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Abstract: New convolution-based multiple-stream error-controliogcand decoding
schemes are introduced. The new coding method applies teesieility property
in the convolution-based encoder for multiple-streamrecamtrol encoding and im-
plements the reversibility property in the new reversibleebi decoding algorithm
for multiple-stream error-correction decoding. The coetgldesign of quantum cir-
cuits for the quantum realization of the new quantum Vitesddl in the quantum do-
main is also introduced. In quantum mechanics, a closedsyistan isolated system
that can’t exchange energy or matter with its surroundimgs@oesn’t interact with
other quantum systems. In contrast to open quantum systdosgd quantum sys-
tems obey the unitary evolution and thus they are reversitdeersibility property in
error-control coding can be important for the following magasons: (1) reversibility
is a basic requirement for low-power circuit design in f@technologies such as in
quantum computing (QC), (2) reversibility leads to supseedy encoding/decoding
operations because of the superposition and entanglemepenties that emerge in
the quantum computing systems that are naturally reversibtl therefore very high
performance is obtained, and (3) it is shown in this papet tthe reversibility rela-
tionship between multiple-streams of data can be used farducorrection of errors
that are uncorrectable using the implemented decodingitigosuch as in the case
of triple-errors that are uncorrectable using the clasgicaversible Viterbi algorithm.
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1 Introduction

Due to the anticipated failure of Moore’s law around the y2@20, quantum com-
puting (QC) will play an increasingly crucial role in buitdi more compact and less
power consuming computers [4, 66, 67]. Due to this fact, awhbse all quantum
computer gates (i.e., building blocks) should be reveedih)11,48,67,72,77,92],
reversible computing will have an increasingly more existein the future design
of regular, compact, and universal circuits and syste(sk) reversible circuits
are circuits that have the same number of inditsand outputgk) and are one-
to-one mappings between vectors of inputs and outputs, theusector of input
states can be always uniquely reconstructed from the veftoutput states. A
(k,k) conservative circuit has the same number of inguded outputk and has
the same number of values (states) in inputs and outputs ffeegsame number of
ones and twos in inputs and outputs for ternary) [4, 67, 7B importance of the
conservativeness property stems from the fact that thigepty reflects the physi-
cal law of energy preservation: no energy can be createdsirayed, but can be
transformed from one form to another. Thus, conservatiggclavill incorporate
the fundamental law of energy preservation into the logisigie of circuits and
systems.

Other motivations for pursuing the possibility of implentiag circuits and sys-
tems using reversible logic (RL) and QC would include itemshsas: (1)ower
the fact that, theoretically, the internal computationsRin systems consume no
power. It is shown in [48] that the amount of energy (heatkigated for every
irreversible bit operation is given bl x TIn(2) whereK = 1.3806505x 1023
JK~1 is the Boltzmann constant arld is the operating temperature, and that a
necessary (but not sufficient) condition for not dissipgtpower in any physical
circuit is that all system circuits must be built using futigversible logical com-
ponents. Thus, reversible logic circuits are informatiossless. For this reason,
different technologies have been studied to implementrs@ve logic in hardware
such asin [4,66,67,72,77,92]: bioinformatics, nanotettyy-based circuits and
systems, adiabatic CMOS VLSI circuit design, optical systeand quantum cir-
cuits. Fully reversible digital systems will greatly re@uthe power consumption
(theoretically eliminate) through three conditions:I¢gical reversibility the vec-
tor of input states can always be uniquely reconstructech fitee vector of output
states, (ii)physical reversibility the physical switch operates backwards as well
as forwards, and (iii) the use ¢ideal-like” switchesthat have no parasitic resis-
tances; (2size since the newly emerging quantum computing technologyt imeis
reversible [4, 11,48, 66, 67,92], the current trends relatemore dense hardware
implementations are heading towards 1 Angstrom (atomie)siat which quan-
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tum mechanical effects have to be accounted for; ands@ed (performance)
if the properties of superposition and entanglement of amechanics can be
usefully employed in the design of circuits and systems)i@ant computational
speed enhancements can be expected [4, 67].

Therefore, while in the classical (irreversible) systemms frequency-to-power
ratio (f/p), or equivalently power-to-frequency ratip/ f ), doesn’t improve much
after certain threshold (level) since the increase in fezmy (i.e., more speed; bet-
ter performance) leads to the increase in power consumptiggdoesn’t exist in
the quantum domain; in the quantum system, speed of progeissiery high (due
to the properties of quantum superposition and entanglraad power consump-
tion is inversely very low, i.e.(f/p) — o or equivalently(p/f) — O.

In general, in data communications between two commumigasiystems
(nodes), noise exists and corrupts the sent data messaggshus noisy cor-
rupted messages will be received. The corrupting noise uallyssourced from
the communication channel. Therefore, error correctiorcahmunicated data
and reversible error correction of communicated batch ¢& dee., parallel data
streams) are highly important tasks in situations wherseaiccurs. Many so-
lutions have been classically implemented to solve for thssical error detec-
tion and correction problems: (1) one solution to solve fworecontrol isparity
checking[30, 31] which is one of the most widely used methods for edeiec-
tion in digital logic circuits and systems, in which re-samgddata is performed in
case error is detected in the transmitted data. This errdetiscted by the parity
checker in the receiver side. Various parity-preservinguits have been imple-
mented in which the parity of the outputs matches that of tiitis, and such
circuits can be fault-tolerant since a circuit output catedea single error; (2)
another solution to solve this highly important problergttfs to extract the cor-
rect data message from the noisy erroneous counterpary, usibg various cod-
ing schemes that work optimally for specific types of stat#tdistributions of
noise [1-3,5-10, 12-18,20-47,49-65,69-71, 74-76, 783996, 98-101].

