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Digital FIR Filter Architecture Based on the Residue
Number System

Negovan Stamenkowi

Abstract: In this paper, architecture of residue number system usé&dRrfilters, is
presented. For many years residue number coding has bemgnieed as a system
which provides capability for implementation of a high speeldition and multipli-
cation. These advantages of residue number system codinedigh speed FIR
filters design results from the fact that an digital FIR filtequires only addition and
multiplication. The proposed FIR filter architecture isfoemed as series of modulo
multiplication and accumulation across each modulo. A micakexample illustrates
the principles of FIR filtering of an 32 order low pass filtehi§ architecture is com-
pared with FIR filters direct synthesis.

Keywords: Digital signal processing, Residue Number System, ChiReseainder
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1 Introduction

HE residue number system is a non-weighted number system wpdds up
T arithmetic operations by dividing them into smaller pabdiperations. Since
the arithmetic operations in each modulo are independeriaoh other, there is
no carry propagation among them so residue number systeanrisftcee addition,
multiplication and borrow-free substraction [1]. Residugmber system is one
of the most effective techniques for power dissipation odidn in VLS| system
design [2].

Some application of the residue number system are digitalasiprocess-
ing [3-5]. Digital filters are especially important in DSPchese they can be used
for a wide variety of applications: noise-reduction, baptitsng, band limiting,
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interpolation, decimation, pulse forming, echo supprssequalization, etc. Two
basic filter types are commonly implemented in DSP: Finitgpuiee Response
(FIR) filters and Infinite Impulse Response (lIR) filters. Botter implementations
includes binary-to-residue converter at its input, whionwerts the input data into
equivalent residues. The filtering is mainly performed ia ttentral block. Since
there ard_ residues in the residue setsub-filters are used to process correspond-
ing residues from the input. Reverse conversion is at thpudutranslation from
residue representation back to binary notation is perfdrnire this paper architec-
ture for the FIR filters implementation is proposed.

The complexity as well as the efficiency of residue to binaspwersion and
vice versa, is primary based on the proper selection of thduteoset and the
conversion algorithm. Many different modulo set have beeggssted, such as
{2n—1,2" 2"+ 1} [6-9], {2",2"— 1,21 —1} [10,11],{2",2" —1,2"*1 1} [12],
{220 412" 412" — 1} [13], {21,220 — 1,220 1 1} [14]. {22n 2™ 41 oLl 1}
[15]. In this paper we have used three moduli £&8t— 1,2", 2"+ 1}. This set of
modulo is very popular due to simple conversion from a posil binary number
system as well as an efficient implementation of some arititchoperations. Nev-
ertheless, it has disadvantage that residler- 1) requires(n+ 1) bits to represent
2"+ 1 states, which means that almost half of the states remaisedn

This paper is organized in following way: in Section 2 we haeoduced the
necessary background of the structure of simple finite fialt$ residue number
system. Section 3 discuss a method for design of linear pleasesive digital fil-
ters and method for translating 2’s-complement binaryesentation into residue
number system and vice versa. Section 4 presents the ppesgn methodol-
ogy and the RNS filter architecture for linear phase FIR fil&mulation impulse
and steady state response of FIR filter in residue arithnagédllustrated in Sec-
tion 5.

2 Residue Number System

Let us introduce the basic terminology [6]:

1. The vector{my,my,...,m¢} forms a set of moduli, called the RNS bag8e
wherem are relatively prime such that ged,m;) = 1 fori # j, where gcd
means the greatest common divisongfandm;.

2. Misthe producﬂ!‘zlm and defines the dynamic range of the system.

3. The vectofxs,Xo,...,X} is the RNS representation of an integerX < M,
wherex; = (X)m = X modm. Any integerX belonging toz/Mz! has a

1The set of congruence classeZirmoduloM. Two integersZ; andZ, are said to be congruent
moduloM, if their difference(Z; — Z,) is an integer multiple oM.
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unique representation, in bagg16].

The dynamic range of representable numbers is usuallytipagd into two
approximately equal parts, such that approximately hathefnumbers are
positive and the rest are negative. Thus, every reprederitdabger,X, which
satisfy one of two relations:

M-1 M-1 . .
E——— <
5 <X< > if M is odd
__|\2/| gxg—l\; if M is even

can be represented in RNS form.

4. The operations of addition, subtraction and multiplmatare defined over
the set of congruence classe¥ifMZ as:

A+B=((a1+b1)m,,. .., (@ +b)m)

AxB= (a1 x b1)my,..., (@ X bBi)m,)- @)

These equations illustrate the parallel carry-free nabfitbe RNS.

