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Remarks on the Development and Recent Results in the
Theory of Gibbs Derivatives

Radomir S. Stankovic and Jaakko Astola

Abstract: This tutorial paper discusses the development of the thefoBibbs differ-
ential operators, and highlights some important older andenand recent results in
this area.
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1 Introduction

FOURIER ANALYSIS and differential calculus are two very important tools in
signal processing and related areas. From a group thepratitof view, these
two essential concepts can be related by the observatidrcldmssical Newton-
Leibniz derivative can be viewed as a closed linear operatothe real lineR
that maps each group characteRo&™* into the scalar multiple @ike?™ of that
character, and by recalling that exponential functiorge®iunctions of differential
operators, are at the same time kernels in the Fourier reptasons of signals.

Attempts towards extending classical Fourier analysisitwtion systems dif-
ferent than group charactersi®emerged in part also due to convergence problems
in approximation of real valued functions. In this contedifferent function sys-
tems, such as the Walsh functions [77] and the Haar funciidbs have been
intentionally invented to resolve related problems.

Fine [15] and Vilenkin [74] observed independently that Stafunctions can
be identified with group characters of the dyadic or Cantougr In this way, the
Walsh functions have been fully incorporated in the Walskiier analysis as a
particular example of harmonic analysis on groups.
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In late 60’s and early 70’ there emerged a high interest irdiberete counter-
part of Walsh functions due to their compatibility with bigesignals and bistable
circuits, and for the simplicity of the calculation of theesjpral Walsh coefficients
without multiplication of complex numbers that is necegsarthe discrete Fourier
analysis.

Ideas to extend the theory to the discrete Walsh functionmkiyng differential
operators and group characters naturally emerged in tlearmgs community. In
particular, such an initiative was suggested to J. Edmurab&by Dr Alastair
Gebbie, at that time the Head of the Basic Physic Division afidhal Physical
Laboratory in Teddington, Middlessex, England. The firshptete formulation of
the definition of the Gibbs derivatives has been made by J&desind Gibbs on
January 13, 1967. It has been completely presented in [19].

The especially simple case of the Gibbs derivative on a fiyiadic group,
called initially logic derivative or finite dyadic deriva®, is of importance not only
for its own sake but also how this conceptually new approactifferentiation
first emerged [25—28]. The subsequent development of ta@yhand highlighting
some important results are the subject of this paper. Folihiged space, we
have to restrict the selection of references to the pulidtinatwhere certain results
were reported for the first time and in exceptional cases tnesother relevant
publications. An extensive bibliography of Gibbs derivas can be found in [69].
In [69], we provide some insight into the bibliography on Bstderivatives.

2 Notation and Definitions

For each positive integar, let G, denote the finite dyadic group whose elements
aren-tuplesx = (X, X1, . .., Xa—1) With x € {0, 1}. The group operatiom is coordi-
natewise addition modulo 2, that is, for eacl, € G, x® & = (Xo® &o, ..., Xn-1D
én—1). Denote byB, the set of non-negative integers less tharg, = {0,1,...,2"—
1}.

With each element of G, we associate a unique elementBfby means of a
functionV, : G, — B, defined by

n-1

Va(x) = _; 211 1)

The element 0B, thus defined is usually called, in switching theory, the “dec
imal index” ofx. The functionV, is bijective, so to each integer Bf, corresponds
underV; ! a unique element 0B, whose coordinates are the coefficients in the
dyadic expansion of that integer. The existence of the figjed/}, enables us safely
to ignore the distinction betwedd, andB,,. Thus we shall denote by indiffer-
ently then-tuple (xo, . .., X,—1) or its decimal inde¥((xo, . .., %n, )). We denote by
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@ indifferently the operation already defined @y or the operation irB, defined
by
X®E=Vh(V, 1)@V, (&), (x&eBy).

In the right member of this equality, is the operation iG,; in the left member,
@ is the operation iB,. ThusV, : Gy — B, is a group isomorphism.

The space of all complex-valued functioh®n G, (or on B,) will be denoted
by L, or, since itis not usually necessary to express the depesdan, simplyL.