For example, the manufacturers of integrated circuits)Hase recently started
to produce error-correcting circuits, and one such cir@iithe Tl 74LS636 [19]
which is an 8-bit error detection and correction circuitttbarrects any single-bit
memory read error and flags any two-bit error which is callegle error correc-
tion / double error detection (SECDED). This IC is currerfiyind in high-end
computer systems because of the cost of implementing ansyktd uses error cor-
rection, and the newest computer systems are now using DDRonyawith error-
correction code (ECC). When a single error is detected, 4h&836 goes through
an error-correction cycle; the 74LS636 checks the singlerdlag (SEF) to deter-
mine whether an error has occurred, and if it has then a dimrecycle causes the



4 A. N. Al-Rabadi:

single-error defect to be corrected, and if a double-eramues then an interrupt
request is generated by the double-error flag (DEF) outpaceShe introduction

of the Intel Pentiur® microprocessor, the modern microprocessor design ineorpo
rates the logic circuitry to detect/correct errors proddbat the memory can store
the extra eight bits required for storing the ECC code, inchtithe ECC memory

is 72-bits wide using the eight additional bits to store ti@C=code (i.e., memory
width is 64 data bits + 8 bits for ECC code), and if an error esdhen the mi-
croprocessor runs the correction cycle to correct the eRecently, some memory
devices such as Samstéhgemory also perform an internal error check in which
Samsun§ ECC uses three bytes to check every 256 bytes of memory.

The main contributions of this paper are the introductiomeiv convolution-
based multiple-stream error-control encoding and degpsaimemes that apply the
reversibility property in both the convolution-based emeofor multiple-stream
error-control encoding and in the new reversible Viterbcalding algorithm for
multiple-stream error-control decoding. Also, the congléesign of quantum cir-
cuits for the quantum implementation of the new quantumriiteell (i.e., quan-
tum trellis node) in the quantum domain is introduced. Itis®antroduced in this
paper that the reversibility relationship between muttiptreams of parallel data
can be used for further correction of errors that are unctatde using the imple-
mented decoding algorithm such as in the case of tripleif@ more) that are
uncorrectable using the irreversible Viterbi algorithm.

Basic background in error-control coding, reversible éoghd quantum com-
puting is presented in Section 2. The new reversible erroection method in data
communication is introduced in Section 3. The design of tuarcircuits for the
guantum implementation of the new quantum Viterbi cell tsdduced in Section
4. Conclusions and future work are presented in Section 5.

2 Fundamentals

This Section presents basic background in the topics of-emection coding, re-
versible logic, and quantum computing. The fundamentasgted in this section
will be utilized in the development of the new results inodd in Sections-34.

2.1 Error correction

In the data communication context, noise usually existsigugeénerated from the
channel in which transmitted data are communicated. Sudde raprrupts sent
messages from one end and thus noisy corrupted messagescaieed on the
other end. To solve the problem of extracting a correct nggsf@am its corrupted
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counterpart, noise must be modeled [22, 68, 97] and acaydin appropriate
encoding / decoding communication schemes must be implech§h-3,5-10,12—
18, 20-47, 49-65, 69-71, 74-76, 78-91, 93-96, 98-101].odarcoding schemes
have been proposed and one very important family is the dotivnal codes [1-3,
5,12,17,21,26,32,35,37,39,44,47,49,50,54,56,603611674,79,87,89,91,93,94,
96,98,99]. Figure 1 illustrates the modeling of data comication in the existence
of noise, the solution to the noise problem using an encodecdder scheme, and
the utilization of a new block called the reverser for bijeity (uniqueness) in
multiple-stream (i.e., parallel data) communication.

Each of the two nodes sides in the system shown in Figure listsrts three
major parts: (1) encoding (e.g., generating a convoluticode using a convolu-
tional encoder) to generate an encoded transmitted dadisiessage), (2) channel
noise, and (3) decoding (e.g., generating the correct dotiwn code using the
corresponding decoding algorithm (cf. Viterbi algorithnt) generate the decoded
correct received data message.

In general, in block coding, the encoder receivéddt message block and gen-
erates am-bit code word, and therefore code words are generated oock-bly-
block basis, and the whole message block must be bufferentebtife generation
of the associated code word. On the other hand, messageditscaived serially
rather than in blocks where it is undesirable to use a bufifesuch case, one uses
convloutional coding, in which a convolutional coder getes redundant bits by
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using modulo-2 convolutions.

The binary convolutional encoder can be seen as a finite stathine (FSM)
consisting of arM-stage shift register with interconnectionsrtonodulo-2 adders
and a multiplexer to serialize the outputs of the adders,hickwvanL-bit message
sequence generates a coded output sequence of ighgthM) bits [1-3,5,12,17,
21,26,32,35,37,39,44,47,49,50,54,56,60,61,63, 779 87,89,91, 93,94, 96,
98, 99].

Definition 1. For anL-bit message sequendd;stage shift registen modulo-
2 adders, and a generated coded output sequence of igthgthM) bits, the code
rater is calculated as:

L .
r= m bits / symbol

and for the typical case @f > M, the code rate reduceste= (1/n) bits/symbol.
Definition 2. The constraint length of a convolutional code is the numlbier o
shifts over which a single message bit can influence the emooatput. Thus,
for an encoder with a-stage shift register, the number of shifts required for a
message bit to enter the shift register and then come outsoégual toK =M + 1.
Thus, the encoder constraint length is equato
A binary convolutional code can be generated with coderraték/n) by using
k shift registersn modulo-2 adders, an input multiplexer, and an output miebkigr.
An example of a convolutional encoder with constraint lérg and rate 2/, is
the one shown in Figure 2.

Modulo-2 adder
’/wel
Input >
L
Flip-flop
Modulo-2 adder
Path #2

Fig. 2. Convolutional encoder with constraint length = 3 aate =1 /,. The flip-flop
is a unit-delay element, and the modulo-2 adder is the logm&an difference (XOR)
operation.

Path #1

Output

Flip-flop

The convolutional codes generated by the encoder in Figare gart of what is
generally callechonsystematic code&ach path connecting the output to the input
of a convolutional encoder can be characterized in termi@irhpulse response
which is defined as the response of that path to “1” appliedstonput, with each
flip-flop of the encoder set initially to “0”. Equivalently, evcan characterize each
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path in terms of a generator polynomial defined as the unéydeansform of the
impulse response. More specifically, the generator polyabimdefined as:

M .
9D) =5 4D @)

where g; is the generator coefficients {0,1}, and the generator sequence
{00,01,---,0v } composed of generator coefficients is the impulse respainte o
corresponding path in the convolutional encoder, Brid the unit-delay variable.