5. The binary-to-residue converter is designed accordirte following algo-
rithm [17]. A K bit numberX can be expressed as:

K1 ) K )
X = bj 2+ bj 2! (2)
J;J j:gﬂrl

whereby is the sign bit. The residue of modm;, wherem,,i =1,2,...,N,
is thei-th modulus used to define the RNS code, can be writen using-equ

tion (2),
hm _<%b,21+ S b 2J>m
3)
~(3e),( if’ ?n

where® represents modulo addition.

6. The reconstruction of from its residuegxi, Xz, ..., X} is based on the Chi-
nese Remainder Theorem:

x

X= (3 (0x)mMr), | (4)

= M
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whereM = K., m; Mi = M/m ; y = (M 1)y, The notation(M, 1),
denotes the multiplicative inverse Bf modulom

<|v|;1|v|>m =1, 0<M,Mt<m. (5)

7. Another way to convert RNS representation into weightechfX is by using
Mixed Radix Conversion [18]. The vect¢x;, X, ..., %}, 0 <x < m is the
Mixed Radix System (MRS) representation of an integer X gan#hanM,

such that:
k-1

xz>(1+>(2m1+xgm1mz+~-+>¢_|'lm (6)

wherex; € [0,m;) are the mixed radix digits of, and
Xy =X modmy
% = (X2 —X;)C12  modm
X3 = ((X3—X})C13— Xp)C23  Modmg

X = (- (% —X)Ck — Xp)Cok — - - — X_1)Ck—1k Modmk
The constants;; are multiplicative inverse afry modulom; for all 1 <i <
J <k (cj-m =1 modm; for1<i<n)andcan be computed using Euclid’s
algorithm [18, 19].

8. Comparison and division are very difficult operations éofprm on the RNS
representation [20—22]. The traditional techniques fer thsidue number
comparison use the Chinese Remainder Theorem or the Mixdik Ran-
version. A direct implementation of the Chinese Remaindedfem is un-
profitable since it is based on the modMeoperation, wherd is the large
dynamic range of residue number. The Mixed Radix Conversiasequen-
tial process requiring long delay. Other techniques usanmddnt modulus
and assume special condition of the moduli set [23].

3 The Design of RNS Digital Filter

Finite Impulse Response (FIR) digital filters have attrdctegreat deal of inter-
est because they are inherently stable structures whicmaod less sensitive to
quantization errors than filters of the recursive type.

An FIR filter is described by (7), whepg is the input to the filterpy represents
the filter coefficientsN is the filter order ang, is the filter output

N
Yn= ) BiXn k. (7)
n k; n
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For a very largeN, filters implemented in traditional binary weighted numbgs-
tem suffer from disadvantages of carry propagation deldyriary adders and mul-
tipliers.

In RNS a large integer is broken into smaller residues whrehirdependent
of each other. Each residue digit is processed in parallislont carry propagation
from one to another. This leads to significant speed up ofiptyland accumulate
(MAC) operations which in turn results in high data rate fddRbased FIR filters
[2,6].

A modulo set must be selected which provides just enoughrdimeange for
the FIR filter. A set comprised of a large number of small-edluntegers will
provide a highly parallel RNS structure while maintainirayvlmemory require-
ments, for stored-table operations. Consider the 31ltk+dmvpass linear phase
filter described by the magnitude response of Figure 1.
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Fig. 1. The attenuation of frequency response linear plagpdss filter of order 31.

This lowpass filter, which was designed by means of a puldighegram based
on the Parks-McClellan Algorithm is representative of @éaclass of FIR filters
which require relatively high accuracy in the coefficiem@gptevent serious distor-
tion in the frequency response.

The design and numerical computation of an FIR filter was dosiag
MATLAB ® [24] using Parks-McClellan algorithm in a two-step procéSisst is to
use thed i r pnror d command to estimate the order of the optimal Parks-McGlella
FIR filter to meet design specifications. The syntax of theroamd is as follows:
[n,fo,mo,w =firprord(f, mdev),wheref isvector of band frequencies,
vectormcontains the desired magnitude response values at thegoalsshnd the
stopbands of the filter, and the vectdev has the maximum allowable devia-
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tions of the magnitude response of the filter from the desmednitude response.
The second step is the actual design of the filter, usingfihepm command
b=firpm(n, f o, no) to find the impulse respongeof the Parks-McClellan FIR
filter for our design.

