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Digital FIR Filter Architecture Based on the Residue
Number System

Negovan Stamenkovíc

Abstract: In this paper, architecture of residue number system used inFIR filters, is
presented. For many years residue number coding has been recognized as a system
which provides capability for implementation of a high speed addition and multipli-
cation. These advantages of residue number system coding for the high speed FIR
filters design results from the fact that an digital FIR filterrequires only addition and
multiplication. The proposed FIR filter architecture is performed as series of modulo
multiplication and accumulation across each modulo. A numerical example illustrates
the principles of FIR filtering of an 32 order low pass filter. This architecture is com-
pared with FIR filters direct synthesis.

Keywords: Digital signal processing, Residue Number System, ChineseRemainder
Theorem, FIR filter,

1 Introduction

THE residue number system is a non-weighted number system whichspeeds up
arithmetic operations by dividing them into smaller parallel operations. Since

the arithmetic operations in each modulo are independent ofeach other, there is
no carry propagation among them so residue number system is carry-free addition,
multiplication and borrow-free substraction [1]. Residuenumber system is one
of the most effective techniques for power dissipation reduction in VLSI system
design [2].

Some application of the residue number system are digital signal process-
ing [3–5]. Digital filters are especially important in DSP because they can be used
for a wide variety of applications: noise-reduction, band splitting, band limiting,
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interpolation, decimation, pulse forming, echo suppression, equalization, etc. Two
basic filter types are commonly implemented in DSP: Finite Impulse Response
(FIR) filters and Infinite Impulse Response (IIR) filters. Both filter implementations
includes binary-to-residue converter at its input, which converts the input data into
equivalent residues. The filtering is mainly performed in the central block. Since
there areL residues in the residue set,L sub-filters are used to process correspond-
ing residues from the input. Reverse conversion is at the output; translation from
residue representation back to binary notation is performed. In this paper architec-
ture for the FIR filters implementation is proposed.

The complexity as well as the efficiency of residue to binary conversion and
vice versa, is primary based on the proper selection of the modulo set and the
conversion algorithm. Many different modulo set have been suggested, such as
{2n−1,2n,2n +1} [6–9],{2n,2n−1,2n−1−1} [10,11],{2n,2n−1,2n+1−1} [12],
{22n + 1,2n + 1,2n −1} [13], {2n,22n −1,22n + 1} [14]. {22n,2n+1 + 1,2n+1−1}
[15]. In this paper we have used three moduli set{2n −1,2n,2n + 1}. This set of
modulo is very popular due to simple conversion from a positional binary number
system as well as an efficient implementation of some arithmetic operations. Nev-
ertheless, it has disadvantage that residue(2n +1) requires(n+1) bits to represent
2n +1 states, which means that almost half of the states remain unused.

This paper is organized in following way: in Section 2 we haveintroduced the
necessary background of the structure of simple finite fieldsand residue number
system. Section 3 discuss a method for design of linear phaserecursive digital fil-
ters and method for translating 2’s-complement binary representation into residue
number system and vice versa. Section 4 presents the proposed design methodol-
ogy and the RNS filter architecture for linear phase FIR filter. Simulation impulse
and steady state response of FIR filter in residue arithmeticare illustrated in Sec-
tion 5.

2 Residue Number System

Let us introduce the basic terminology [6]:

1. The vector{m1,m2, . . . ,mk} forms a set of moduli, called the RNS baseβ ,
wheremi are relatively prime such that gcd(mi,m j) = 1 for i 6= j, where gcd
means the greatest common divisor ofmi andm j.

2. M is the product∏k
i=1 mi and defines the dynamic range of the system.

3. The vector{x1,x2, . . . ,xk} is the RNS representation of an integerX , X < M,
wherexi = 〈X〉mi = X modmi. Any integerX belonging toZ/MZ

1 has a

1The set of congruence classes inZ moduloM. Two integersZ1 andZ2 are said to be congruent
moduloM, if their difference(Z1−Z2) is an integer multiple ofM.
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unique representation, in baseβ [16].

