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Remarks on the Development and Recent Results in the
Theory of Gibbs Derivatives

Radomir S. Stankovíc and Jaakko Astola

Abstract: This tutorial paper discusses the development of the theoryof Gibbs differ-
ential operators, and highlights some important older and more and recent results in
this area.
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1 Introduction

FOURIER ANALYSIS and differential calculus are two very important tools in
signal processing and related areas. From a group theoreticpoint of view, these

two essential concepts can be related by the observation that classical Newton-
Leibniz derivative can be viewed as a closed linear operatoron the real lineR
that maps each group character ofR e2π ikx into the scalar multiple 2π ike2π ikx of that
character, and by recalling that exponential functions, eigenfunctions of differential
operators, are at the same time kernels in the Fourier representations of signals.

Attempts towards extending classical Fourier analysis to function systems dif-
ferent than group characters ofRemerged in part also due to convergence problems
in approximation of real valued functions. In this context,different function sys-
tems, such as the Walsh functions [77] and the Haar functions[35], have been
intentionally invented to resolve related problems.

Fine [15] and Vilenkin [74] observed independently that Walsh functions can
be identified with group characters of the dyadic or Cantor group. In this way, the
Walsh functions have been fully incorporated in the Walsh-Fourier analysis as a
particular example of harmonic analysis on groups.
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In late 60’s and early 70’ there emerged a high interest in thediscrete counter-
part of Walsh functions due to their compatibility with binary signals and bistable
circuits, and for the simplicity of the calculation of the spectral Walsh coefficients
without multiplication of complex numbers that is necessary in the discrete Fourier
analysis.

Ideas to extend the theory to the discrete Walsh functions bylinking differential
operators and group characters naturally emerged in the research community. In
particular, such an initiative was suggested to J. Edmund Gibbs by Dr Alastair
Gebbie, at that time the Head of the Basic Physic Division of National Physical
Laboratory in Teddington, Middlessex, England. The first complete formulation of
the definition of the Gibbs derivatives has been made by JamesEdmund Gibbs on
January 13, 1967. It has been completely presented in [19].

The especially simple case of the Gibbs derivative on a finitedyadic group,
called initially logic derivative or finite dyadic derivative, is of importance not only
for its own sake but also how this conceptually new approach to differentiation
first emerged [25–28]. The subsequent development of this theory and highlighting
some important results are the subject of this paper. For thelimited space, we
have to restrict the selection of references to the publications where certain results
were reported for the first time and in exceptional cases to some other relevant
publications. An extensive bibliography of Gibbs derivatives can be found in [69].
In [69], we provide some insight into the bibliography on Gibbs derivatives.

2 Notation and Definitions

For each positive integern, let Gn denote the finite dyadic group whose elements
aren-tuplesx= (x0,x1, . . . ,xn−1) with x∈ {0,1}. The group operation⊕ is coordi-
natewise addition modulo 2, that is, for eachx,ξ ,∈ Gn, x⊕ξ = (x0⊕ξ0, . . . ,xn−1⊕
ξn−1). Denote byBn the set of non-negative integers less than 2n: Bn = {0,1, . . . ,2n−
1}.

With each elementx of Gn we associate a unique element ofBn by means of a
functionVn : Gn → Bn defined by

Vn(x) =
n−1

∑
i=0

2n−i−1xi . (1)

The element ofBn thus defined is usually called, in switching theory, the ”dec-
imal index” of x. The functionVn is bijective, so to each integer ofBn corresponds
underV−1

n a unique element ofGn whose coordinates are the coefficients in the
dyadic expansion of that integer. The existence of the bijection Vn enables us safely
to ignore the distinction betweenGn andBn. Thus we shall denote byx indiffer-
ently then-tuple(x0, . . . ,xn−1) or its decimal indexVn((x0, . . . ,xn1)). We denote by
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⊕ indifferently the operation already defined inGn or the operation inBn defined
by

x⊕ξ = Vn(V
−1
n (x)⊕V−1

n (ξ )), (x,ξ ∈ Bn).

In the right member of this equality,⊕ is the operation inGn; in the left member,
⊕ is the operation inBn. ThusVn : Gn → Bn is a group isomorphism.

The space of all complex-valued functionsf on Gn (or onBn) will be denoted
by Ln, or, since it is not usually necessary to express the dependence onn, simplyL.

