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An Example of Superstable Quadratic Mapping of the
Space

Zeraoulia Elhadj

Abstract: It is shown rigorously in this paper that an elementary 3-D quadratic map-
ping is superstable, i.e. it is superstable for some ranges of its bifurcation parameters.
Numerical results that confirm the theory are also given and discussed. These numer-
ical results give a new route to chaos which we call:the superstable quasi-periodic
route to chaos.
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1 Introduction

The superstability of a dynamical motion is defined with existence of a minus infin-
ity Lyapunouv exponent, this mean that this motion is attractive. There are several
methods for constructing 1-D polynomial mappings with attracting cycles or super-
stable cycles [1,2] based on Lagrange and Newton interpolations. Superstable phe-
nomena in some 1-D maps embedded in circuits and systems are studied in [3, 4],
these maps are obtained from the study of nonautonomous piecewise constant cir-
cuit and biological models [5–10]. Rich dynamical behaviors can be seenin the
presence of superstability [5, 8, 9], especially, the attractivity of the motionthat
guarantees its stability.

The essential motivation of the present work is to prove rigorously that a family
of 3-D quadratic mappings is superstable in the sense that all its behaviors are
superstable, i.e. they have a munis infinity Lyapunouv exponent for all bifurcation
parameters in a specific region. This property of superstability is probablyrare
in n-D dynamical systems withn ≥ 2. Also, superstability is a local property in
the space of bifurcation parameters, i.e., in general, not all the behaviorsof the
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considered system are superstable. Forn = 1, this property is well investigated
analytically and numerically for discrete time systems [1–4].

2 The Superstable 3-D Quadratic Map

The chaotic 3-D quadratic mappings have several potential applications [11–13].
One of the most well known example of this type of mappings is the hyperchaotic
generalized H́enon map [14] given by

xk+1 = a− y2
k −bzk

yk+1 = xk

zk+1 = yk

(1)

The map (1) is the simplest 3-D invertible quadratic map. In this paper, we present
the simplest 3-D non-invertible quadratic map given by:

xk+1 = 1−ay2
k

yk+1 = xk +bzk

zk+1 = yk

(2)

First, it is clear that the two maps (1) and (2) are topologically not equivalent be-
cause the first is invertible and the second is not for all its bifurcation parameters.
Secondly, because we search only bounded superstable states governed by the map
(2), we must investigate domains for the parameters(a,b) ∈ R

2 in which the map
(2) has unbounded or bounded orbits. We use the idea of the non-existence of fixed
points, because if there is no fixed point, then there is no chaos in the map (2). In-
deed, a fixed point(x,y,z) of the map (2) must simultaneously satisfy the following
two equalities: 1−ay2 = x,x+bz = y,y = z, hence, if there are no fixed points, then
one has that the polynomials 1−ay2− x or x+bz− y or y− z are either positive or
negative for all(x,y,z) ∈ R

3.

Assume for example that 1− ay2− x is positive, and letx0 ≥ 0, then one has
for all integerk that 1− ay2

k > xk, i.e., xk+1 > xk > xk−1 > .... > x0 ≥ 0. Let us
consider the Euclidean distanced (xk,0) = xk that measures the distance between
the first componentxk of the map (2) and the origin 0 on the real line. Then we have
d(xk+1,0) > d(xk,0) > d(xk−1,0) > .... > d(x0,0) ≥ 0. Hence there a real number
∆ > 0 such thatd (xk,0) = d (xk−1,0)+∆, which implies thatd (xk,0) = d (x0,0)+
(k+1)∆. Finally, one has limk→+∞ d (xk,0) = +∞. If x0 < 0, the same logic applies.
However, when there are fixed points, there are domains that contain all bounded
orbits, i.e., possibly chaotic attractors. For the map (2) ifa < −(b−1)2/4, then
all orbits of the map (2) are unbounded. While ifa ≥ −(b−1)2/4, then the map
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(2) has possible bounded orbits. On the other hand, the fixed points of themap (2)

are Pi =
(

1−ay2
i ,yi,yi

)

, i = 1,2, wherey1 =
(

b−
√

4a+(b−1)2−1
)

/2a and

y2 =
(

b+
√

4a+(b−1)2−1
)

/2a, and the Jacobian matrix is given by

J =





0 −2ay 0
1 0 b
0 1 0



 (3)

and its characteristic polynomial isλ
(

λ 2 +2ay−b
)

= 0. Hence, the eigenvalues

at P1 areλ1 = 0 andλ2,3 = ±
√

√

4a+(b−1)2 +1, and atP2 the eigenvalues are

ω1 = 0, andω2,3 = ±
√

1−
√

4a−2b+b2 +1, if a ≤ −b(b−2)/4, andω2,3 =

±i
√

−1+
√

4a−2b+b2 +1, if a > −b(b−2)/4. Some calculations lead to the
following results:

1. |λ1| = 0 < 1, |λ2,3| > 1 for all a ≥ −(b−1)2/4, a 6= 0, thusP1 is a saddle
fixed point.

