
FACTA UNIVERSITATIS (NIŠ)
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Upper Bounds of Performances Guided Robust Hybrid
Controller

Vojislav Filipovi ć

Abstract: In this paper the multiple models and switching controllersis used for con-
trol of system with unmodeled dynamics. The analog part of the system is described
by finite set of continuous models with unmodeled dynamics. As a set of controllers
is used a finite set of LQ controllers with the prescribed degree of stability. Using
linear matrix inequalites it is derived LQ controllers and upper bounds for index of
performances. The set of upper bounds is used for creation ofswitching sequence.
For so given switching system the robust asymptotic stability is proved.
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1 Introduction

THE HYBRID dynamical system is a dynamical system that involved the inter-
action of discrete and continuous dynamics. Continuous variables take the

values from the set of real numbers and discrete variables take the values from a
finite set of symbols. Analog part of the hybrid system, in this paper, is described
with differential equation [1]. The discrete part of hybridsystem belongs to the
area of discrete event system such as automata, max-plus algebra or Petry nets [2].

From the clasical control theory point of vew hybrid system can be considered
as a switching control between analog feedback loops [3] and[4].

In the area of hybrid control system now we have different approaches. In [5]
mixed logical model for hybrid system is proposed. The modelis described by
linear differential equation subject to linear mixed-integer inequalites. The system
with inequality constraints can be described with complementarity class of hybrid
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system [6]. The very large class of hybrid system can be described as a picewise lin-
ear systems [7]. Equivalence between above classes of hybrid system is presented
in [8].

All above system have the deterministic character. In some situation systems
have the stochastic character. The stochastic frame for hybrid systems is introduced
recently [9]. In that case the theory of point stochastic processes is used.

During the last decade the new approach for adaptive controlis introduced [10–
12]. When we have large parameters errors the clasic adaptive control results in a
slow convergence with large transient errors. To overcome such problems in the
new theory of adaptive control the concept of multiple models is proposed. So
higher level of adaptive contol is introduced. Similar approach is taken, also, in [13]
where mapping of hybrid state to hybrid control is based on system performance.

Theory of hybrid control system can be use in the field of system with quanti-
zation [14], Internet congestion control [15] and field of wireless communication
networks [16].

In this paper we use the concept of multi model system for hybrid contol of
hybrid dinamic system with the analog uncertainty. The unmodeled dynamic is de-
scribed in the continuous domain. The discrete part of hybrid system is determined
using upper bounds of index of performances. Finally, in theform of theorem ro-
bust stability of the closed-loop hybrid system is established.

2 System Description by Multiple Models

In this part of paper we consider multiple model descriptionof process. It will be
assumed that the process model is a member of admissible process models

FFF =
⋃

p∈PPP

FFF p (1)

wherePPP is matrix index set which represents the range of parametricuncertainty
so that for each fixedp ∈ PPP the subfamilyFFF p accaunts for unmodeled dynamics.
Usually,PPP is compact subset of finite-dimensional normed vector space[17].

In this paper we will suppose that process can be described with collection of
linear time invariant system with unmodeled dynamics

ẋ (t) = Ap (w)x(t)+ Bpu(t) , p = 1,2, . . . ,s (2)

wherex ∈ Rn andu ∈ Rp are state and control signal of the system respectively. In
relation (2) matrixAp (w) describes the unmodeled dynamics for the system in the
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form of matrix perturbation

Ap (w) = Ap + ∆p (w) , w ∈W (3)

whereAp is known matrix andAp (w) is a matrix perturbation with finite norm

‖∆p (w)‖q < δ , δ > 0, q = 1,2, . . . ,∞ (4)

Relation (2) describes the continuous part of the system. The event driven part
can be described in the next form

p+ (t) = ϕ (p(t) ,σ (t)) (5)

where p(t) is a discrete event variable,σ (t) is a discrete input andϕ (·, ·) is a
function which describes behaviour ofp(t) . It is important to note that

p+ (t) = p(tn+1) , p(t) = p(tn) , tn < tn+1 (6)

Specific form of switching sequence will be described in the next part of the
paper.

Remark 1: In [18] continuous-time model with unmodeled dynamics is consid-
ered

ẋ (t) = (Ap + ∆Ap (w(t)))x(t)+ (Bp + ∆Bp (w(t)))u(t)

where uncertainty vectorw(t) is Lebesque mesaurable and within an allowable
bounding setΩ ∈ Rp for all t ∈ [0,∞]. But design of robust hybrid controller is
completely different then in this paper.