Example 1. For the convolutional encoder in Figure 2, path #1 impulse re
sponse is (1, 1, 1), and path #2 impulse response is (1, 0,H)s, Taccording to
Equation (1), the following are the corresponding genegpfiolynomials, respec-
tively, where addition is performed in modulo-2 additioitfametic:

01(D)=1-D°+1.-D*+1.D?
=14+D+D?

g2(D) =1-D°+0.D*+1.D?
=1+D?

For a message sequence (10011), the following i®Hd®main polynomial repre-

sentation:
m(D) =1-D°+0-D*+0.-D?+1-D341-D*

=1+D3+D*

As convolution in time domain is transformed into multiglion in theD-domain,
path #1 output polynomial and path #2 output polynomial aréoflows, respec-
tively:

c1(D) = g1(D)M(D) = (1+D+D?)(1+ D3+ D%

=1+D+D?+D*+D°
c2(D) = go(D)mM(D) = (14 D?)(1+ D3+ D%
=1+D?+D3+D*+D%+D°
Therefore, the output sequences of paths #1 and #2 are as$plespectively:

Output sequence of path #1: (1111001)
Output sequence of path #2: (1011111)

The resulting encoded sequence from the convolutionaldarda Figure 2 is
obtained by multiplexing the two output sequences of pathantl #2 as follows:

c=(11,10,11,11,01,01,11)
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Example 2. For the convolutional encoder in Figure 2, the following exam-
ples of encoded data messages:

my = (11013 — ¢; = (1101010001011
mp = (00011 — ¢, = (0000001101011
mg = (01007 — 3 = (0011101111101

In general, a data message sequence of lelndfits results in an encoded se-
quence of length equals L + K — 1) bits. Usually a terminating sequence of
(K —1) zeros called the tail of the message is appended to the [ast lit of the
message sequence in order for the shift register to be egktoiits zero initial state.

The structural properties of the convolutional encoder (efgure 2) can be
represented graphically in several equivalent repretienta(cf. Figure 3) using:
(1) code tree, (2) trellis, and (3) state diagram. The sabntaingL + K) levels
wherelL is the length of the incoming message sequencekaigithe constraint
length of the code. Therefore, the trellis form is preferoa@r the code tree form
because the number of nodes at any level of the trellis doesamiinue to grow
as the number of incoming message bits increases, but ratteenains constant
at X1, whereK is the constraint length of the code. Figure 3 shows the wario
graphical representations for the convolutional encodd&igure 2.

Therefore, any encoded output sequence can be generatethi@orrespond-
ing input message sequence using the following equivalethoas: (1) circuit of
the convolutional encoder (cf. Figure 2), (2) polynomiahgetor (cf. Examples 1
and 2), (3) code tree (cf. Figure 3a), (4) trellis (cf. FigBl®, and (5) state diagram
(cf. Figure 3c).

An important decoder that uses the trellis representationotrect received
erroneous messages is the Viterbi decoding algorithm 2898]. The Viterbi al-
gorithm is a dynamic programming algorithm which is used ol he maximum-
likelihood sequence of hidden states, which results in aesgce of observed events
particularly in the context of hidden Markov models (HMMZRB]. The Viterbi al-
gorithm forms a subset of information theory [1,22], and baen extensively used
in a wide range of applications including speech recognjticeyword spotting,
computational linguistics, bioinformatics, and in comnuations including digi-
tal cellular, dial-up modems, satellite, deep-space amdl@gs local area network
(LAN) communications.

The Viterbi algorithm is a maximum-likelihood decoder whiis optimum for
a noise type which is statistically characterized as an thadiwWhite Gaussian
Noise (AWGN). This algorithm operates by computing a meficevery possible
path in the trellis representation. The metric for a spegéith is computed as the
Hamming distance between the coded sequence representbdtipath and the
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Fig. 3. Various representations for the circuit of the cdational encoder in Figure 2: (a) code tree,
(b) trellis, and (c) state diagram. Solid line is the inputvafue “0” and the dashed line is the input
of value “1”. The binary label on each branch is the encodeutput as it moves from one state to
another. The state encoding of the states can §a as00,b = 10,c =01,d = 11}.

received sequence. For a pair of code vectarandc, that have the same number
of elements, the Hamming distandéc,, c;) between such a pair of code vectors
is defined as the number of locations in which their respeatiements differ. In
the Viterbi algorithm context, the Hamming distance is catep by counting how
many bits are different between the received channel sypdioland the possible
channel symbol pairs, in which the results can only be “0”,80.“2". Therefore,
for each node (i.e., state) in the trellis, the Viterbi alfon compares the two paths
entering the node. The path with the lower metric is retaiaed the other path is
discarded. This computation is repeated for every Ig¢\elthe trellis in the range
M < j <L, whereM = (K —1) is the encoders memory andis the length of
the incoming message sequence. The paths that are retagedllad survivor or
active paths. In some cases, applying the Viterbi algoritbads to the following
difficulty: when the paths entering a node (state) are coatpand their metrics
are found to be identical then a choice is made by making asglies, flipping

a fair coin). The Viterbi algorithm is a maximum likelihoo@guence estimator,
and the following procedure and Examples 3 - 5 illustratedisiiled steps for the
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implementation of this algorithm [1,2,5,12,17, 21, 26,489,44,54, 60, 61,63, 71,
89-91, 96].

Algorithm Viterbi

1. Initialization step Label the left-most state of the trellis (i.e., all zerotstat
level 0) as 0.

2. Computation stepLet j =0,1,2,..., and assume at the previojishe fol-
lowing is performed:

(a) All survivor paths are identified;
(b) The survivor paths and its metric for each state of thiidrare stored.

Then, at level (clock time) j + 1) and for all the paths entering each state of
the trellis, compute the metric by adding the metric of theoming branches
to the metric of the connecting survivor path from leyel Thus, for each
state, identify the path with the lowest metric as the swwof step(j + 1),
therefore updating the computation.

3. Final step Continue the computation until the algorithm completes the for-
ward search through the trellis and thus reaches the tetimgnaode (i.e.,
all zero state), at which time it makes a decision on the marintikelihood
path. Then, the sequence of symbols associated with thaigpetleased to
the destination as the decoded version of the received seque

Example 3. Suppose that the resulting encoded sequence from the cenvol
tional encoder in Figure 2 is as follows:

¢ = (000000000D

Now suppose a noise corrupts this sequence, and the nomyedsequence is as
follows:
¢ = (0100010009

Using the Viterbi algorithm, Figure 4 shows the resultingpsby-step illustration
[39] to produce the survivor path which generates the corseat message =
(000000000

Example 4. For the convolutional encoder in Figure 2, path #1 impulse re
sponse is (1, 1, 1), and path #2 impulse response is (1, 0,hl)s, The following
are the corresponding generating polynomials, respégtive

01(D)=1-D°+1.D'+1.D?
—=1+D+D?

