FACTA UNIVERSITATIS (NIS)
SER.: ELEC. ENERG. vol. 22, no.3, December 2009, 385-390

An Example of Superstable Quadratic Mapping of the
Space

Zeraoulia Elhadi

Abstract: It is shown rigorously in this paper that an elementary 3-@dyatic map-
ping is superstable, i.e. it is superstable for some ranbis lifurcation parameters.
Numerical results that confirm the theory are also given ascldsed. These numer-
ical results give a new route to chaos which we ctik superstable quasi-periodic
route to chaos.
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1 Introduction

The superstability of a dynamical motion is defined with existence of a minus infin-
ity Lyapunouv exponent, this mean that this motion is attractive. There ageatev
methods for constructing 1-D polynomial mappings with attracting cycles @rsup
stable cycles [1,2] based on Lagrange and Newton interpolationsrsiaiple phe-
nomena in some 1-D maps embedded in circuits and systems are studied in [3, 4],
these maps are obtained from the study of nonautonomous piecewisentairsta

cuit and biological models [5-10]. Rich dynamical behaviors can be isetire
presence of superstability [5, 8, 9], especially, the attractivity of the mdhan
guarantees its stability.

The essential motivation of the present work is to prove rigorously treahayf
of 3-D quadratic mappings is superstable in the sense that all its behaxéors a
superstable, i.e. they have a munis infinity Lyapunouv exponent for alidaifion
parameters in a specific region. This property of superstability is probrabdy
in n-D dynamical systems with > 2. Also, superstability is a local property in
the space of bifurcation parameters, i.e., in general, not all the behafitine
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considered system are superstable. frer 1, this property is well investigated
analytically and numerically for discrete time systems [1-4].

2 The Superstable 3-D Quadratic Map

The chaotic 3-D quadratic mappings have several potential applicatitrd 31
One of the most well known example of this type of mappings is the hyperchaotic
generalized l@non map [14] given by

Xir1=a—Yg — bz
Yk+1 = Xk (1)
Zey1 = Yk

The map (1) is the simplest 3-D invertible quadratic map. In this paper, werngres
the simplest 3-D non-invertible quadratic map given by:

Xk+1 — 1 - ay%
Zcr1 = Yk

First, it is clear that the two maps (1) and (2) are topologically not equit/alen
cause the first is invertible and the second is not for all its bifurcatiompeatexs.
Secondly, because we search only bounded superstable statesegldwethe map
(2), we must investigate domains for the parametarb) € R? in which the map
(2) has unbounded or bounded orbits. We use the idea of the nonreesiEfixed
points, because if there is no fixed point, then there is no chaos in the mdp-(2)
deed, a fixed pointx, y, z) of the map (2) must simultaneously satisfy the following
two equalities: 1-ay? = x,x+bz=y,y =z hence, if there are no fixed points, then
one has that the polynomials-lay® — x or x+ bz —y or y — z are either positive or
negative for all(x,y, z) € R.

Assume for example that—lay2 — X is positive, and lekg > 0, then one has
for all integerk that 1— ayﬁ > Xy, €., Xkp1 > Xk > X1 > ... > X > 0. Letus
consider the Euclidean distandéxy, 0) = X« that measures the distance between
the first component, of the map (2) and the origin 0 on the real line. Then we have
d(X+1,0) > d(X,0) > d(x(_1,0) > .... > d(xp,0) > 0. Hence there a real number
A > 0 such that (x,0) = d (x_1,0) + A, which implies thatl (X, 0) = d (Xo,0) +
(k+21)A. Finally, one has i, 1. d (X, 0) = +oo. If Xg < 0, the same logic applies.
However, when there are fixed points, there are domains that contaiousitibd
orbits, i.e., possibly chaotic attractors. For the map (2) 4 — (b— 1)2/4, then
all orbits of the map (2) are unbounded. Whilaif — (b— 1)2/4, then the map
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(2) has possible bounded orbits. On the other hand, the fixed points wiah€2)
areR = (1-ay?2,yi,Vi), i = 1,2, wherey; = (b— \/4a+(b—1)2—1) /2a and
Yo = <b+ V4a+(b—1)2— 1) /2a, and the Jacobian matrix is given by

0 —2ay O
J=11 0 b 3)
0 1 0

and its characteristic polynomial }s(/\2+ 2ay — b) = 0. Hence, the eigenvalues
atP, areA; =0 andAz3 = i\/\/4a+ (b—1)2+1, and at? the eigenvalues are
w =0, andawys = +v1—Vv4a—2b+b2+1, if a< —b(b—2) /4, andoyps =

+iv-1+vda—2b+b2+1, ifa> —b(b—2) /4. Some calculations lead to the
following results:

1. [A1] =0<1,|A23| >1foralla> —(b—1)?/4,a+# 0, thusP, is a saddle
fixed point.