�

Remark 2: Uncertainty in model (2) can be much complex [9]. The very general
description can be made using notion of polytop [19].

�

3 The Switching Controller

In the general case, no single controller is capable of solving the regulation prob-
lem for the entire set of process models (1). Because we will use the family of
controllers [11]

{

Cq : q ∈DDD
}

(7)
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where D is index set. It is supposed that the family is sufficiently rich so that every
admissible process model can be stabilized by controllerCq for some indexq ∈ D.
In this paper will be considered the case

FFF = DDD (8)

We will finde the member of familyCq using linear matrix inequalities (LMI) tool.
The controllers will be robust LQ controllers with prescribed degree of stability.

Let us first introduce optimal LQ controller with prescribeddegree of stability
for the fixedp and∆p (w) = 0 For cuch case system has the form

ẋ(t) = Apx(t)+ Bpu(t) (9)

The index of performance is [20]

J =

∞
∫

t0

e2αt (xT (t)Qx(t)+ uT (t)Ru(t)
)

dt, α > 0 (10)

Optimal controller is

u(t) = −R−1BT
p Ppx(t) (11)

whereby matrixPp is a solution of algebraic Riccati equation

Pp (Ap + αI)+
(

AT
p + αI

)

Pp −PpBpR−1Pp + Q = 0 (12)

It is well known fact that for LQ controller (10) - (12) the Lyapunov function
has the form [21]

V (x) = xT (t)Ppx(t) (13)

We will use that fact for system with unmodeled dynamics. It will be used for
closed-loop system

ẋ (t) = Ap (w)x(t)+ Bpu(t) , w ∈W (14)

u(t) = −R−1BT
p Ppx(t) (15)

The next goal is to finde matrixPp without the help of Riccati equation (12).
Instead, we will use the LMI tool. Result will be formulated in the form of theorem.
Before that we will formulate known result from matrix theory which are necessery
for proof of theorem.
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Lemma 1 [21]. (Quadratic functional). Let us suppose that thex(t) is solution
for system ˙x (t) = Ax(t), x(0) = x0. Matrix A is stable and matrixU > 0. Then
value of functionalJp

Ju =

∞
∫

0

xT (t)Ux(t)dt

equal toxT
0Y x0 wherebyY is solution of Lyapunov equation

ATY +YA = −U

�

Lemma 2 [22]. (Lyapunov inequality). Let the a Hurvitz matrix, coulpeA,B is
controlable andZ− > 0 is a solution of Lyapunov equation

AZ + ZAT = −T, T = BT B

The matrix Lyapunov inequality

AZ + ZAT ≤−BBT

has a solution and for every solutionZ of Lyapunov inequality is

Z ≥ Z−

�

Now we will, for fixed p, formulate theorem.

Theorem 1: Let us suppose that for the closed-loop system (14) - (15) is satis-
fied

1. For fixed p-th subsystem, couple

[Ap + αI,Bp]

is controlable

2. MatricesQ andR are positive definite

3. Xp (γp) is solution of the next LMI
[

Cp Dp

Ep Fp

]

≤ 0

Cp = (Ap (w)+ αI)Xp + Xp [Ap (w)+ αI]T + γ−2
p BpR−1BT

p

Dp = γ1/2
p XpQ1/2, Ep = γ1/2

p Q1/2Xp, Fp = −I

Xp > 0, w ∈W
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4. For∀γp > 0

γ∗p = argmin
γp

ϕ (γp) , ϕ (γp) = γ−1
p xT

0 Xp (γp)x0

Then for feedback law

u(t) = −R−1BT
p

(

Xp
(

γ∗p
))−1

x(t)

uper bound for index of performance is

Jp ≤ ϕ
(

γ∗p
)

, ∀w ∈W

Proof: Let us introduce next transformation

·
x̂ (t) = eαtx(t) , û(t) = eαtu(t) (16)

Now relations (14) and (16) have the form

·
x̂(t) = (Ap (w)+ αI) x̂(t)+ Bpû(t) (17)

û(t) = −R−1BT
p Ppx̂ (t) (18)