Notice that the finite dyadic group of ordet B equal to the direat-th power
of the cyclic groupG; = ({0,1},®). This enables us to write (the value-vectors of)
the discrete Walsh functionsal(w,-) : B, — {1,—1}, (w € By) (the characters of
the groupG,) as the rows (or columns) of a mat\¥, defined by

1 17"
wo=| T 1] @

where|-]" denotes the continued Kronecker produchabpies of the matrix.].

Using the discrete Walsh functions as an orthogonal bagiseirspacéd.,, we
may define the discrete Walsh transform as a particular cdeed-ourier trans-
form on groups. Thus, the Walsh transform coefficie®tén) (w e Bp) of f € L
are defined by

2"-1
Siw) = 3 f(wal(wx) 3)

The inverse Walsh transform is given by
1
fO)=2"7% St(wjwal(w,x). 4)
w=0

If we express the Walsh spectral coefficieSt$w) and the original functiorf
as vectors of order2Ss =[S (0),...,S;(2"—1)]" andF = [f(0),..., f(2"—1)]T,
then the equalities (3) and (4) may be written

St = WyF, ®)
F = 27"W,S;. (6)

The discrete dyadic convolution produtt g of two functionsf,g € L is de-

fined by
-1

(fxg) = % f(xau)g(u), (xeBy).

U=
The dyadic convolution theorem states that, if the Walshsti@ms off andg
areS; andS;, respectively, then the transform 6f g is S * §; and the transform
of fxgis St - ;.
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3 The Gibbs Derivative on Finite Dyadic Groups

The initial definition of the Gibbs derivative has been fotated for functions on
finite dyadic groupG,, as follows [19].

Definition 1. To each function £ L we assign a function'¥ € L defined by

n—1

F1(x) = —% > (1x52) ~ 100)2, (x<By) @)

r=

We call f¥) the (first-order) Gibbs derivative of f. The correspondinmermtor
Dn: L — L, defined by Qf = i (f € L), will be called the Gibbs differentiator
B, — C, where C is the filed of complex numbers.

Nomenclature of this type enables us to distinguish eacheofarious species
of Gibbs differentiator, by indicating the domain and rarajethe functions on
which it operates. To simplify the notation we shall gerlgrabbreviateD,, asD.

If f:B,— Cis identified with the corresponding functidrlefined orG,, and
if we use the same symbdlfor this functionf : G, — K, then Definition 1 may
be written

f[l] (X) _ _%‘nlznil(Dif)(X), (8)

wherex = (Xg,...,X-1), andD; (i = 0,...,n— 1) denotes thei{th coordinate)
partial Gibbs differentiator, definetby

(Dif)((x0,---,%-1)) = f((X0,-.-,%DL...%-1))
— (X0, %n-1))-

The following theorem summarises some of the chief progemif the Gibbs
differentiatorB, — K (or G, — C).

Theorem 1. The operator D L — L has the following properties:

1This function should strictly be denoted by the symBah, where juxtaposition denotes compo-
sition.

2| et the complement® 1 of x € {0,1} be denoted by. Then thei-th coordinate partial Gibbs
derivative may be written

Dif)((x0:---X-1)) = F((X0,---, %, %))



Remarks on the Development and Recent Results in the Thé@ipbs ... 353

1. Linearity: D(al f1+a2f2) =ayfi+ayxfy, (al,az eC,f,foe L).

2. Df=0¢€Liff f € Lis aconstant function.

3. If the Walsh transform of € L is &, then the Walsh transform of Df is given
by

ij :WSf. (9)

4. D(fyxfy) = (Dfy)* fo = f1x(Dfy),(f1, f2 €L).
5. For eacha € By, the operator D commutes with the translation operatgr T
defined by(Ty f)(x) = f(x@ a), (f € L,x& By):

DTg — Tg D

6. The operator D does not obey the product rule satisfied &#awton- Leib-
niz differentiator Iy, namely,

Dni(fif2) = fi(Dnif2) + (Dnifa) f2,
(f1, f2: R— R say).

In other words, for some; ffo € L,
D( f1 fz) 75 fl(D fz) + (D fl) fo.

Proof. The properties 1 to 6 are easily derived from Definition 1 praperties of
the Walsh transform.