Notice that the finite dyadic group of order 2n is equal to the directn-th power
of the cyclic groupG1 = ({0,1},⊕). This enables us to write (the value-vectors of)
the discrete Walsh functionswal(w, ·) : Bn → {1,−1}, (w∈ Bn) (the characters of
the groupGn) as the rows (or columns) of a matrixWn defined by

Wn =

[

1 1
1 −1

]n

, (2)

where[·]n denotes the continued Kronecker product ofn copies of the matrix[·].
Using the discrete Walsh functions as an orthogonal basis inthe spaceLn, we

may define the discrete Walsh transform as a particular case of the Fourier trans-
form on groups. Thus, the Walsh transform coefficientsSf (w) (w ∈ Bn) of f ∈ L
are defined by

Sf (w) =
2n−1

∑
x=0

f (x)wal(w,x). (3)

The inverse Walsh transform is given by

f (x) = 2−n
2n−1

∑
w=0

Sf (w)wal(w,x). (4)

If we express the Walsh spectral coefficientsSf (w) and the original functionf
as vectors of order 2n, Sf = [Sf (0), . . . ,Sf (2n−1)]T andF = [ f (0), . . . , f (2n−1)]T ,
then the equalities (3) and (4) may be written

Sf = WnF, (5)

F = 2−nWnSf . (6)

The discrete dyadic convolution productf ∗g of two functions f ,g ∈ L is de-
fined by

( f ∗g) =
2n−1

∑
u=0

f (x⊕u)g(u), (x∈ Bn).

The dyadic convolution theorem states that, if the Walsh transforms of f andg
areSf andSg, respectively, then the transform off ·g is Sf ∗Sg and the transform
of f ∗g is Sf ·Sg.
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3 The Gibbs Derivative on Finite Dyadic Groups

The initial definition of the Gibbs derivative has been formulated for functions on
finite dyadic groupGn as follows [19].

Definition 1. To each function f∈ L we assign a function f[1] ∈ L defined by

f [1](x) = −
1
2

n−1

∑
r=0

( f (x⊕2r)− f (x))2r , (x∈ Bn). (7)

We call f[1] the (first-order) Gibbs derivative of f . The corresponding operator
Dn : L → L, defined by Dn f = f [1] ( f ∈ L), will be called the Gibbs differentiator
Bn →C, where C is the filed of complex numbers.

Nomenclature of this type enables us to distinguish each of the various species
of Gibbs differentiator, by indicating the domain and rangeof the functions on
which it operates. To simplify the notation we shall generally abbreviateDn asD.

If f : Bn →C is identified with the corresponding function1 defined onGn, and
if we use the same symbolf for this function f : Gn → K , then Definition 1 may
be written

f [1](x) = −
1
2

n−1

∑
i=0

2n−i−1(Di f )(x), (8)

wherex = (x0, . . . ,xn−1), and Di (i = 0, . . . ,n− 1) denotes the (i-th coordinate)
partial Gibbs differentiator, defined2 by

(Di f )((x0, . . . ,xn−1)) = f ((x0, . . . ,xi ⊕1, . . .xn−1))

− f ((x0, . . . ,xn−1)).

The following theorem summarises some of the chief properties of the Gibbs
differentiatorBn → K (or Gn →C).

Theorem 1. The operator D: L → L has the following properties:

1This function should strictly be denoted by the symbolfVn, where juxtaposition denotes compo-
sition.

2Let the complementx⊕1 of x ∈ {0, l} be denoted byx. Then thei-th coordinate partial Gibbs
derivative may be written

(Di f )((x0, . . . ,xn−1)) = f ((x0, . . . ,xi , . . . ,xn−))

− f ((x0, . . . ,xi , . . . ,xn−1)).

.
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1. Linearity: D(a1 f1 +a2 f2) = a1 f1 +a2 f2, (a1,a2 ∈C, f1, f2 ∈ L).

2. D f = O∈ L iff f ∈ L is a constant function.

3. If the Walsh transform of f∈ L is Sf , then the Walsh transform of D f is given
by

SD f = wSf . (9)

4. D( f1∗ f2) = (D f1)∗ f2 = f1∗ (D f2),( f1, f2 ∈ L).

5. For eachα ∈ Bn, the operator D commutes with the translation operator Tα
defined by(Tα f )(x) = f (x⊕α), ( f ∈ L,x∈ Bn):

DTα = TαD.

6. The operator D does not obey the product rule satisfied by the Newton- Leib-
niz differentiator DNL, namely,

DNL( f1 f2) = f1(DNL f2)+ (DNL f1) f2,

( f1, f2 : R→ R,say).

In other words, for some f1, f2 ∈ L,

D( f1 f2) 6= f1(D f2)+ (D f1) f2.

Proof. The properties 1 to 6 are easily derived from Definition 1 andproperties of
the Walsh transform.