A moduli set must be selected to provide just enough dynaarige for the
FIR filter. Consider the 31th-order lowpass linear phaserfittescribed by the
magnitude response of Figure 1.

The filter coefficients are shown in Table 1 for double prexis{the IEEE
754 standard) and for 10-bit precision in integer notatidrhe spectrum of the
guantization error which results from quantizing coeffitgeto 10 bits is shown in
Figure 2, where it can be seen that 10 bits is sufficient to tasira quantization
error which is 20 dB below the stopband filter response.
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Fig. 2. Quantization error resulting from filter coefficiemunding to 10 bits including sign bit.

Integer values in the third column in Table 1 are transforrfredh floating
point value (second column) in two steps. First step is c@iwe of floating point
filter coefficientsb in binary stringb_bi nary using two MATLAB® functions,
Ql=quanti zer (' round’ , Format) andb_bi nar y=nuntbi n( Q1, b).
Value For mat in quant i zer MATLAB ® function creates parameters of binary
numbers;[ wor dl engt h, fracti onl engt h] for signed fixed-point mode.
For 10-bit precision format areor dl engt h=12 andf r act i onl engt h=10.

Second step is conversion of binary stribgoi nary into integer value us-
ing two new MATLAB ® functions:q_1=quant i zer (’ round’ , For mat ) and
b_i nt =bi n2num(q_1, b_bi nary). In this case valud-or mat is without
fractionl engthi.e. Format =[ 12, 0] . Atlast, integer values of filter co-
efficients are transformed in RNS number. This paper ingatts binary to residue
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converter for the modulo s€63,64,65}. For example, double precision of filter
coefficientb; is b=- 0. 00039444937475 which is converted to binary number
b_bi nar y=000000010010, than to integer numbdy_i nt =18, and at last to
RNS number lRNS=(18, 18 1§.

Assume that the data sequence is quantized to 8 bits (imgjugdgn) and that
filter must be implemented without rounding error. An absslupper bound on

()| s given by (8)

31
b
ly(n)| Smax{lu(n)lkgjl K|

=128x 1874=239872— 17.8719 bits

(8)

The moduli set{63 64,65} provides a dynamic range of 17.9996 bits, which is
adequate for most practical situations since the bound &71B bits given by (8)
is extremely pessimistic.

Table 1. Coefficients for the 31th-order lowpass filter.

Double precision | Integer| RNS number

bo = ba; | —0.00039444937474 0] {0 0 0]
by =bgo | 0.01737509170472 18| {18 18 18}
by =big | 0.0028881502587§ 3| {3 3 3}
bs = bpg | —0.01302520660383 —13 | {50 51 52}
bs =7 | —0.00883062510144 -9 | {54 55 56}

bs = bog 0.01538085159507 16| {16 16 16}
b = bys 0.01834647657814 19| {19 19 19}
b7 =bys | —0.01509438918723 —15| {48 49 50}
bg =by3 | —0.03209078269203 —33| {30 31 32}
bg = bpp 0.00985336146129 10| {10 10 10}
b1o=bo1 0.05188388112373 53| {53 53 53}
b11=Dbyg 0.00516582332404 5| {5 5 5}
bip =big | —0.0847537948064¢ —87 | {39 41 43}
b1z =big | —0.04768004294532 —49| {14 15 16}
D14 =Db17 0.17953772215585 184 | {58 56 54}
bis =big 0.4130962087567¢ 423 | {45 39 33}

To produce linear phase filters, certain symmetry conditioave to be imposed
on{by}, where{by} are real filter coefficients. Consider transfer function rfey
N whose transfer function is

H(z) =bo + by 714+ b302730+ b312731. 9)

In our paper filter orderN = 31) is an odd integer and suppose thiat} has even
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symmetry aroundN /2, that isb, = by_k

E (42K, (10)

This structure is called the linear phase direct form.

The block diagram implementation of the transfer functi@0)(is shown in
Figure 3 for oddN. As it can be seen from Figure 3 the basic arithmetic opera-
tion is a multiplication followed by an addition. This is wsly called a multiply-
accumulate (MAC) operation.
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Fig. 3. Realization of linear phase FIR filter of length 32.

4 The Architecture of RNS FIR Filter

The implementation of residue number system based on the ifimpulse response
of linear phase filter is shown in Figure 4. As it can be noteditdiimpulse
response filtering is achieved in residue number system ofobyausing multiple
modulom finite impulse response filter blocks. The implementatiogeseric and
assumes that three moduloy(= 63, np, = 64 andmg = 65) are chosen so as to
meet the desired filter precision requirements. The finigulse response filtering
is performed as a series of modulo multiply-and-accumu{MAC) operations
across each moduloy to mg. Designing and optimizing MAC operator is very
important to carry out high performance and low power DSRajpms. In general
MAC operator is implemented using multipliers and adders.