By using the property 3 of Theorem 1 it is easy to prove thatsbeof 2
discrete Walsh functions defined & is the set of eigenfunctions of the Gibbs
differentiatorB, — K; that is, if we writef,, for wal(w,-) (w € By), then

U = wi,y. (10)

In other words, the discrete Walsh functions are thed@utions of the eigen-
value problem

Dnf = wf, (11)

of which the eigenvalues are= 0, 1,...,2" — 1, and the corresponding eigenfunc-
tions arewal(0,-), wal(1,-) ... wal(2"—1,-), respectively [21].

In this context we distinguish Gibbs derivatives of the faat second kinds,
corresponding respectively to the Walsh-Paley [59] andsWW#laczmarz [41] or-
derings of the Walsh functions [20].
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The Gibbs derivative can be extended to arbitrary complebergp by way of
the definition of the discreté-function

O(x) = 2”2nzlwal(w, X) (X€Bp).
w=0

The function thus defined has the properties

_ 1, (X:O),
5013z,

and
f=0x«f, (fel).

The derivative of ordep € K of the d-function is defined by an extension of
the equality (10):
-1
SPl(x) =27" > wPwal(w,x). (12)
w=0
The derivative of ordep of an arbitrary functionf € L may be conveniently
obtained as the dyadic convolution productd® and f. For, by an easily proved
extension of the property 4,

DPf = flPl = 5 fPl = 5Pl 1. (13)

TheGibbs derivative of fractional ordes obtained in the case thptis real.

4 Generalizations of the Gibbs Derivative Through Spectral
Interpretation

We note first that the property 3 of Theorem 1 serves as amatiee definition of
the Gibbs derivative. More precisely, the Gibbs derivati¥a functionf € L is the
function fl¥ € L such that

Sty (W) =wS(w), (We Bp).

The differentiator operating on the space of complex-v@liumctions on each
locally compact Abelian group has the characters of thagas eigenfunctions.
The first attempt at such a definition, restricted to finite Wbegroups, was
made by Gibbs and Ireland [29]. These authors regarded sgcbup as the di-
rect product of indecomposable cyclic groups, and triedeting the differentiator
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on such a cyclic group consistently with the recapture, amiimng case, of the
classical derivative (see [27]). The differentiator on atéimirect product of inde-
composable cyclic groups is defined as a linear combinafitimegpartial differen-
tiators with respect to the direct factors, the numericafficients being chosen to
yield a convenient set of eigenvalues (essentially, foroaigrof orderg, the leasg
non-negative integers).

Onneweer [46] independently gave the analogous definitiva countable di-
rect product of groups of prime order, effectively amendamgl extending the def-
inition of the earlier authors.

Ren Fu-xian, Su Weiyi, and Zheng Wei-xing [16] in 1978 and h&Vei-jing
and Su Weiyi in 1981 [79] gave a definition (reproducedasinition B by Zelin
He in 1983 [36]) on thep-adic groups. This result by Zelin He, has been referred
in the further work by the same author [37].

Moraga [44], has discussed the particular case of Gibbsrdifitiation on finite
direct powers of a group of prime order: in this case the digaetions are the
discrete Levy-Vilenkin-Chrestenson functions [10,43, 74

The extension of Gibbs differentiation to non-Abelian grsuSuch a definition
is obtained [65] where the dyadic derivative of a functioexpressed in terms of its
Walsh-Fourier coefficients. The role of the group characierthe definition of the
Gibbs derivatives on Abelian groups is taken over, in the cdghe derivatives on
non-Abelian groups, by the unitary irreducible represtotes of these groups [65].
The definition applies also to functions with codomain a éfrfield, provided that
this field admits a Fourier transform [67]. The Gibbs deiixeg on finite non-
Abelian groups may be regarded as linear harmonic transktivariant systems
[64]. An extension of the notion of Gibbs differentiationrnttrix-valued functions
on finite non-Abelian groups has been done in [72].

4.1 Butzer-Wagner Dyadic Derivative

A major contribution to the theory of dyadic differentiatidias been made by
Butzer and Wagner in a sequence of publications starting [8itand [9]. These

authors were foremost in recognising the value of the Gibdrsvaltive in anal-

ysis, just as Pichler, from 1970 onwards, led the way in a&pgibns to system
theory [61].