·
x̂(t) = Ãp (w) , Ãp(w) = Ap(w)+ αI−BpR−1BT

p Pp (19)

Using opservation (13) we have

V̇ =
d
dt

V (x(t)) = xT (t)
[

ÃT
p (w)Pp + PpÃp (w)x(t)

]

x(t) (20)

ConditionV̇ < 0 will be satisfied if

ÃT
p (w)Pp + PpÃp (w) < 0 (21)

From (19) and (21) we have

(Ap (w)+ αI)T Pp + Pp (Ap (w)+ αI)−2PpBpR−1BT
p Pp < 0 (22)

Let us multipling last inequality from left and right side with the matrixXp =
P−1

p . Follows

(Ap (w)+ αI)T Xp + Xp (Ap (w)+ αI)−2BpR−1BT
p < 0, X > 0 (23)
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Last relation is linear matrix inequality and unknown variable is matrixX . Let us
introduce parameterγp > 0 and from (23) we have

(Ap (w)+ αI)T Xp + Xp (Ap (w)+ αI)−2BpR−1BT
p

+ γp
(

BpR−1BT
p + XpQXp

)

, Xp > 0
(24)

Now we will use Lemma 1. Let us put in Lemma 1

Ap = Ãp (w) = Ap (w)+ αI−BpR−1BT
p X−1

p (25)

U = Q + X−1
p BpR−1BT

p X−1
p (26)

From Lemma 1 follows

ÃT
p (w)Yp +YpÃp (w) = −

(

Q + X−1
p BpR−1BT

p X−1
p

)

(27)

Jp = xT
0 Xpx0 (28)

Let us multiplay inequality by (24) from left and right side with the matrixX−1
p .

We have

(Ap (w)+ αI)T X−1
p + X−1

p (Ap (w)+ αI)−2X−1
p BpR−1BT

p X−1
p

≤−γp
(

X−1
p BpR−1BT

p X−1
p + Q

)
(29)

Last relation can be rewritten in the next form

ÃT
p (w)

(

1
γp

X−1
p

)

+

(

1
γp

X−1
p

)

Ãp (w) ≤−Q + X−1
p BpR−1BT

p X−1
p (30)

If we substract relation (27) from relation (30) we have

ÃT
p (w)

(

1
γp

X−1
p −Yp

)

+

(

1
γp

X−1
p −Yp

)

Ãp (w) ≤ 0 (31)

Using Lemma 2 one can conclude

X−1
p

γp
−Yp ≥ 0 and

X−1
p

γp
≥ Yp (32)

From (28) and (32) one can get

Jp ≤
1
γp

xT
0 X−1

p x0 (33)
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Using Schur‘s lemma [23] inequality (24) can be rewritten inthe next form
[

Cp Dp

Ep Fp

]

≤ 0 (34)

where Cp = (Ap (w)+ αI)Xp + Xp (Ap (w)+ αI)T + (γp −2)BpR−1BT
p , Dp =

γ1/2
p XpQ1/2, Ep = γ1/2

p Q1/2Xp, Fp = I, Xp > 0

From inequality (34) one can finde solutionXp (γp). After that we can construct
function

ϕ (γp) = γ−1
p xT

0 X (γ)x0 (35)

Then we finde
γ∗p = argmin

γp

ϕ (γp) (36)

From relation (36) we can construct feedback law

u(t) = −R−1BT
p

(

Xp
(

γ∗p
))−1

x(t) (37)

and upper bound for index of performance is

Jp ≤ ϕ
(

γ∗p
)

(38)

Theorem is proved.

�

From Theorem 1 follows that problem to finde the LQ controllerwhen, in the
analog part of the hybrid system , exists unmodeled dynamic,is to solve the system
of linear matrix inequalities. For such problem exists software tool. When the
number of LMI is large one can use one of the known iterative procedures.

4 Robust Stability of Hybrid Control System

Using relation (14) system can be described in the form

ẋ(t) = Apx(t)+ Bpu(t) ,+∆(x(t) , p(t) ,w)

∆(x(t) , p(t) ,w) = ∆p (w)x(t) ,

p = 1,2, . . . ,s

(39)

Now we will formulate hybrid control law.

The analog feedback

u(t) = −R−1BT
p (Xp(γ∗p))−1x(t), p = 1,2, . . . ,s (40)
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whereby
(

Xp
(

γ∗p
))−1

is solution of LMI which is defined in Theorem 1.