92(D)=1-D°+0.-D!+1.D?
=1+D?
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Fig. 4. The illustration of the steps of the Viterbi algorittwhen applied for Example 3, where
the bold path (in leve] = 5) is the survivor path.

For a message sequence (101), the following i&ttowmain polynomial represen-
tation:
m(D) =1-D°+0.D*+1-D?

=1+D?
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As convolution in time domain is transformed into multiglion in theD-domain,
the path #1 output polynomial and path #2 output polynomialas follows, re-
spectively, where addition is performed in modulo-2 aridtic

c1(D) = g1(D)m(D) = (1+D+D?)(1+D?)

=1+D+D3+D*
c2(D) = g2(D)m(D) = (1+D?)(1+-D?)
=1+D*

Therefore, the output sequences of paths #1 and #2 are as$pllespectively:

Output sequence of path #1: (11011)
Output sequence of path #2: (10001)

The resulting encoded sequence from the convolutionaldarda Figure 2 is ob-
tained by multiplexing the two output sequences of pathsnl#@ as follows:

c=(11,10,00,10,11)

Now suppose a noise corrupts this sequence, and the nosyedcsequence is as
follows:
¢ =(01,10,10,10,11)

Using the Viterbi algorithm, the following is the resultisgrvivor path which gen-
erates the correct sent message (11,10,00,10,11).

Jj=0 j=1 j=2 j=3 j=4 J=

Fig. 5. The resulting survivors of the Viterbi algorithm whepplied for
Example 4, where the bold path is the survivor path.

A difficulty with the application of the Viterbi algorithm @cirs when the re-
ceived sequence is very long. In this case the Viterbi allgoriis applied to a
truncated path memory using a decoding window of lengthtgrear equal five
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times the convolutional code constraint lengthin which the algorithm operates
on a frame-by-frame of the received sequence each of léng®K. The decoding

decisions made in this way are not a truly maximum likelihobdt they can be

made almost as good provided that the decoding window isémogigh. Another

difficulty is the number of errors; for example, in case o&therrors, the Viterbi al-

gorithm when applied to a convolutional coderof 1/, andK = 3 cannot produce

a correctable decoded message from the incoming erroneessage. Exceptions
are triple-error patterns that spread over a time spat

Example 5. Suppose an all-zero sequerce:- (0000000000 is generated by
the convolutional encoder in Figure 2. For a received secgi@ontaining three
errorsc¢’ = (1100010000, Figure 6 shows the breakdown of the Viterbi algorithm
when implemented to the convolutional encoder in Figur& 2=(3 andr = 1/5)
as it fails to correct for a triple-error pattern.

Received Sequence 11 00 01 00
‘e

Jj=0 j=1 Jj=2 j=3 j=4
Fig. 6. The illustration of the failure of the Viterbi algthim in Example 5,
where the correct path has been eliminated in lg¢vel3.

2.2 Reversible logic

In guantum mechanical systems, a closed system is an idagstem that doesn't
exchange energy or matter with its surroundings (i.e., Wibegssipate power) and
doesn't interact with other quantum systems. Closed quargystems obey the
unitary evolution and therefore they are reversible.

In general, an(n,k) reversible circuit is a circuit that hasnumber of inputs
andk number of outputs and is one-to-one mapping between veatanputs and
outputs, thus the vector of input states can be always ulyigaeonstructed from
the vector of output states [4,11,48,66,67,72,77,92].sTh(k, k) reversible map
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is a bijective function which is both (1) injective (one<wae or (1:1)) and (2) sur-
jective (onto). (Such bijective systems are also known gsipellent, equipotent,
and one-to-one correspondence.) The auxiliary outputsatieganeeded only for
the purpose of reversibility are called garbage outputeséhare auxiliary outputs
from which a reversible map is constructed (cf. Example &)eréfore, reversible
circuits (systems) are information-lossless.

Geometrically, achieving reversibility leads to value spgartitioning that
leads to spatial partitions of unique values. Algebraycalhd in terms of sys-
tems representation, reversibility leads to multi-inputltiroutput (MIMO) bijec-
tive maps (i.e., bijective functions). An algorithm callezlersible Boolean func-
tion (RevBF) that produces a reversible form from an irrside Boolean function
is as follows [4].

Algorithm RevBF

1. To achieve(k,k) reversibility, add sufficient number of auxiliary output
variables such that the number of outputs equals the nuniilbgputs. Al-
locate a new column in the mapping table for each auxiliarnatde.

2. For construction of the first auxiliary output, assign astantC; to half
of the cells in the corresponding table column (e.g., ze@s) the second
half as another consta@b (e.g., ones). For convenience, one may assign
C, to the first half of the column, an@, to the second half of the column
(cf. Table 1a, columii\y).

3. For the next auxiliary outputf non-reversibility still exists;Then assign
for identical output tuples (irreversible map entries)ued which are half
zeros and half ones, and then assign a constant for the rderdhmat are
already reversible.

4. Do step 3 until all map entries are reversible.

Example 6. The standard two-variable Boolean equivalence (XNOR):
W =c® dis irreversible. The following table lists the mapping campnts:

d[w]

T[]

POl O
P OlO| -

Applying the above RevBF algorithm, the following are fomsgible reversible
two-variable Boolean maps for the XNOR function:
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Table 1. Four possible (2, 2) reversible maps for the BooMS®R (Boolean equivalence).

[eld[[W[wi] [c[d[[W]Wi] [c]d][W[Wi] [c[d]]W][W]
ojo[1]o0] [o]o[1[&] [o]o][1]0] [o]o][i[1
0|10 0|10 JHIE 0/1][0
1[0][ 0 1[0][ 0 1[0][ 0 1[0[[ 0
(a2 2] [Z]a1]0] [T[11[s| [1[1][1]0

(€Y (b) (©) (d)

For example, using the RevBF algorithm, the constructiorthef reversible
map in Table la is obtained as follows: sindkis irreversible, assign auxiliary
(“garbage”) outputVy and assign the first half of its values the constant “0” and
the second half another constant “1”. The new XNOR map is rewsrsible. This
gate is also called the inverted Feynman gate or invertedr@ltad-NOT (inverted
C-NOT) gate in whichwy = candW =c®d = (c&d)’ (cf. Feynman gate in
Figure 11a.)