2. || =0<1|ws = V1-vda—2b+02+1<1,if —(b—1)%/4<a<
—(b+1) (b—3) /4, thusP; is a stable fixed point.

3. lan| =0<1,|aps| =V —1+Vda—2b+b2+1,if a>—(b+1)(b—3)/4,
thusP; is a saddle fixed point.

The goal of this paper is the rigorous proof that the 3-D quadratic mam diy
equation (2) has minus infinity Lyapunouv exponent for some rang@s lof € R,
The method of analysis is the rigorous calculation of the Lyapunouv exgpene

Consider the following 3-D dynamical system:

Xi1=09(X),X eR® 1=0,12,.. (4)

where the functiorg : R® — RS is the vector field associated with system (4) and
X = (x,¥,2) € R3. LetJ(X) be its Jacobian evaluatedX§tc R3,| =0,1,2, ...,
and define the matrix:

Tn(X0) = I (Kn-1)I (Xn-2) -3 (X1) I (Xo) ()

Moreover, letJ; (Xo,m) be the modulus of thé" eigenvalue of theN'" matrix
Tn (Xo), wherei =1,2,3andN =0,1,2,...
Now, the Lyapunouv exponents for a 3-D discrete-time system are dddine

Zl~

00 = im_3060.N)F), i=1.2.3 ©)
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Based on this definition, we will give a rigorous proof that the family of 3-D
gquadratic maps given by equation (2) is superstable for some range$ibfiitsa-
tion parameters and all initial conditions, i.e. we will prove that the makiXo)
has a zero eigenvalue for &M, yo,2) € R3. The determinant of Jacobian matrix
(3) of the map (2) is dek(x,y,z) = 0, for all (x,y,2) € R3, then the matrix (x,y,2)
is singular for all(x,y,z) € R3, hence,
i=0
deflTy (Xo) = detd (xi,Vi,z) =0,
i=N—1

pd

then and because the determinant of a product is the product the detaswhall
matrices, one can deduce that the maigXXo) has at least one zero eigenvalue,
which means that the map (2) has a munis infinity Lyapunouv exponent, bygtakin
the logarithm of the zero eigenvalue. Finally, the Lyapunouv spectrumeaitp

(2) is given byl 2 (Xo) are finite numbers anig (Xo) = —. Note that the map
(2) does not display hyperchaotic behaviors due to its smoothness aimhtiisty
contrary to the situation of the hyperchaotic generalizéddh map [14].

3 Numerical Computations

In this section, we test numerically the above analytical results, althoughifthe d
ferent superstable dynamical behaviors of the map (2) are shown inWigefe

Periodic orbits

Unbounded orbits

-1 l a : 3
Fig. 1. Regions of dynamical behaviors in tieplane for the map (2).

regions of unbounded (white), periodic (blue), and chaotic (red)tisals in the
ab-plane for the map (2) are obtained usin§ Rt@rations for each point. Also,
some superstable orbits of the map (2) are shown in Fig.2.
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Fig. 2. Superstable attractors obtained from the map (2)ntt0.3, and (a) Periodic orbit
for a=0.7. (b) Quasi-periodic orbit foa = 0.9. (c) Chaotic orbit foa = 1.0 (d) Chaotic

orbit fora=1.2.

As shown in Fig.1 the chaotic behaviors of the map (2) results from a quasi-

periodic route to chaos, and because all the states of the map (2) arstahige
then we call this routethe superstable quasi-periodic route to chaos.

4 Conclusion

It is shown through an elementary example that the superstability phenorisenon

possible in 3-D quadratic mappings. Numerical results confirm the thedrgige
a new route to chaoshe superstable quasi-periodic route to chaos.
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