Block Forward converter is residue-to-binary convertartfoee modulo set of
the form {63,64,65}. Note that forward conversion for the modulo-64 channel is
achieved simply by keeping the least significant 6 bits ofZheomplement data.
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To calculate the response of FIR filtgy to arbitrary inputsx, modulo MAC
operation across each moduaii, mp, andmg is used. The input signal, would be
converted into residue form at the filter input. The residoecgled outputy,)m
would be computed in parallel residue circuit

(Yn)my =(00)my [(Xn)my + (Xn—32)my | + (O1)my [(Xn—1)my + (Xn—30)m, | + -
+ (b15) my [(Xn-15)m; + (Xn—16) m]

(Yn)my, =(00)m, [(Xn)m, + (Xn—32)m, ]| + (B1)m, [(Xn—1)m, + (Xn—30)m, | + -
[ )]
) )
[ ]

o

+ (b15)m, [ (Xn—15)m, + (Xn—16 (11)

(Yn)ms = (00} mg[(Xn)mg + (Xn-31)ms] + (01) me [(Xn—1)mg + (Xn-30)mg + -
+ (b15) mg [ (Xn—15)mg + (Xn—16)ms

The resulty(n) is obtained by the RNS to the binary conversion block by usiireg
Chinese Remainder Theorem (CRT)

Yn = CRT{(Yn)my, (Yn)mp» (Yn)ms } - (12)

Clearly, the input and output conversions, constitute aiB@ant overhead in sys-
tems implemented in RNS.

Reverse conversiow, is last step in digital signal processing in residue num-
ber arithmetic. Result is integer numbeér nt . For comparison this results with
results obtained trough standard signal processing, we fiaghed this example
with conversion of integer number to fixed point presentatio

First step in conversion of integer number to fixed point nemb conversion
of integer number to binary number. Notice that the resulthef two positive
binary numbersby)m, [(Xn—k)m, + (Xn—31+k)m,] Multiplication may ben+ m digit
long, where multiplicand is digit long and multiplier isn digit long.

In our example input signal and coefficient are 7 and 10 bitsg,o
respectively, then result is 17 digits long. Thus, format fanc-
tion Q2=quanti zer(’round ,Format) is Format=[17 O0]. Us-
ing Y_bi n=nunkbi n(Q2, Y.int) we can convert results to binary
number. Finally, for binary to fixed point conversion we usel-f
lowing MATLAB® function q_2=quanti zer (' round’,[19 17]) and
Y_f | oat =bi n2nun( g2, Y_bi n). For example, ifY_RNS=[ 29, 11, 61]
then after RNS to integer conversion we obt#in nt eger =- 123829, which is
converted to binary numbe¥_bi ary=1100001110001001011 which yield
toYfloat= -0.94474029541016.

At the end of every subfilter output computation, data in sagémory need to
be shifted so that new data sampilg1 come to places, and data value, in turn
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7))
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Forward Converter

!

Xn
Fig. 4. Tree modulo architecture of linear phase FIR filteleoigth 32.

replaces the data valug_1. Due this data movement the clock rate can be max-
imized by modifying the data address register in order toaaca circular address
generator. To implement this, a counter can be used whi&ht te$ocation 0 after
counting up td\. The new data sample read-in in this location and computatio
next output is resumed.

If direct form linear phase FIR filter is realized so the inplatta are stored
in one memory, while the coefficients are stored in anothemorg. Then each
output is computed by performingN + 1) /2 MAC operations. Thus, this structure
requires 50% less multiplications than the direct form.

5 Signal processing in residue arithmetic

Transient response is important characteristic (chariaeten) of a system, though
it is often used as the impulse response and sinusoidalysstaig response.
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5.1 Impulse response

Impulse response of a discrete-time (or digital) systemeiinéd as the output
(response), denoted Ibyn), when the input is unit sampt¥n). In integer notation
unit sample is multiplied by scalar 128

128 ifn=0
6(n)_{o, if n+ 0. (13)

In {63,64,65} residue number system unit sample is

5(n):{{2,0,63}, fn=0 14
{0,0,0} if n#0.

Figure 5 shows impulse response of RNS subfilters. The ciftivalues of
the first and the second subfilter must be stored in 8 bits wartlyalues of the
third subfilter must be stored in 9 bit word.