2.3 Quantum computing

Quantum computing (QC) is a method of computation that usgdesed-system
dynamic process governed (for a single particle) by the @ober Equation (SE)
[4,67]. The single-particle one-dimensional time-depsnidSE (TDSE) takes the
following general form:

(h/2m)? 02|y) _.hay
2m o9 +V|I’U>_|5‘r ot @
or P
i) =in?®) ©

where h is Planck constant (6.62610°%* Js), 1 = h/(2m) is the reduced
Planck constantV (x,t) is the potential,m is particle massj is the imaginary
number, [¢(x,1)) is the quantum stateH is the Hamiltonian operatorH =
—[(h/2m)?/2m0% 4+ V), and O? is the Laplacian operator. While the above
holds for all physical systems, in the quantum computing Y @&itext, the time-
independent SE (TISE) is normally used [4, 67]:

Ply) = 23V -E)w) @

where the solutiony) is an expansion over orthogonal basis stégesdefined in
Hilbert spaceH as follows:

W) =Y cla) (5)
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where the coefficients are called probability amplitudes, afgl|? is the probabil-
ity that the quantum statey) will collapse into the (eigen) statg). The proba-
bility is equal to the inner produdt@|y)|?, with the unitary conditiory |ci|? = 1.

In QC, a linear and unitary operator is used to transform an input vector of
guantum_bits(qubits) into an output vector of qubits [4,67]. In two-vatlQC, a
qubit is a vector of bits defined as follows:

qubity = |0) = H . qubit, = [1) = m (6)

A two-valued quantum statgy) is a superposition of quantum basis staigg
such as those defined in Equation (6). Thus, for the orthoaboomputational
basis state§|0), |1)}, one has the following quantum state:

W) = al0)+B[1) (7)
whereaa* = |a|? = po = the probability of having statgp) in state|0), BB* =
|B|? = p1 = the probability of having statg) in state|1), and|a|?+|B]° = 1. The
calculation in QC for multiple systems (e.g., the equivatsra register) follow the

tensor product®) [4]. For example, given two stategs) and|y») one has the
following QC:

|Pr2) = [Yr2) = |Yn) ® [Y2)
= (01]0) + B1[1)) @ (02|0) + (1)) (8)
= a102|00) + a132|01) + B102|10) + B132|11)

A physical system, describable by the following equatiof6[4:
|) = c1|Spinup + co|Spindowr) 9)

(e.g., the hydrogen atom), can be used to physically impkradéwo-valued QC.
Another common alternative form of Equation (9) is:

1 1
|‘I’>=C1‘+§>+Cz‘—§> (10)

Many-valued QC (MVQC) can also be accomplished [4, 67]. [Rerthree-
valued QC, thequbit becomes a 3-dimensional vectqudit (quantum dscrete

digit), and in general, for MVQC the qudit is of dimension many. Ezample,
one has for 3-state QC (in Hilbert spddé¢ the following qudits:

1 0 0
qudi,=[0) = |0|, qudig=11)= [1]|, qudib=]2)= |0 (11)
0 0 1
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A three-valued quantum state is a superposition of threatgua orthonor-
mal basis states (vectors). Thus, for the orthonormal caéatiomal basis states
{]0),|1),]2)}, one has the following quantum state:

(@) = al0)+B[1) +vI2) (12)

whereaa* = |a|? = py =the probability of having stathp) in state|0), B3* =
|B|?> = p1 =the probability of having statgp) in state|1), yy* = |y|?> = p, =the
probability of having statéy) in state|2), and|a |2+ |B]%+|y|? = 1.

In general, for am-valued logic, a quantum state is a superposition gfian-
tum orthonormal basis states (vectors). Thus, for the adhmal computational
basis state$|0), |1),...,|n—1)}, one has the following quantum state:

n-1
= 13
) kZOC|<|CI>|< (13)

where:ypscci = Shplcl> = 1.

The calculation in QC for many-valued multiple systemsdwilthe tensor
product in a manner similar to the one demonstrated for talaad QC in Equation
(8).

As stated previously, while an open quantum system doesatttevith its en-
vironment (i.e., its surroundings or bath) and thus digsig@ower resulting in a
non-unitary evolution, a closed quantum system is an isdlaystem that doesn’t
exchange energy or matter with its surroundings and thexedoesn'’t dissipate
power resulting in a unitary evolution (i.e., unitary trérsnation or unitary ma-
trix) and hence they are reversible. A physical system cmy trapped ions
under multiple laser excitations can be used to reliablyl@mgnt MVQC [66]. A
physical system in which an atom (particle) is exposed toegifip potential field
(function)V (x) can also be used to implement MVQC (two-valued being a specia
case) [4,67]. In such an implementation, the (resultitig)inct energy stateare
used as the orthonormal basis states. The latter is iltestia Example 7 below
which is an example of implementing MVQC by exposing a phatio a potential
field V where the distinct energy states are used asitti®mnormal basis states

Example 7. We assume the following constraints: (1) spring potentigl) =
(1/2)kx?, wherem s a particle k = mw? is spring constant, ana is the angular
frequency ( = 27T frequency), and (2) boundary conditions. Also, assumirg th
solution of the TISE in Equation (4) for these constraintsfishe following form
(i.e., the Gaussian function):

Yx)=Ce 9z
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wherea = mw/%. The general solution for the wave functitgr), (for a spring
potential) is:

c=[2) Atnivay

whereHp(x) are the Hermite polynomials. This solution leads to the sage of
evenly spaced energy levels (eigenvalugsharacterized by a quantum number
n as follows:
1
2
The distribution of the energy states (eigenvalues) anid #ssociated proba-
bilities are shown in Figure 7.

AISNA S
S0 ' Harmonic oscillator |
™\ ,mﬁ:'m’ potential and fa) ,
wavetunctions o L
"IJD _f; | }\'-\ A | .'I\ li"[]

-
|II |

Fig. 7. Harmonic oscillator (HO) potential and wavefunogo (a) wavefunctions for various
energy levels (subscripts), (b) spring potentiék) and the associated energy levEls and (c)
probabilities for measuring partichain each energy stat&g).