The dyadic grougs is (isomorphic to) the set of all sequenoces: (x1,Xz,...)
with the group operatiorm® being termwise addition modulo 2. L&t(G) denote
one of the space3(G) (the space of dyadic continuous functions@nandLP(G)
(1 < p < ) (that of p-th power Lebesgue-integrable functions@p The series
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used to define the derivative in either the pointwise or themsense [9], [75] is

%2’ X) — f(x®ej11)),

wheref € X(G), xe G), €j = (6j.1,0j2,...,0jk,...). Fora functionf € X(G), if
there exisg € X(G), such that

m

1
lim [[|5 5 (f(x) - f(x@ej11)) —9(X)|lIx(@) =0,
J; 11 X(G)

M—oo

theng(x) is the first strong dyadic derivative df
For a functionf defined on0, 1), if

%2’ X)— f(x®ej11)) =c< o,

for x € [0,1), thenc s called the first poitwise dyadic derivative bfat x.

Butzer and Wagner [6] use the Fine map to transfer the defimaf the strong
derivative to periodic functions on the real group, of pdrio

In a further paper, the same authors [7] define Gibbs devesitof the second
kind (corresponding to the Walsh-Kaczmarz ordering of thedSW functions) for
functions defined ort, in both the norm sense and the pointwise sense. In the
following year [8], they extend to functions on the non-riagareal line the def-
initions of both strong and pointwise derivatives (of thetfikind, corresponding
to the Walsh-Paley ordering). A further paper [60] providessadable summary
of the results up to that time. The booklet of Wagner [75] gieehelpful intro-
duction to many analytical aspects of dyadic differentiatitreating in parallel the
differentiators of the first and second kinds. A generailmaibf Butzer-Wagner
differentiation was considered in [57, 58] and few otherlmabions [69].

The class of dyadically differentiable functions was gseaxtended by Butzer,
Engels, and Wipperfurth [4], by their definition of artended dyadic (ED) deriva-
tive. They defined the ED-derivative as the result of applyingEbker summation
process to the series obtained by applying a certain sequdnaultipliers to the
coefficients of the Walsh-Fourier series of the convenlialyadic derivative. This
remarkable definition is justified by its success in extegdime class of differen-
tiable functions, for example, to piecewise polynomialdtions and to the products
of such functions with Dirichlet’s function. Butzer and Eaig [3] subsequently de-
fined the ED-derivative directly in the original functionae, not in the transform
space.
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4.2 Dyadic derivative onR;

Differentiation of functions orR, has been initiated in [53], and [56, 76].

The dyadic differentiators of0,1) and onR;, may be defined by using the
Walsh-Fourier coefficients in a manner that is an extensidimeoequality (9) above.
Zelin He in 1983 [36] has generalised this approach to defieelyadic derivatives
of fractional ordersx € R. This definition, in caser =r € N, reduces to that of
Butzer and Wagner for the dyadic derivative of integer orded, in caser = —r,

(r € N), to that of Butzer and Wagner for the dyadic antiderivati¥enteger order.
The extended dyadic derivative of Butzer, Engels, and Wipipé [4] is defined at
the outset for fractional ordeis € R. The definition therefore covers, by the case
o < 0, antidifferentiation.

Zelin He [38] further related the Gibbs derivative and im&dgo Walsh-Fourier
integral operators, and defined the concept of gkedic differential-integral-type
operator with order-typéAs,A»). This is a far-reaching generalisation, in a certain
direction, of the concepts of Gibbs derivative and integrald leads to further ap-
plications of the Gibbs derivative f@-adic approximation theory. See, for instance,
a related discussion in [69].

The definition of dyadic differentiation on the real halfidi [8] has been ex-
tended by Engels and Splettstosser [14] to square-irtigsiochastic processes,
in particular, dyadic-stationary processes. Iff such avdéve exists for a pro-
cessX, X is said to be dyadically differentiable i.m. (in the mean).nécessary
and sufficient condition for a Walsh-harmonisabiéyadic-stationary process to be
dyadically differentiable has been given by Endow in 1983][1

F. Weisz studied in [82, 83] a general summability methodifféiknt orthog-
onal series by using an integral functién The results derived have been verified
also for miltidimensional dyadic derivatives [84].

4.3 Modified dyadic derivatives and dyadic distributions

A modified definition of the strong dyadic derivative has betussed in [30].
This research has been continued in [32], where also thédrat derivative of
ordera > 0 have been considered. There have been shown criteriagfextstence
of these differential operators and their inverse integrerators, and determined
a countable set of eigenfunctions of these operators. Selated applications of
these results were reported in [31].