The dynamic range of representable numbers is usually partitioned into two
approximately equal parts, such that approximately half ofthe numbers are
positive and the rest are negative. Thus, every representable integer,X , which
satisfy one of two relations:

−
M−1

2
≤ X ≤

M−1
2

−
M
2

≤ X ≤
M
2

if M is odd

if M is even

can be represented in RNS form.

4. The operations of addition, subtraction and multiplication are defined over
the set of congruence classes inZ/MZ as:

A±B = (〈a1±b1〉m1, . . . ,〈ak ±bk〉mk)

A×B = (〈a1×b1〉m1, . . . ,〈ak ×bk〉mk).
(1)

These equations illustrate the parallel carry-free natureof the RNS.

5. The binary-to-residue converter is designed according to the following algo-
rithm [17]. A K bit numberX can be expressed as:

X =
K1

∑
j=0

b j2
j +

K

∑
j=K1+1

b j2
j (2)

whereb0 is the sign bit. The residue ofX modmi, wheremi, i = 1,2, . . . ,N,
is thei-th modulus used to define the RNS code, can be writen using equa-
tion (2),

〈X〉mi =
〈 K1

∑
j=0

b j2
j +

K

∑
j=K1+1

b j2
j
〉

mi

=
〈 K1

∑
j=0

b j2
j
〉

mi

⊕
〈 K

∑
j=K1+1

b j2
j
〉

mi

(3)

where⊕ represents modulo addition.

6. The reconstruction ofX from its residues{x1,x2, . . . ,xk} is based on the Chi-
nese Remainder Theorem:

X =
〈 k

∑
i=0

〈γixi〉mi Mi

〉

M
, (4)



128 N. Stamenkovic:

whereM = ∏k
i=1 mi; Mi = M/mi ; γi = 〈M−1

i 〉mi . The notation〈M−1
i 〉mi

denotes the multiplicative inverse ofM modulomi
〈

M−1
i M

〉

mi
= 1, 0≤ M, M−1

i < mi. (5)

7. Another way to convert RNS representation into weighted formX is by using
Mixed Radix Conversion [18]. The vector{x′1,x

′
2, . . . ,x

′
k}, 0≤ x′i ≤ mi is the

Mixed Radix System (MRS) representation of an integer X smaller thanM,
such that:

X = x′1 + x′2m1 + x′3m1m2 + · · ·+ x′k
k−1

∏
i=1

mi (6)

wherex′i ∈ [0,mi) are the mixed radix digits ofX , and

x′1 = x1 modm1

x′2 = (x2− x′1)c12 modm2

x′3 = ((x3− x′1)c13− x′2)c23 modm3

...

x′k = (· · · ((xk − x′1)c1k − x′2)c2k − . . .− x′k−1)ck−1,k modmk

The constantsci j are multiplicative inverse ofmi modulom j for all 1≤ i <
j ≤ k (ci j ·mi = 1 modm j for 1≤ i≤ n) and can be computed using Euclid’s
algorithm [18,19].

8. Comparison and division are very difficult operations to perform on the RNS
representation [20–22]. The traditional techniques for the residue number
comparison use the Chinese Remainder Theorem or the Mixed Radix Con-
version. A direct implementation of the Chinese Remainder Theorem is un-
profitable since it is based on the moduleM operation, whereM is the large
dynamic range of residue number. The Mixed Radix Conversionis a sequen-
tial process requiring long delay. Other techniques use redundant modulus
and assume special condition of the moduli set [23].

3 The Design of RNS Digital Filter

Finite Impulse Response (FIR) digital filters have attracted a great deal of inter-
est because they are inherently stable structures which aremuch less sensitive to
quantization errors than filters of the recursive type.