A closed-system quantum circuit is a composition of quangates with the
following properties [4, 67]: (1) must be reversible, (2) shihhave an equal hum-
ber of inputsk and outputs, (3) doesn’t allow fan-out, (4) is constrained to be
acyclic (i.e., feedback (loop) is not allowed), and (5) tramsformation performed
is unitary (i.e., a unitary matrix). The quantum Viterbiaiit design in the quan-
tum domain using the corresponding basic quantum prinsitivil be completely
shown in Section 4.
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3 Reversible Error Correction via Reversible Viterbi Algorithm

While in subsection 2.1 the error correction of communidadata was done for
the case of single-input single-output (SISO) systems, gbction introduces re-
versible error correction of communicated batch (paraédata in multiple-input
multiple-output (MIMO) systems. Reversibility in pardfigased data communica-
tion is directly observed since:

O1=17 (14)

whereO; is theuniqueoutput (transmitted) data from node #1 dnds theunique
input (received) data to node #2.

In MIMO systems, the existence of noise will cause an errat thay lead to
irreversibility in data communication (i.e., irreverdity in data mapping) since
O; # I>. As will be introduced in this and the following sections pestively,
the implementation of reversible error correction can bdgumed (1) in software
using the new reversible error-correction algorithm andr{Zardware using quan-
tum error correction hardware. The following algorithm|led Reversible Viterbi
(RV) Algorithm, introduces the implementation of revetsikrror correction in the
parallel data communication.

Algorithm RV

1. Use the RevBF Algorithm to reversibly encode the commateid batch of
data.

2. Given a specific convolutional encoder circuit, deteenihe generator
polynomials for all paths.

3. For each communicated message within the batch, determinentoeled
message sequence.

4. For each received message, use the Viterbi Algorithm to decloeed-
ceived erroneous message.

5. Generate the total maximume-likelihood trellis residtinom the iterative
application of the Viterbi decoding algorithm.

6. Generate the corrected communicated batch of data messsag

7. End

The convolutional encoding for the RV algorithm can be penfedserially us-
ing a single convolutional encoder from Figure 2, oparallel using the general
parallel convolutional encoder circuit shown in Figure 8which severals con-
volutional encoders operate in parallel for encodgmgumber of simultaneously
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Fig. 8. General MIMO encoder circuit for the parallel gertiena of convolutional codes where
each box represents a single SISO convolutional encodérasithe one shown in Figure 2.

submitted messages (i.e., data message set of cardirstig) €qual tcs) gener-
ated froms nodes.

Example 8. The reversibility implementation (e.g., RevBF Algorithmpon
the following input bit stream{m; = 1,my, = 1,mz = 1} produces the following
reversible set of message sequences:

my = (101)
mp = (001)
mg = (011)

For the convolutional encoder in Figure 8, the followinghe D-domain polyno-
mial representations, respectively:

my(D)=1-D°+0-D'+1.D?=1+D?
mp(D) =0-D°+0-D'+1.D? = D?
mg(D) =0-D°+1.D'+1.D? =D +D?
The resulting encoded sequences are generated in pasaftdiaws, respectively:

¢; = (1110001011
c; = (0000111011
c3 = (0011010111

Now suppose hoise sources corrupt these sequences, andislyereceived se-
guences are as follows:
¢; = (1111001001

¢, = (0100101011
¢, = (0010011111

Using the RV algorithm, Figure 9 shows the resulting survipaths which gen-
erate the correct sent messagés; = (111000101}, ¢, = (000011101} c3 =
(001101011}}.
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Fig. 9. The resulting survivor paths of the RV algorithm wizaplied to Example 8.

As in the irreversible Viterbi Algorithm, in some cases, Bjipg the reversible
Viterbi (RV) algorithm leads to the following difficultieg1) when the paths enter-
ing a node (state) are compared and their metrics are foubd tdentical then a
choice is made by making a guess (i.e., flipping a fair coi2) when the received
sequence is very long and in this case the reversible Vitddarithm is applied to
a truncated path memory using a decoding window of lengthtgreor equal five
times the convolutional code constraint lengthin which the algorithm operates
on a frame-by-frame of the received sequence each of ldngtBK, and the de-
coding decisions made in this way are not a truly maximumlik®d, but they
can be made almost as good provided that the decoding wirglteng enough;
(3) the number of errors: for example, in case of three erthis Viterbi algorithm
when applied to a convolutional coderf- !/, andK = 3 cannot produce a cor-
rectable decoded message from the incoming erroneous (@oisypted) message.
(Exceptions are triple-error patterns that spread ovena gpan> K.)

Yet, parallelism in multi-stream data submission (trarssioin) allows for the
possible existence of extra relationship(s) between thenfited data-streams that
can be used for (1) detection of error existence and (2) éurtdorrection after
RV algorithm in case the RV algorithm fails to correct for thecurring errors.
Examples of such inter-stream relationships are: (1) ypdeten and odd) rela-
tionship between the corresponding bits within the intezaam submitted data, (2)
reversibility relationship between the parallel subnuittéata streams and this re-
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lationship exists from applying a known reversible mappsugh as the RevBF
algorithm, or (3) combination of parity and reversibilitygperties. The reversibil-

ity property in the RV algorithm produces a reversibilityatonship between the
sent parallel streams of data, and this known reversihiligpping can be used to
correct the uncorrectable errors (e.qg., triple errors)ahtihe RV algorithm fails to

correct.

Example 9. The following is a version of the RevBF algorithm that proésic
reversibility as follows:

Algorithm RevBF (Version 1)

1. To achieve(k,k) reversibility, add sufficient number of auxiliary output
variables (starting from right to left) such that the numbkoutputs equals
the number of inputs. Allocate a new column in the mappingtetéor
each auxiliary variable.

2. For construction of the first auxiliary output, assign astantC; = “0” to
half of the cells in the corresponding table column, and #wrd half as
another constar@@,= “1". AssignC; to the first half of the column, anc,
to the second half of the column.

3. For the next auxiliary outputf non-reversibility still existsThen assign
for identical output tuples (irreversible map entries)ued which are half
ones and half zeros, and then assign a constant for the rderdhmat are
already reversible which is the ones complement (NOT; isieey) of the
previously assigned constant to that remainder.