By using the property 3 of Theorem 1 it is easy to prove that theset of 2n

discrete Walsh functions defined onBn is the set of eigenfunctions of the Gibbs
differentiatorBn → K ; that is, if we write fw for wal(w, ·) (w∈ Bn), then

f [1] = w fw. (10)

In other words, the discrete Walsh functions are the 2n solutions of the eigen-
value problem

Dn f = w f, (11)

of which the eigenvalues arew= 0,1, . . . ,2n−1, and the corresponding eigenfunc-
tions arewal(0, ·), wal(1, ·) . . . wal(2n−1, ·), respectively [21].

In this context we distinguish Gibbs derivatives of the firstand second kinds,
corresponding respectively to the Walsh-Paley [59] and Walsh-Kaczmarz [41] or-
derings of the Walsh functions [20].
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The Gibbs derivative can be extended to arbitrary complex order p by way of
the definition of the discreteδ -function

δ (x) = 2−n
2n−1

∑
w=0

wal(w,x) (x∈ Bn).

The function thus defined has the properties

δ (x) =

{

1, (x = 0),
0, (x 6= 0),

and

f = δ ∗ f , ( f ∈ L).

The derivative of orderp∈ K of the δ -function is defined by an extension of
the equality (10):

δ [p](x) = 2−n
2n−1

∑
w=0

wpwal(w,x). (12)

The derivative of orderp of an arbitrary functionf ∈ L may be conveniently
obtained as the dyadic convolution product ofδ [p] and f . For, by an easily proved
extension of the property 4,

Dp f = f [p] = δ ∗ f [p] = δ [p] ∗ f . (13)

TheGibbs derivative of fractional orderis obtained in the case thatp is real.

4 Generalizations of the Gibbs Derivative Through Spectral
Interpretation

We note first that the property 3 of Theorem 1 serves as an alternative definition of
the Gibbs derivative. More precisely, the Gibbs derivativeof a function f ∈ L is the
function f [1] ∈ L such that

Sf [1](w) = wSf (w), (w∈ Bn).

The differentiator operating on the space of complex-valued functions on each
locally compact Abelian group has the characters of that group as eigenfunctions.

The first attempt at such a definition, restricted to finite Abelian groups, was
made by Gibbs and Ireland [29]. These authors regarded such agroup as the di-
rect product of indecomposable cyclic groups, and tried to define the differentiator
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on such a cyclic group consistently with the recapture, as a limiting case, of the
classical derivative (see [27]). The differentiator on a finite direct product of inde-
composable cyclic groups is defined as a linear combination of the partial differen-
tiators with respect to the direct factors, the numerical coefficients being chosen to
yield a convenient set of eigenvalues (essentially, for a group of orderg, the leastg
non-negative integers).

Onneweer [46] independently gave the analogous definition on a countable di-
rect product of groups of prime order, effectively amendingand extending the def-
inition of the earlier authors.

Ren Fu-xian, Su Weiyi, and Zheng Wei-xing [16] in 1978 and Zheng Wei-jing
and Su Weiyi in 1981 [79] gave a definition (reproduced asDefinition B by Zelin
He in 1983 [36]) on thep-adic groups. This result by Zelin He, has been referred
in the further work by the same author [37].

Moraga [44], has discussed the particular case of Gibbs differentiation on finite
direct powers of a group of prime order: in this case the eigenfunctions are the
discrete Levy-Vilenkin-Chrestenson functions [10,42,74].

The extension of Gibbs differentiation to non-Abelian groups. Such a definition
is obtained [65] where the dyadic derivative of a function isexpressed in terms of its
Walsh-Fourier coefficients. The role of the group characters in the definition of the
Gibbs derivatives on Abelian groups is taken over, in the case of the derivatives on
non-Abelian groups, by the unitary irreducible representations of these groups [65].
The definition applies also to functions with codomain a finite field, provided that
this field admits a Fourier transform [67]. The Gibbs derivatives on finite non-
Abelian groups may be regarded as linear harmonic translation-invariant systems
[64]. An extension of the notion of Gibbs differentiation tomatrix-valued functions
on finite non-Abelian groups has been done in [72].

4.1 Butzer-Wagner Dyadic Derivative

A major contribution to the theory of dyadic differentiation has been made by
Butzer and Wagner in a sequence of publications starting with [6] and [9]. These
authors were foremost in recognising the value of the Gibbs derivative in anal-
ysis, just as Pichler, from 1970 onwards, led the way in applications to system
theory [61].

