminating of dissonant saing@e
speech signal spectrum. This algorithm is formed on the base of algorithims de
scribed in [13] and [15] by broadening of the activity range. The dtigoris based

on the finding of the fundamental speech signal frequency and deteghuhfre-
guency ranges where there are dissonant tones and their harmoriitséroataves

of the audio range. Dissonances which form the scale of perfect (etehplisso-
nances were analysed. The fundamental frequé&pdy in relation to the perfect
dissonances as the tone C is in relation to the tones F#, B and C#.

The effect of this algorithm on the speech signal was analysed on thebte
subjective MOS test results. Analyses were made on the speech signdisrno w
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the White Gaussian Noise, Computer fan noise and Car noise were supsgtnpo
on the Husky Voice. MOS test results showed the subjective enhanceimiet
speech in range of 5.63-10.01%. The effect of the subjective qualigre®ment
increases if SNR decreases, which represents the special quality afgbighm.
The best marks DFF-FBC got for Husky Voice processing is 16.14%ghwi bet-

ter in comparison to the algorithm from [15]. The results presented in thisrpap
spaek in favour of implementing of DFF-FBC algorithm for the speech sigmal
processing in algorithms for compressing, recognizing (identificationpeéeh
etc.

Further scientific researches will be directed toward determining of tleeteff
of speech signal quality enhancement by eliminating of dissonant intervéds w
belong to the group of imperfect (incomplete) dissonances.
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