The discrete feedback

p1 = argmin
{

ϕ
(

γ∗p1

)}

,

ϕ
(

γ∗p
)

= argmin
γp

ϕ (γp) ,

ϕ (γp) = γ−1
p xT (t)Xp (γp)xT (t) ,

p = 1,2, . . . ,s

(41)

Now we will formulate theorem in which is proved robust stability of hybrid
systems.

Theorem 2: Let us suppose that for dynamic hybrid system (39) - (41) is valid

1◦
∥

∥

∥
Ap + αI−BpR−1BT

p

(

Xp
(

γ∗p
))−1

x̂ (t)
∥

∥

∥
≤ k1ϕ

(

γ∗p
)

+ c
∥

∥

∥
Ap + αI−BpR−1BT

p

(

Xp
(

γ∗p
))−1

∥

∥

∥
≥ 1

k1 > 0, c > 0, p = 1,2, . . . ,s

2◦ ‖x̂ (t)‖ ≤ k2ϕ
(

γ∗p
)

k2 > 0, ‖x̂ (t)‖ ≥ 1, p = 1,2, . . . ,s

Then

‖x‖∞ ≤ (k1 + k2)ϕ
(

γ∗p
)

+1+ c+ r∆

r∆ = sup
w∈W

‖∆(x(t) , p(t) ,w)‖

∆(x̂ (t) , p(t) ,w) = ∆p (w) x̂(t)

Proof: From relation (17) for anyτ ∈ [t, t +1] we have

x̂ (t) = x̂ (τ)−

τ
∫

t

[

Ap + αI−BpR−1BT
p

(

Xp
(

γ∗p
))−1

]

x̂(θ)dθ

+

τ
∫

t

∆1(x̂(θ) , p(θ) ,w(θ))dθ

(42)

Further we have

‖x̂ (t)‖ ≤ ‖x̂ (τ)‖+

τ
∫

t

∥

∥

∥

(

Ap −αI−BpR−1BT
p

(

Xp
(

γ∗p
))−1

)

x̂ (θ)
∥

∥

∥
dθ

+

τ
∫

t

‖∆(x̂ (θ) , p(θ) ,w(θ))‖dθ

(43)
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Let us introduce the next sets

Ω1 =
{

τ ∈ [t, t +1] :
∥

∥

∥

(

Ap −αI−BpR−1BT
p

(

Xp
(

γ∗p
))−1

)

x̂ (t)
∥

∥

∥
≤ 1

}

Ω2 = τ ∈ [t, t +1]−Ω1

(44)

Now from (43) and condition 1◦ of theorem follows

‖x(t)‖ ≤ ‖x(τ)‖+1+ c+ k1ϕ
(

γ∗p
)

+ r∆1 (45)

Using last inequality and condition 2◦ of Theorem we have

‖x̂ (t)‖ ≤

t+1
∫

t

(

‖x̂(θ)‖+1+ c+ k1ϕ
(

γ∗p
)

+ r∆
)

dθ

≤ (k2 + k1)ϕ
(

γ∗p
)

+2+ c+ r∆

(46)

Since the right-hand side is independent of t we have

‖x̂ (t)‖∞ ≤ (k1 + k2)ϕ
(

γ∗p
)

+2+ c+ r∆ (47)

From relation (16) follows
‖x(t)‖∞ ≤ ‖x̂ (t)‖∞ (48)

Theorem is proved

�

Remark 3: In this remark we will comment assumptions A) and B) of Theo-
rem2. It is well known fact that optimally designed controllers via Riccati equations
always guarantee stability. Such fact suggests that, if system performance indices
are approprietelly selected, optimality of performance orboundedness of perfor-
mance, will provide stability and robusness. Such idea is used in [13]. In this
paper we prove that index of performanse for every closed-loop subsystem has a
finite upper bound. Using that fact we generalize concept of performance domi-
nant condition from [13]. Generalization has the form as in first two conditions in
Theorem 2.

5 Conclusions

In this paper the problem of design of robust hybrid controller is considered. The
approach is based on LMI tool. For fixed subsystem it is provedthat index of
performance has a explicit upper bound. The set of upper bounds form the basis for
generation of swtching sequence. Proposed switching controller, in the presence of
analog unmodeled dynamics, guarantee robust stability of feedback system.
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