An FIR filter is described by (7), wherexn is the input to the filter,bk represents
the filter coefficients,N is the filter order andyn is the filter output

yn =
N

∑
k=0

bkxn−k. (7)
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For a very largeN, filters implemented in traditional binary weighted numbersys-
tem suffer from disadvantages of carry propagation delay inbinary adders and mul-
tipliers.

In RNS a large integer is broken into smaller residues which are independent
of each other. Each residue digit is processed in parallel without carry propagation
from one to another. This leads to significant speed up of multiply and accumulate
(MAC) operations which in turn results in high data rate for RNS based FIR filters
[2,6].

A modulo set must be selected which provides just enough dynamic range for
the FIR filter. A set comprised of a large number of small-valued integers will
provide a highly parallel RNS structure while maintaining low memory require-
ments, for stored-table operations. Consider the 31th-order lowpass linear phase
filter described by the magnitude response of Figure 1.
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Fig. 1. The attenuation of frequency response linear phase lowpass filter of order 31.

This lowpass filter, which was designed by means of a published program based
on the Parks-McClellan Algorithm is representative of a large class of FIR filters
which require relatively high accuracy in the coefficients to prevent serious distor-
tion in the frequency response.

The design and numerical computation of an FIR filter was doneusing
MATLAB

R© [24] using Parks-McClellan algorithm in a two-step process. First is to
use thefirpmord command to estimate the order of the optimal Parks-McClellan
FIR filter to meet design specifications. The syntax of the command is as follows:
[n,fo,mo,w]=firpmord(f,m,dev), wheref is vector of band frequencies,
vectorm contains the desired magnitude response values at the passbands and the
stopbands of the filter, and the vectordev has the maximum allowable devia-
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tions of the magnitude response of the filter from the desiredmagnitude response.
The second step is the actual design of the filter, using thefirpm command
b=firpm(n,fo,mo) to find the impulse responseb of the Parks-McClellan FIR
filter for our design.

A moduli set must be selected to provide just enough dynamic range for the
FIR filter. Consider the 31th-order lowpass linear phase filter described by the
magnitude response of Figure 1.

The filter coefficients are shown in Table 1 for double precision (the IEEE
754 standard) and for 10-bit precision in integer notation.The spectrum of the
quantization error which results from quantizing coefficients to 10 bits is shown in
Figure 2, where it can be seen that 10 bits is sufficient to maintain a quantization
error which is 20 dB below the stopband filter response.
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Fig. 2. Quantization error resulting from filter coefficientrounding to 10 bits including sign bit.

Integer values in the third column in Table 1 are transformedfrom floating
point value (second column) in two steps. First step is conversion of floating point
filter coefficientsb in binary stringb binary using two MATLAB

R© functions,
Q 1=quantizer(’round’,Format) and b binary=num2bin(Q 1,b).
ValueFormat in quantizer MATLAB

R© function creates parameters of binary
numbers:[wordlength, fractionlength] for signed fixed-point mode.
For 10-bit precision format arewordlength=12 andfractionlength=10.

Second step is conversion of binary stringb binary into integer value us-
ing two new MATLAB

R© functions:q 1=quantizer(’round’,Format) and
b int=bin2num(q 1,b binary). In this case valueFormat is without
fractionlength i.e. Format=[12, 0]. At last, integer values of filter co-
efficients are transformed in RNS number. This paper investigates binary to residue
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converter for the modulo set{63,64,65}. For example, double precision of filter
coefficientb1 is b=-0.00039444937475which is converted to binary number
b binary=000000010010, than to integer numberb int=18, and at last to
RNS number bRNS={18, 18 18}.

Assume that the data sequence is quantized to 8 bits (including sign) and that
filter must be implemented without rounding error. An absolute upper bound on
|y(n)| is given by (8)

|y(n)| ≤max{|u(n)|
31

∑
k=0

|bk|

=128×1874= 239872→ 17.8719 bits.