4. Do step 3 until all map entries are reversible.

For the parallel sent bit streafid, 1,1} in Example 8 in which the reversibility
implementation (using Version 1 of the RevBF Algorithm) guces the follow-
ing reversible sent set of data sequendgs; = (101),m, = (001),mz = (011)}.
Suppose thatny and m, are decoded correctly and is still erroneous due to
submission. Figure 10 shows possible tables in which ecuse; exist:

m(|1/01 m|[1({0]1 m|[1]0]1 m|[1]01
m (0|01 m(|0|0]1 m 001 m(|0]0]1
mg{{O0|1]|1 mz|{0]10]|1 mg(f1(1]1 mg ([1]0]1
() (b) (c) (d)
m(|1(0]1 my 0|1 m(|1]0]1 m(|1(0]1
m (001 m (|00 1 m (0|01 m (001
mg (|O121(0 mg ([2]0]0 mg (f1(1|0 mz ({0100

(e) ® (9) (h)
Fig. 10. Tables for possible errors in data streagthat is generated by the RevBF Algorithm V1:
(a) original sent correct (uncorruptenf) that resulted from the application of the RevBF Algorithm
V1, and (b)—(h) possibilities of the erroneous receiued
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Note that the erroneousy is Figures 10b-10e and 10g-10h are correctable
using the RV algorithm since less than triple-errors exits, the triple error as in
Figure 10f is (usually) uncorrectable using the RV algarithYet, the existence
of the reversibility property using the RevBF algorithm adadformation that can
be used to correatns as follows: By applying the RevBF Algorithm (Version 1)
from right-to-left in Figure 10f one notes that in the secamiumn (from right)
two “0” cells are added in the top in the correctly receivedandn, messages,
which means that in the most right column the last cell musilbsince otherwise
the top two cells in the correctly receivend; andm, messages should have been
“0” and “1” respectively to achieve value space-partitiggni Now, since the 3rd
cell of the most right column must be “1” then the last cell bét2nd column
from the right must be “1” also because of the uniquenessinagent according
to the RevBF algorithm (Version 1) for value space-pantitig between the first
two message$sm;, my} and the 3rd message;. Then, and according to the RevBF
algorithm (Version 1) the 3rd cell of the last column fromhignust have the value
“0” which is the ones complement (NOT) of the previously gaesid constant “1”
to the 3rd cell of the 2nd column from the right. Consequeniklg correct message
mg = (011) is obtained.

4  Quantum Circuit Design of the New RV Algorithm

The reversible hardware implementation for each trellidenn the (reversible)
Viterbi algorithm requires the following reversible commmts: reversible modulo-
2 adder, reversible arithmetic adder, reversible sulira@®S) and reversible se-
lector (i.e., reversible multiplexer) to be both used in qussible design of the
corresponding reversible comparator (RC). Table 2 showdrtith tables of an ir-
reversible half-adder (HA), irreversible subtractor, ameversible full-adder (FA).

Table 2. Truth tables: (a) irreversible half-adder (HA) ameversible subtractor, and
(b) irreversible full-adder (FA).

Inputs Outputs
Inputs || Half-Adder Subtractor alblal[[s]
Outputs Outputs 00|00 O
a| b atb] Cary| a—b | Borrow 0Ojo0|1y1)0
o|1|0 1 0
0|0 0 0 0 0
o|1]|1 0 1
0|1 1 0 1 1
1710]0 1 0
110 1 0 1 0
111 0 1 0 0 1101 0 1
1(1]0 0 1
1111 1 1

€Y (b)
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While each quantum circuit is reversible, not each revégstlrcuit is quan-
tum [4, 67]. Figure 11 shows the various quantum circuitstf@ quantum re-
alization of each quantum trellis node in the correspondimyersible) Viterbi
algorithm. Figures 1la-11c present fundamental quantuiesdd, 67]. Figures
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Fig. 11. Quantum reversible circuits for the quantum resalon of each trellis node in the corre-
sponding (reversible) Viterbi algorithm: (a) quantum XORte (Feynman gate; Controlled-NOT
(C-NOT) gate), (b) quantum Toffoli gate (Controlled-Canked-NOT (G-NOT) gate), (c) quantum
multiplexer (Fredkin gate; Controlled-Swap (C-Swap) gafd) quantum subtractor, (e) quantum
half-adder (QHA), (f) quantum full-adder (QFA), (g) quamtequality-based comparator that com-
pares two 2-bit numbers where an isolated XOR symbol meansuatgm NOT gate, and (h) basic
quantum reversible Viterbi (QV) cell (i.e., quantum revels trellis node) which is made of two
Feynman gates, one QHA, one QFA and one quantum comparatomwitiplexing (QCM). The
guantum comparator can be synthesized using a quantunastdst{QS) and a Fredkin gate. The
symbol @ is logic XOR (exclusive OR; modulo-2 addition),is logic AND, V is logic OR, and is
logic NOT.

11d-11g show basic quantum arithmetic circuits of: quansuhtractor (Figure
11d), quantum half-adder (Figure 11e), quantum full-adéégure 11f), and the
guantum equality-based comparator (Figure 119g) [4,6quié 11h introduces the
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basic quantum Viterbi cell (i.e., quantum trellis node) ghhis made of two Feyn-
man gates, one QHA, one QFA and one quantum comparator wiltiptexing
(QCM).

Figure 12 shows the logic circuit design of an iterative rwtwto compare
two 3-digit binary numbersX = x3 xo X3 andY = y1y2y3, and Figure 13 presents
the detailed synthesis of a comparator circuit which is maide comparator cell
(Figure 13a) and a comparator output circuit (Figure 13bfje €xtension of the
circuit in Figure 12 to compare two-digit binary numbers is straightforward by
utilizing n-cells and the same output circuit.

X0 X2 2 X33

1
a a aq —r—> O1 (x<Y)
Output i 0 (x=
by=0 Cell, by Cell, by Cell, by Cireuit —E—> h (x=Y)
’ —t—> O3 (x>y)
1

Y1Y2Yy3.

@ (b)

Fig. 13. Designing a comparator circuit: (a) comparator @ed (b) comparator output circuit.