The paper [33], reviews results related to the pointwise sindng dyadic

SA dyadic-stationary process is said to be Walsh harmoresibit assumes its spectral repre-
sentation in terms of the generalised Walsh functions. Aattarization of such processes has been
given by Endow [12] in 1984.
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derivative and integral for functions dR,. Based on these results introduced are
the modified dyadic strong and pointwise derivatives anegrals of fractional or-
ders onR, and some of their properties studied. Study of propertiesodified
fractional dyadic derivative and integral has been comithim [34].

4.4 Differentiation on p-adic groups and generalizations

The definition of dyadic differentiation has been furthesadissed by Onneweer
in 1977, 1978, and 1979 [46, 47, 49], [52] and [53] and [54].egvacceptable
definition has the property that the eigenfunctions of thediy differentiator are
the Walsh functions, but the corresponding eigenvaluesaaue therefore the def-
inition is, to some extent arbitrary, depending on, amorgiothings, the chosen
enumeration (Paley or Kaczmarz) of the Walsh functions. édrmeer gives a def-
inition such that the set of Walsh functions is partitionatbiclasses each having
a common eigenvalue: this partition is independent of th@oehof enumeration,
and consequently so is the definition. The eigenvalues ofd$ective classes of
Walsh functions are analogues of frequency [22—24]. Thigyests that this type
of definition may be better adapted to applications in theeseaiences. This defi-
nition has subsequently been extended to functions defingdaalic andp-series
fields [48, 50],p-adic groups [49], and a local field by Onneweer [51], [52].

In [80] and [81], presented is the definition of a derivatingérms of pseudo-
differential operators.

There have been defined alkb-weak p-adic derivative, the adjacemt-adic
derivative, the partiap-adic derivative [16, 39, 78]. Extensions of Gibbs diffaren
ation toa-adic groups has been provided in [40], and [43].

Further contributions to the theory of Gibbs differentiglepators on locally
compact Vilenkin groups are done in [85, 86].

4.5 Gibbs derivatives with respect to Haar functions
and generalizations

By analogy with the conventional dyadic calculus (relatedMalsh functions),
derivatives and antiderivatives have been introducedaelto the Haar system of
orthogonal functions. These definitions enable a calcdusetbuilt up that plays
the same role in Haar-Fourier analysis as the conventioradid calculus plays in
Walsh-Fourier analysis [5, 55].

A Haar derivative for complex-valued functions on a finiteadic group has
been defined by Stankovi¢ and Stojic [73], using an anaagfithe matrix repre-
sentation of the discrete dyadic derivative, see, for m=ta[71]. These authors
(1987) use the same approach to define a family of differemichaving the dis-
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crete generalised Haar functions [1] as eigenfunctions. eAegalisation of the
Gibbs derivative to an arbitrary orthogonal basis in thecepaf functions from an
arbitrary finite Abelian group to the complex, or a finite (Gig), field is given
in [66, 68]. Extension of Gibbs differentiation to functmmvith finite fields as
codomains had been discussed earlier by Cohn-Sfetcu ars @ib]. The Gibbs
derivatives for multiple-valued logic functions have bescussed in [70].

5 Recent Results

Recent development of Gibbs differentiation have been doheo-parameter dif-
ferentiation, as for instance, the fundamental theoremvofgiarameter pointwise
derivative on Vilenkin groups [17] has been presented in #B. The mono-
graph [82] is the first monograph which considers the thedrgnore-parameter
dyadic and classical Hardy spaces, including alsdimensional dyadic deriva-
tives. See, also [83, 84]. Different generalizations of @ibbs dyadic derivative
have been used in study of local fields [87—-89].

From the point of view of practical applications, researevénbeen concen-
trated in applications of various generalizations of Gildifgerential operators in
theory of fractals and fractal functions. Notice, for ingte, that in [62], it is in-
troduced a kind of Weierstrass-like function jpseries local field and discussed
their its p-adic derivative with targeted applications in determimabf the "rate of
change” of fractal functions in local fields. In [63], the 8ka Cantor functions on
3-series field is constructed and its 3-adic derivative iatald, and shown that it
has at most In2n 3 order. A recently compiled bibliography on Gibbs detives
comprises 313 bibliographic items [69].
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