(8)

The moduli set{63,64,65} provides a dynamic range of 17.9996 bits, which is
adequate for most practical situations since the bound of 17,8719 bits given by (8)
is extremely pessimistic.

Table 1. Coefficients for the 31th-order lowpass filter.

Double precision Integer RNS number
b0 = b31 −0.00039444937475 0 {0 0 0}
b1 = b30 0.01737509170472 18 {18 18 18}
b2 = b19 0.00288815025876 3 {3 3 3}
b3 = b28 −0.01302520660383 −13 {50 51 52}
b4 = b27 −0.00883062510144 −9 {54 55 56}
b5 = b26 0.01538085159507 16 {16 16 16}
b6 = b25 0.01834647657814 19 {19 19 19}
b7 = b24 −0.01509438918723 −15 {48 49 50}
b8 = b23 −0.03209078269203 −33 {30 31 32}
b9 = b22 0.00985336146129 10 {10 10 10}

b10 = b21 0.05188388112373 53 {53 53 53}
b11 = b20 0.00516582332405 5 {5 5 5}
b12 = b19 −0.08475379480646 −87 {39 41 43}
b13 = b18 −0.04768004294532 −49 {14 15 16}
b14 = b17 0.17953772215585 184 {58 56 54}
b15 = b16 0.41309620875676 423 {45 39 33}

To produce linear phase filters, certain symmetry conditions have to be imposed
on{bk}, where{bk} are real filter coefficients. Consider transfer function of order
N whose transfer function is

H(z) = b0 + b1z−1 + . . .+ b30z−30+ b31z−31. (9)

In our paper filter order (N = 31) is an odd integer and suppose that{bk} has even
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symmetry aroundN/2, that isbk = bN−k

H(z) =

N−1
2

∑
k=0

bk(z
k + zN−k). (10)

This structure is called the linear phase direct form.
The block diagram implementation of the transfer function (10) is shown in

Figure 3 for oddN. As it can be seen from Figure 3 the basic arithmetic opera-
tion is a multiplication followed by an addition. This is usually called a multiply-
accumulate (MAC) operation.

z−1 z−1

z−1 z−1

z−1+ + + +

+ + +

× × × ×

xn

b0 b1 b2 b15

yn

Fig. 3. Realization of linear phase FIR filter of length 32.

4 The Architecture of RNS FIR Filter

The implementation of residue number system based on the finite impulse response
of linear phase filter is shown in Figure 4. As it can be noted, finite impulse
response filtering is achieved in residue number system domain by using multiple
modulomi finite impulse response filter blocks. The implementation isgeneric and
assumes that three modulo (m1 = 63, m2 = 64 andm3 = 65) are chosen so as to
meet the desired filter precision requirements. The finite impulse response filtering
is performed as a series of modulo multiply-and-accumulate(MAC) operations
across each modulom1 to m3. Designing and optimizing MAC operator is very
important to carry out high performance and low power DSP operations. In general
MAC operator is implemented using multipliers and adders.

Block Forward converter is residue-to-binary converter for three modulo set of
the form{63,64,65}. Note that forward conversion for the modulo-64 channel is
achieved simply by keeping the least significant 6 bits of the2s complement data.
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To calculate the response of FIR filteryn to arbitrary inputsxn modulo MAC
operation across each modulim1, m2 andm3 is used. The input signalxn would be
converted into residue form at the filter input. The residue encoded output〈yn〉M

would be computed in parallel residue circuit

〈yn〉m1 =〈b0〉m1[〈xn〉m1 + 〈xn−31〉m1]+ 〈b1〉m1[〈xn−1〉m1 + 〈xn−30〉m1]+ · · ·

+ 〈b15〉m1[〈xn−15〉m1 + 〈xn−16〉m1]