The dyadic groupG is (isomorphic to) the set of all sequencesx = (x1,x2, . . .)
with the group operation⊕ being termwise addition modulo 2. LetX(G) denote
one of the spacesC(G) (the space of dyadic continuous functions onG) andLp(G)
(1≤ p < ∞) (that of p-th power Lebesgue-integrable functions onG). The series
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used to define the derivative in either the pointwise or the norm sense [9], [75] is

(D f )(x) =
1
2

∞

∑
j=0

2 j( f (x)− f (x⊕ej+1)),

where f ∈ X(G), x∈ G), ej = (δ j,1,δ j,2, . . . ,δ j,k, . . .). For a functionf ∈ X(G), if
there existg∈ X(G), such that

lim
m→∞

‖|
1
2

m

∑
j=0

( f (x)− f (x⊕ej+1))−g(x)‖|X(G) = 0,

theng(x) is the first strong dyadic derivative off .
For a functionf defined on[0,1), if

1
2

∞

∑
j=0

2 j( f (x)− f (x⊕ej+1)) = c < ∞,

for x∈ [0,1), thenc is called the first poitwise dyadic derivative off at x.
Butzer and Wagner [6] use the Fine map to transfer the definition of the strong

derivative to periodic functions on the real group, of period 1.
In a further paper, the same authors [7] define Gibbs derivatives of the second

kind (corresponding to the Walsh-Kaczmarz ordering of the Walsh functions) for
functions defined onG, in both the norm sense and the pointwise sense. In the
following year [8], they extend to functions on the non-negative real line the def-
initions of both strong and pointwise derivatives (of the first kind, corresponding
to the Walsh-Paley ordering). A further paper [60] providesa readable summary
of the results up to that time. The booklet of Wagner [75] gives a helpful intro-
duction to many analytical aspects of dyadic differentiation, treating in parallel the
differentiators of the first and second kinds. A generalization of Butzer-Wagner
differentiation was considered in [57,58] and few other publications [69].

The class of dyadically differentiable functions was greatly extended by Butzer,
Engels, and Wipperfürth [4], by their definition of anextended dyadic (ED) deriva-
tive. They defined the ED-derivative as the result of applying theEuler summation
process to the series obtained by applying a certain sequence of multipliers to the
coefficients of the Walsh-Fourier series of the conventional dyadic derivative. This
remarkable definition is justified by its success in extending the class of differen-
tiable functions, for example, to piecewise polynomial functions and to the products
of such functions with Dirichlet’s function. Butzer and Engels [3] subsequently de-
fined the ED-derivative directly in the original function space, not in the transform
space.
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4.2 Dyadic derivative onR+

Differentiation of functions onR+ has been initiated in [53], and [56,76].
The dyadic differentiators on[0,1) and onR+ may be defined by using the

Walsh-Fourier coefficients in a manner that is an extension of the equality (9) above.
Zelin He in 1983 [36] has generalised this approach to define the dyadic derivatives
of fractional ordersα ∈ R. This definition, in caseα = r ∈ N, reduces to that of
Butzer and Wagner for the dyadic derivative of integer order; and, in caseα = −r,
(r ∈ N), to that of Butzer and Wagner for the dyadic antiderivative of integer order.
The extended dyadic derivative of Butzer, Engels, and Wipperfürth [4] is defined at
the outset for fractional ordersα ∈ R. The definition therefore covers, by the case
α < 0, antidifferentiation.

Zelin He [38] further related the Gibbs derivative and integral to Walsh-Fourier
integral operators, and defined the concept of thep-adic differential-integral-type
operator with order-type(λ1,λ2). This is a far-reaching generalisation, in a certain
direction, of the concepts of Gibbs derivative and integral, and leads to further ap-
plications of the Gibbs derivative top-adic approximation theory. See, for instance,
a related discussion in [69].

The definition of dyadic differentiation on the real half-line [8] has been ex-
tended by Engels and Splettstösser [14] to square-integrable stochastic processes,
in particular, dyadic-stationary processes. Iff such a derivative exists for a pro-
cessX, X is said to be dyadically differentiable i.m. (in the mean). Anecessary
and sufficient condition for a Walsh-harmonisable3 dyadic-stationary process to be
dyadically differentiable has been given by Endow in 1987 [13].

F. Weisz studied in [82, 83] a general summability method of different orthog-
onal series by using an integral functionθ . The results derived have been verified
also for miltidimensional dyadic derivatives [84].

4.3 Modified dyadic derivatives and dyadic distributions

A modified definition of the strong dyadic derivative has beendiscussed in [30].
This research has been continued in [32], where also the fractional derivative of
orderα > 0 have been considered. There have been shown criteria for the existence
of these differential operators and their inverse integraloperators, and determined
a countable set of eigenfunctions of these operators. Some related applications of
these results were reported in [31].