2. |ω1| = 0 < 1, |ω2,3| =
√

1−
√

4a−2b+b2 +1 < 1, if −(b−1)2/4 ≤ a <
−(b+1)(b−3)/4, thusP2 is a stable fixed point.

3. |ω1|= 0< 1, |ω2,3|=
√

−1+
√

4a−2b+b2 +1, if a >−(b+1)(b−3)/4,
thusP2 is a saddle fixed point.

The goal of this paper is the rigorous proof that the 3-D quadratic map given by
equation (2) has minus infinity Lyapunouv exponent for some ranges of(a,b)∈R

2.
The method of analysis is the rigorous calculation of the Lyapunouv exponents.

Consider the following 3-D dynamical system:

Xl+1 = g(Xl) ,Xl ∈ R
3, l = 0,1,2, ... (4)

where the functiong : R
3 → R

3 is the vector field associated with system (4) and
Xl = (xl,yl,zl) ∈ R

3. Let J (Xl) be its Jacobian evaluated atXl ∈ R
3, l = 0,1,2, ...,

and define the matrix:

TN (X0) = J (XN−1)J (XN−2) ...J (X1)J (X0) (5)

Moreover, letJi (X0,m) be the modulus of theith eigenvalue of theNth matrix
TN (X0), wherei = 1,2,3 andN = 0,1,2, ...

Now, the Lyapunouv exponents for a 3-D discrete-time system are defined by:

li (X0) = ln

(

lim
N→+∞

Ji(X0,N)
1
N

)

, i = 1,2,3 (6)
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Based on this definition, we will give a rigorous proof that the family of 3-D
quadratic maps given by equation (2) is superstable for some ranges of itsbifurca-
tion parameters and all initial conditions, i.e. we will prove that the matrixTN (X0)
has a zero eigenvalue for all(x0,y0,z0) ∈ R

3. The determinant of Jacobian matrix
(3) of the map (2) is detJ (x,y,z) = 0, for all (x,y,z) ∈ R

3, then the matrixJ (x,y,z)
is singular for all(x,y,z) ∈ R

3, hence,

detTN (X0) =
i=0

∏
i=N−1

detJ (xi,yi,zi) = 0,

then and because the determinant of a product is the product the determinants of all
matrices, one can deduce that the matrixTN (X0) has at least one zero eigenvalue,
which means that the map (2) has a munis infinity Lyapunouv exponent, by taking
the logarithm of the zero eigenvalue. Finally, the Lyapunouv spectrum of the map
(2) is given byl1,2(X0) are finite numbers andl2(X0) = −∞. Note that the map
(2) does not display hyperchaotic behaviors due to its smoothness and dissipativity
contrary to the situation of the hyperchaotic generalized Hénon map [14].

3 Numerical Computations

In this section, we test numerically the above analytical results, although the dif-
ferent superstable dynamical behaviors of the map (2) are shown in Fig.1where

Fig. 1. Regions of dynamical behaviors in theab-plane for the map (2).

regions of unbounded (white), periodic (blue), and chaotic (red) solutions in the
ab-plane for the map (2) are obtained using 106 iterations for each point. Also,
some superstable orbits of the map (2) are shown in Fig.2.
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Fig. 2. Superstable attractors obtained from the map (2) withb = 0.3, and (a) Periodic orbit
for a = 0.7. (b) Quasi-periodic orbit fora = 0.9. (c) Chaotic orbit fora = 1.0 (d) Chaotic
orbit for a = 1.2.

As shown in Fig.1 the chaotic behaviors of the map (2) results from a quasi-
periodic route to chaos, and because all the states of the map (2) are superstable,
then we call this route:the superstable quasi-periodic route to chaos.

4 Conclusion

It is shown through an elementary example that the superstability phenomenonis
possible in 3-D quadratic mappings. Numerical results confirm the theory and give
a new route to chaos:the superstable quasi-periodic route to chaos.
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