〈yn〉m2 =〈b0〉m2[〈xn〉m2 + 〈xn−31〉m2]+ 〈b1〉m2[〈xn−1〉m2 + 〈xn−30〉m2]+ · · ·

+ 〈b15〉m2[〈xn−15〉m2 + 〈xn−16〉m2]

〈yn〉m3 =〈b0〉m3[〈xn〉m3 + 〈xn−31〉m3]+ 〈b1〉m3[〈xn−1〉m3 + 〈xn−30〉m3]+ · · ·

+ 〈b15〉m3[〈xn−15〉m3 + 〈xn−16〉m3]

(11)

The resulty(n) is obtained by the RNS to the binary conversion block by usingthe
Chinese Remainder Theorem (CRT)

yn = CRT{〈yn〉m1,〈yn〉m2,〈yn〉m3}. (12)

Clearly, the input and output conversions, constitute a significant overhead in sys-
tems implemented in RNS.

Reverse conversionyn is last step in digital signal processing in residue num-
ber arithmetic. Result is integer numberY int. For comparison this results with
results obtained trough standard signal processing, we have finished this example
with conversion of integer number to fixed point presentation.

First step in conversion of integer number to fixed point number is conversion
of integer number to binary number. Notice that the result ofthe two positive
binary numbers〈bk〉m1[〈xn−k〉m1 + 〈xn−31+k〉m1] multiplication may ben + m digit
long, where multiplicand isn digit long and multiplier ism digit long.

In our example input signal and coefficient are 7 and 10 bits long,
respectively, then result is 17 digits long. Thus, format infunc-
tion Q 2=quantizer(’round’,Format) is Format=[17 0]. Us-
ing Y bin=num2bin(Q 2, Y int) we can convert results to binary
number. Finally, for binary to fixed point conversion we use fol-
lowing MATLAB

R© function q 2=quantizer(’round’,[19 17]) and
Y float=bin2num(q 2,Y bin). For example, ifY RNS=[29, 11, 61]
then after RNS to integer conversion we obtainY integer=-123829, which is
converted to binary numberY biary=1100001110001001011 which yield
to Y float= -0.94474029541016.

At the end of every subfilter output computation, data in datamemory need to
be shifted so that new data samplexn+1 come to placexn and data valuexn in turn
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Fig. 4. Tree modulo architecture of linear phase FIR filter oflength 32.

replaces the data valuexn−1. Due this data movement the clock rate can be max-
imized by modifying the data address register in order to actas a circular address
generator. To implement this, a counter can be used which reset to location 0 after
counting up toN. The new data sample read-in in this location and computation of
next output is resumed.

If direct form linear phase FIR filter is realized so the inputdata are stored
in one memory, while the coefficients are stored in another memory. Then each
output is computed by performing(N +1)/2 MAC operations. Thus, this structure
requires 50% less multiplications than the direct form.

5 Signal processing in residue arithmetic

Transient response is important characteristic (characterization) of a system, though
it is often used as the impulse response and sinusoidal steady state response.
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5.1 Impulse response

Impulse response of a discrete-time (or digital) system is defined as the output
(response), denoted byh(n), when the input is unit sampleδ (n). In integer notation
unit sample is multiplied by scalar 128

δ (n) =

{

128, if n = 0

0, if n 6= 0.
(13)

In {63,64,65} residue number system unit sample is

δ (n) =

{

{2,0,63}, if n = 0

{0,0,0} if n 6= 0.
(14)

Figure 5 shows impulse response of RNS subfilters. The coefficient values of
the first and the second subfilter must be stored in 8 bits word,but values of the
third subfilter must be stored in 9 bit word.

Unit sample on the input for the first subfilter is multiplied by scalar 2, for the
second subfilter is multilied by zero, and for the third subfilter is multiplied by
scalar 63.
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Fig. 5. Impulse response of the RNS lowpass subfilters.

For impulse response of whole filter we can use the Chinese Remainder Theo-
rem in order to convert a number presented in the residue system into conventional
number system. This impulse response is shown in Figure 6.