The paper [33], reviews results related to the pointwise andstrong dyadic

3A dyadic-stationary process is said to be Walsh harmonisable iff it assumes its spectral repre-
sentation in terms of the generalised Walsh functions. A characterization of such processes has been
given by Endow [12] in 1984.



358 R. S. Stanković and J. Astola:

derivative and integral for functions onR+. Based on these results introduced are
the modified dyadic strong and pointwise derivatives and integrals of fractional or-
ders onR+ and some of their properties studied. Study of properties ofmodified
fractional dyadic derivative and integral has been continued in [34].

4.4 Differentiation on p-adic groups and generalizations

The definition of dyadic differentiation has been further discussed by Onneweer
in 1977, 1978, and 1979 [46, 47, 49], [52] and [53] and [54]. Every acceptable
definition has the property that the eigenfunctions of the dyadic differentiator are
the Walsh functions, but the corresponding eigenvalues are, and therefore the def-
inition is, to some extent arbitrary, depending on, among other things, the chosen
enumeration (Paley or Kaczmarz) of the Walsh functions. Onneweer gives a def-
inition such that the set of Walsh functions is partitioned into classes each having
a common eigenvalue: this partition is independent of the choice of enumeration,
and consequently so is the definition. The eigenvalues of therespective classes of
Walsh functions are analogues of frequency [22–24]. This suggests that this type
of definition may be better adapted to applications in the exact sciences. This defi-
nition has subsequently been extended to functions defined on p-adic andp-series
fields [48,50],p-adic groups [49], and a local field by Onneweer [51], [52].

In [80] and [81], presented is the definition of a derivative in terms of pseudo-
differential operators.

There have been defined alsoLr -weak p-adic derivative, the adjacentp-adic
derivative, the partialp-adic derivative [16,39,78]. Extensions of Gibbs differenti-
ation toa-adic groups has been provided in [40], and [43].

Further contributions to the theory of Gibbs differential operators on locally
compact Vilenkin groups are done in [85,86].

4.5 Gibbs derivatives with respect to Haar functions
and generalizations

By analogy with the conventional dyadic calculus (related to Walsh functions),
derivatives and antiderivatives have been introduced related to the Haar system of
orthogonal functions. These definitions enable a calculus to be built up that plays
the same role in Haar-Fourier analysis as the conventional dyadic calculus plays in
Walsh-Fourier analysis [5,55].

A Haar derivative for complex-valued functions on a finite dyadic group has
been defined by Stanković and Stojić [73], using an analogue of the matrix repre-
sentation of the discrete dyadic derivative, see, for instance, [71]. These authors
(1987) use the same approach to define a family of differentiators having the dis-
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crete generalised Haar functions [1] as eigenfunctions. A generalisation of the
Gibbs derivative to an arbitrary orthogonal basis in the space of functions from an
arbitrary finite Abelian group to the complex, or a finite (Galois), field is given
in [66, 68]. Extension of Gibbs differentiation to functions with finite fields as
codomains had been discussed earlier by Cohn-Sfetcu and Gibbs [11]. The Gibbs
derivatives for multiple-valued logic functions have beendiscussed in [70].

5 Recent Results

Recent development of Gibbs differentiation have been donein two-parameter dif-
ferentiation, as for instance, the fundamental theorem of two-parameter pointwise
derivative on Vilenkin groups [17] has been presented in [18, 45]. The mono-
graph [82] is the first monograph which considers the theory of more-parameter
dyadic and classical Hardy spaces, including alsod-dimensional dyadic deriva-
tives. See, also [83, 84]. Different generalizations of theGibbs dyadic derivative
have been used in study of local fields [87–89].

From the point of view of practical applications, research have been concen-
trated in applications of various generalizations of Gibbsdifferential operators in
theory of fractals and fractal functions. Notice, for instance, that in [62], it is in-
troduced a kind of Weierstrass-like function inp-series local field and discussed
their its p-adic derivative with targeted applications in determination of the ”rate of
change” of fractal functions in local fields. In [63], the 3-adic Cantor functions on
3-series field is constructed and its 3-adic derivative evaluated, and shown that it
has at most ln2/ln3 order. A recently compiled bibliography on Gibbs derivatives
comprises 313 bibliographic items [69].
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[64] R.S. Stanković. Linear harmonic translation invariant systems on finite non-Abelian
groups. In R. Trappl, editor,Cybernetics and Systems ’86, pages 103–110. Reidel,
Dordrecht, 1986.



Remarks on the Development and Recent Results in the Theory of Gibbs ... 363
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