Unit sample on the input for the first subfilter is multiplieg $calar 2, for the
second subfilter is multilied by zero, and for the third suéfilis multiplied by
scalar 63.

60

™

& Hm[TLTT[”[TTJTWH

i,

Samples

Fig. 5. Impulse response of the RNS lowpass subfilters.

For impulse response of whole filter we can use the ChineseaiReler Theo-
rem in order to convert a number presented in the residuersysito conventional
number system. This impulse response is shown in Figure 6.

As it was expected, impulse response of linear phase filt@r §hd impulse
response on the Figure 6 are similar. The quantization efronpulse response,
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Residue arithmetic

Impulse Response
o o
[N IS
:

=]

0 10 20 30 40
Samples

Fig. 6. Impulse respomse of the RNS lowpass filter.

resulting from quantizing the coefficients to 10 bits, iswhan Figure 7. It can
be seen that 10 bits is sufficient to maintain error whichss ldan 4< 1074,
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T?TTTT oo TTTT?T
I S|

Error

Fig. 7. Quantization error for impulse response resultirayf rounding filter
coefficients to 10 bits, including sign.

5.2 Steady state response

Steady state response of RNS FIR digital filter is the secominple. The
term ’'steady state response’ arise naturally in the contéxsinewave analy-
sis. In our example sampled sinewave signal with frequehey 1/8 Hz is
X = 127 sin2mk/16). Sampling frequency i5s =2 Hz. Figure 8 shows steady
state response of RNS subfilters.

Before signal application to the input of a digital filter,etlilter's internal
“state” is assumed to be equal to zero. When input sinewaswiiched on, the
filter takes a while to “settle down” to a perfect sinewavelet same frequency.
The filter response during this “settling” period is callén transient response of
the filter. The response of the linear and time-invariangrilafter the transient re-
sponse, is called the steady-state response, and it @aE&spure sinewave at the
same frequency as the input sinewave, but with amplitudeohade determined by
the filter's frequency response at that frequency. In otherds, the steady-state
response begins when the LTl filter is fully “warmed up” by thput signal. More
precisely, the filter output is the same as it would be if thauinsignal would be
applied since time minus infinity.
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Fig. 8. Steady state response of the RNS lowpass subfilters.

Figure 9 shows steady state response of RNS FIR filter whichdeae us-
ing MATLAB ® designed functiom ns2num( ([ y1 y2 y3], RNS),where[ y1
y2 y3] is steady response of subfilters, d&RdS=[ 63 64 65] is modulo set.

Residue arithmetic
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Fig. 9. Steady state response of the RNS lowpass filter.

FIR filter of lengthN + 1 is fully “warmed up” afteN samples of input; that is,
for input starting at timé& = 0, by timen = N, all internal state delays of the filter
contain delayed input samples instead of their initial geivhen the input signal
is a unit stepu(n) times sinusoid (or, by superposition, any linear comboratf
sinusoids), we may say that the filter output reaches steatly &t timen = N.

In general, complete response of our filter is given by theegugsition of
its zero-state response and, initial-condition respodszo-state response simply
means the response of the filter to an input signal when tlialistate of the filter
is zeroed to begin with. The initial-condition responsefisaurse the response of
the filter to its own initial state, with the input signal bgirero.

Note that, both the phase and group delay of a linear-phdse dile equal to
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N/2 samples of plain delay at every frequency. Since FIR filidength N + 1
implementsN samples of delay, the valud/2 is exactly half of the total filter
delay.

As it was expected, steady state response of linear phase(1i) and steady
state response on the Figure 9 are similar. The quantizatiam of steady state
response resulting from the coefficients quantization tbii®is shown in Figure
10. It can be seen that error is less than 103
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Fig. 10. Quantization error for steady state response tingurom filter coeffi-
cients rounding to 10 bits including sign.

To decrease error coefficients must be quantized to morelibdait precision.
In this case set of modulo must be larger, for exanNS=[ 127, 128, 129].
Coefficient of subfilter for this modulo set are stored in 7;,ahd 8-bit word.

6 Conclusion

An residue number system finite impulse response filter tachire is presented
in this paper. The RNS coding technique is attractive for ftBrs which requires

only multiplication and addition because these operatamsvery fast in an RNS.
Since the RNS implementation, in its fundamental form, poas filter outputs
with full precision (no roundoff error), it is particulantteactive for real time filter-

ing and image data, both of which coarsely quantized to mi@rprocessing and
storage requirements.

An RNS design proposed for the 31th order lowpass FIR filtarmabased on
standard TTL IC packages.
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