As it was expected, impulse response of linear phase filter (10) and impulse
response on the Figure 6 are similar. The quantization errorof impulse response,
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Fig. 6. Impulse respomse of the RNS lowpass filter.

resulting from quantizing the coefficients to 10 bits, is shown in Figure 7. It can
be seen that 10 bits is sufficient to maintain error which is less than 4×10−4.
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Fig. 7. Quantization error for impulse response resulting from rounding filter
coefficients to 10 bits, including sign.

5.2 Steady state response

Steady state response of RNS FIR digital filter is the second example. The
term ’steady state response’ arise naturally in the contextof sinewave analy-
sis. In our example sampled sinewave signal with frequencyf = 1/8 Hz is
xk = 127 sin(2π k/16). Sampling frequency isFs =2 Hz. Figure 8 shows steady
state response of RNS subfilters.

Before signal application to the input of a digital filter, the filter’s internal
“state” is assumed to be equal to zero. When input sinewave isswitched on, the
filter takes a while to “settle down” to a perfect sinewave at the same frequency.
The filter response during this “settling” period is called the transient response of
the filter. The response of the linear and time-invariant filter, after the transient re-
sponse, is called the steady-state response, and it consists of a pure sinewave at the
same frequency as the input sinewave, but with amplitude andphase determined by
the filter’s frequency response at that frequency. In other words, the steady-state
response begins when the LTI filter is fully “warmed up” by theinput signal. More
precisely, the filter output is the same as it would be if the input signal would be
applied since time minus infinity.
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Fig. 8. Steady state response of the RNS lowpass subfilters.

Figure 9 shows steady state response of RNS FIR filter which was done us-
ing MATLAB

R© designed functionrns2num(([y1 y2 y3],RNS), where[y1
y2 y3] is steady response of subfilters, andRNS=[63 64 65] is modulo set.
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Fig. 9. Steady state response of the RNS lowpass filter.

FIR filter of lengthN +1 is fully “warmed up” afterN samples of input; that is,
for input starting at timek = 0, by timen = N, all internal state delays of the filter
contain delayed input samples instead of their initial zeros. When the input signal
is a unit stepu(n) times sinusoid (or, by superposition, any linear combination of
sinusoids), we may say that the filter output reaches steady state at timen = N.

In general, complete response of our filter is given by the superposition of
its zero-state response and, initial-condition response.Zero-state response simply
means the response of the filter to an input signal when the initial state of the filter
is zeroed to begin with. The initial-condition response is of course the response of
the filter to its own initial state, with the input signal being zero.

Note that, both the phase and group delay of a linear-phase filter are equal to
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N/2 samples of plain delay at every frequency. Since FIR filter of length N + 1
implementsN samples of delay, the valueN/2 is exactly half of the total filter
delay.

As it was expected, steady state response of linear phase filter (10) and steady
state response on the Figure 9 are similar. The quantizationerror of steady state
response resulting from the coefficients quantization to 10bits is shown in Figure
10. It can be seen that error is less than 4×10−3.
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Fig. 10. Quantization error for steady state response resulting from filter coeffi-
cients rounding to 10 bits including sign.

To decrease error coefficients must be quantized to more than10-bit precision.
In this case set of modulo must be larger, for exampleRNS=[127, 128, 129].
Coefficient of subfilter for this modulo set are stored in 7-, 7-, and 8-bit word.

6 Conclusion

An residue number system finite impulse response filter architecture is presented
in this paper. The RNS coding technique is attractive for FIRfilters which requires
only multiplication and addition because these operationsare very fast in an RNS.
Since the RNS implementation, in its fundamental form, produces filter outputs
with full precision (no roundoff error), it is particulary attractive for real time filter-
ing and image data, both of which coarsely quantized to minimize processing and
storage requirements.

An RNS design proposed for the 31th order lowpass FIR filter can be based on
standard TTL IC packages.
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