Figure 14 illustrates the quantum circuit synthesis for¢beparator cell and
the output circuit (which were shown in Figure 13), and FegLb shows the design
of a quantum comparator with multiplexing (QCM) where Figur5a shows an
iterative quantum network to compare two 3-digit binary rnars and Figure 15c
shows the complete design of the QCM. The extension of thatgoacircuit in
Figure 15a to compare two-digit binary numbers is straightforward by utilizing
n quantum cells (from Figure 14a) and the same output quanituita(in Figure
14b).
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Fig. 14. Quantum circuit synthesis for the comparator cedl autput circuit in Figure 13: (a)
quantum comparator cell and (b) quantum comparator oufpruit
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Fig. 15. Designing a quantum comparator with multiplexi@CV): (a) an iterative quantum
network to compare two 3-digit binary numbers, (b) symboihaf quantum comparator circuit
in (&), and (c) complete design of QCM where the number 3 osslimdicates triple lines
and (3) beside sub-circuits indicates triple circuits.(itbree copies of each sub-circuit for the
processing of the triple-input triple-output lines.)
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Figure 16 shows the complete design of a quantum trellis iioele quantum
Viterbi cell) in the irreversible and reversible Viterbigalrithms that was shown
in Figure 11h. The design of the quantum trellis node showRigure 16f pro-
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Fig. 16. The complete design of a quantum trellis node inttexérsible and reversible Viterbi
algorithms that was shown in Figure 11h: (a) quantum cirttizit is made of two Feynman gates
(i.e., two quantum XORSs) to produce the difference betweearning received bits¥;Ay) and
trellis bits B1B,) followed by quantum half-adder (QHA) to produce the copmsling sum
(s1¢1) which is the Hamming distance for the first line entering tiedlis node, (b) quantum
circuit that is made of two Feynman gates (i.e., two quantudRX) to produce the difference
between incoming received bitdjA3) and trellis bits B]B5) followed by quantum half-adder
(QHA) to produce the corresponding susady) which is the Hamming distance for the second
line entering the trellis node, (c) logic circuit composdédX1A and quantum full-adder (QFA)
that adds the current Hamming distance to the previous Hamdistance, (d) quantum circuit
in the first line entering the trellis node for the logic ciittn (c) that is made of a QHA followed
by a QFA, (e) quantum circuit in the second line entering thdi$ node for the logic circuit in
(c) that is made of a QHA followed by a QFA, and (f) quantum canapor with multiplexing
(QCM) in the trellis node that compares the two entering metumbers: X = s3s4¢* and

Y = s;s;¢c** and selects using control lin®; the path that produces the minimum entering
metric (i.e., X <Y).

ceeds as follows: (1) two quantum circuits for the first ancose lines entering
the trellis node each is made of two Feynman gates (i.e., vemtym XORS) to
produce the difference between incoming received bits egilistbits followed by
quantum half-adder (QHA) to produce the corresponding suhich is the Ham-
ming distance) are shown in Figures 16a and 16b, (2) logauiticomposed of a
QHA and a quantum full-adder (QFA) that adds the current Hargrdistance to
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the previous Hamming distance is shown in Figure 16c¢, (3)duwantum circuits
for the first and second lines entering the trellis node eadymthesized according
to the logic circuit in Figure 16c¢ (which is made of a QHA falled by a QFA) are
shown in Figures 16d and 16e, (4) quantum comparator withiphexing (QCM)
in the trellis node that compares the two entering metric e (i.e., two entering
Hamming distances) and selects using the control @pehe path that produces
the minimum entering metric (i.e., minimum entering Hamgndfistance) is shown
in Figure 16f.

In Figures 16¢-16e, the current Hamming mefgg, ¢, } for the first entering
path of the trellis node and the current Hamming me{sg, c,} for the second
entering path of the trellis node is always made of two bi, (@1, or 10). If
more than two digits (two bits) is needed to represent theipus Hamming met-
ric for the first or second entering paths of the trellis nodgy( (5)10 = (101),),
then extra QFAs are added in the logic circuit in Figure 16d eansequently in
the quantum circuits shown in Figures 16d-16e. Also, in thgecthat when the
paths entering a quantum trellis node (state) are comparédreeir metrics are
found to be identical then a choice is made by making a gueskdose any of
the two entering paths, and this is automatically perforimetthe quantum circuit
in Figure 16f since if {sg, s4,C"} < {s3, 53,¢™}) thenO; ="1" and thus chooses
X = {s3, 4, ¢*}, elseO, =*0" and then it choose¥ = {s}, s;, ¢} in both cases

of ({Ss, &4, €'} > {83,5,¢™}) or ({83, 4, €'} = {83, 8, € }).

5 Conclusions and Future Work

This paper introduces new convolution-based multipleastr error-correction en-
coding and decoding methods that implement the revetsiljgroperty in the
convolution-based encoder for multiple-stream errort@rencoding and in the
new reversible Viterbi (RV) decoding algorithm for multgstream error-control
decoding. This paper also introduces the complete symstldsgjuantum circuits
in the quantum domain for the quantum implementation of #we guantum trellis
node (i.e., quantum Viterbi cell). It is also shown in thigppathat the relationship
of reversibility in multiple-streams of communicated ghaladata can be used for
further correction of errors that are uncorrectable usigimplemented decoding
algorithm such as in the cases of the failure of the RV alforiin correcting for
more than two errors.

While an open quantum system interacts with its environngeet, its sur-
roundings or bath) and thus dissipates power which resudt imon-unitary evo-
lution, a closed quantum system doesn’t exchange energyatienwith its sur-
roundings and therefore doesn’t dissipate power whicHtesua unitary evolution
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(i.e., unitary matrix) and hence it is reversible. Since poveduction has become
the current main concern for digital logic designers afterfgrmance (speed), re-
versibility property in error-control coding is highly ingptant because reversibility
is a main requirement for low-power circuit synthesis ofufet technologies such
as in quantum computing, and reversibility property resintsuper-speedy encod-
ing/decoding operations because of the superposition atathglement properties
that emerge in the closed quantum computing systems thatremeently reversible.

Future work will include items such as the investigation sifhig the introduced
reversibility property in more advanced multi-error caglischemes to correct the
corresponding corrupted multi-stream communicated datd,also the investiga-
tion of the corresponding optimal quantum circuit desigrse€h new reversible
systems.
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