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Upper Bounds of Performances Guided Robust Hybrid
Controller

Vojislav Filipovi ¢

Abstract: In this paper the multiple models and switching controllenssed for con-
trol of system with unmodeled dynamics. The analog part efdystem is described
by finite set of continuous models with unmodeled dynamics.aset of controllers
is used a finite set of LQ controllers with the prescribed degof stability. Using
linear matrix inequalites it is derived LQ controllers angper bounds for index of
performances. The set of upper bounds is used for creatiewibthing sequence.
For so given switching system the robust asymptotic stgthdiproved
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1 Introduction

HE HYBRID dynamical system is a dynamical system that involved ther-int
T action of discrete and continuous dynamics. Continuoumbis take the
values from the set of real numbers and discrete variablesttee values from a
finite set of symbols. Analog part of the hybrid system, irsthaper, is described
with differential equation [1]. The discrete part of hybsgstem belongs to the
area of discrete event system such as automata, max-pklsralgr Petry nets [2].

From the clasical control theory point of vew hybrid systeam e considered
as a switching control between analog feedback loops [3]4lnd

In the area of hybrid control system now we have differentrapphes. In [5]
mixed logical model for hybrid system is proposed. The maddealescribed by
linear differential equation subject to linear mixed-oee inequalites. The system
with inequality constraints can be described with completauéty class of hybrid

Manuscript received on November 8, 2007.

The author is with Regional Center for Talents, PO Box 12&006Loznica, Serbia (e-mail
vfilip@unet.yu).

155



156 V. Filipovi¢:

system [6]. The very large class of hybrid system can be destas a picewise lin-
ear systems [7]. Equivalence between above classes ofhgystiem is presented
in [8].

All above system have the deterministic character. In sotoat®n systems
have the stochastic character. The stochastic frame faoithgystems is introduced
recently [9]. In that case the theory of point stochastiacpsses is used.

During the last decade the new approach for adaptive castiafroduced [10—
12]. When we have large parameters errors the clasic agapontrol results in a
slow convergence with large transient errors. To overcoowh problems in the
new theory of adaptive control the concept of multiple medsl proposed. So
higher level of adaptive contol is introduced. Similar aggarh is taken, also, in [13]
where mapping of hybrid state to hybrid control is based @tesy performance.

Theory of hybrid control system can be use in the field of sysiéth quanti-
zation [14], Internet congestion control [15] and field ofekess communication
networks [16].

In this paper we use the concept of multi model system for idytontol of
hybrid dinamic system with the analog uncertainty. The udebed dynamic is de-
scribed in the continuous domain. The discrete part of lykystem is determined
using upper bounds of index of performances. Finally, infdren of theorem ro-
bust stability of the closed-loop hybrid system is estiglis

2 System Description by Multiple Models

In this part of paper we consider multiple model descriptdmprocess. It will be
assumed that the process model is a member of admissiblegsratodels

F=UJF, 1)

peP

whereP is matrix index set which represents the range of parametrgertainty
so that for each fixegh € P the subfamilyF, accaunts for unmodeled dynamics.
Usually,P is compact subset of finite-dimensional normed vector sfde

In this paper we will suppose that process can be describgdosilection of
linear time invariant system with unmodeled dynamics

X(t) =Ap(W)Xx(t)+Bpu(t), p=12,...,s 2

wherex € R" andu € RP are state and control signal of the system respectively. In
relation (2) matrixA, (w) describes the unmodeled dynamics for the system in the
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form of matrix perturbation
Ap (W) =Ap+Dp(W), weW (3)
whereA, is known matrix and\, (w) is a matrix perturbation with finite norm

1Bp(W)[lg <8, 8>0, q=12,...,0 @)

Relation (2) describes the continuous part of the systers.elient driven part
can be described in the next form

Pt =¢(pt),0(t) ()

where p(t) is a discrete event variables (t) is a discrete input ang (-,-) is a
function which describes behaviour pft) . It is important to note that

pT(t)=p(tns1), PH)=p(tn), th<tn (6)

Specific form of switching sequence will be described in tegtrpart of the
paper.
Remark 1: In [18] continuous-time model with unmodeled dynamics issid-
ered
X(t) = (Ap+DAp (W(t)))x(t) + (Bp+ABp (W(t))) u(t)
where uncertainty vectow(t) is Lebesque mesaurable and within an allowable

bounding seQ) € RP for all t € [0,]. But design of robust hybrid controller is
completely different then in this paper.

Remark 2: Uncertainty in model (2) can be much complex [9]. The verysgah
description can be made using notion of polytop [19].

3 The Switching Controller

In the general case, no single controller is capable of sglthe regulation prob-
lem for the entire set of process models (1). Because we slthe family of
controllers [11]

{Cq:qeD} (7)
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where D is index set. It is supposed that the family is suffityerich so that every
admissible process model can be stabilized by contrGiiefor some indexq € D.
In this paper will be considered the case

F=D (8)

We will finde the member of familZ, using linear matrix inequalities (LMI) tool.
The controllers will be robust LQ controllers with pres@tbdegree of stability.

Let us first introduce optimal LQ controller with prescribddgree of stability
for the fixedp andA, (w) = 0 For cuch case system has the form

X(t) = ApX(t) + Bou (t) 9)

The index of performance is [20]
J= /eZC't (X () Qx() +uT (RuM))ct, a >0 (10)
o

Optimal controller is
u(t) = —R 'BLPux(t) (11)

whereby matrixP, is a solution of algebraic Riccati equation
Po(Ap+al)+ (Aj+al)Py—PByR P+ Q=0 (12)

It is well known fact that for LQ controller (10) - (12) the Lyanov function
has the form [21]
V () = X" () Pox(t) (13)

We will use that fact for system with unmodeled dynamics. ilt ae used for
closed-loop system

X(t) =Ap(W)X(t)+Bpu(t), weW (14)
u(t) = —R 'BPux(t) (15)

The next goal is to finde matrik, without the help of Riccati equation (12).
Instead, we will use the LMI tool. Result will be formulatedthe form of theorem.
Before that we will formulate known result from matrix thgavhich are necessery
for proof of theorem.
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Lemma 1 [21]. (Quadratic functional). Let us suppose that #f®) is solution
for systemx({t) = Ax(t), x(0) = Xo. Matrix A is stable and matrixJ > 0. Then
value of functional,

[ee]

J— /xT () Ux(t)t
0
equal tongxo wherebyY is solution of Lyapunov equation

ATY tYA= U

Lemma 2 [22]. (Lyapunov inequality). Let the a Hurvitz matrix, cpalA, B is
controlable an@_ > 0 is a solution of Lyapunov equation

AZ+ZA"=-T, T=B'B
The matrix Lyapunov inequality
AZ +ZAT < -BB'
has a solution and for every soluti@of Lyapunov inequality is

2>7

|
Now we will, for fixed p, formulate theorem.
Theorem 1: Let us suppose that for the closed-loop system (14) - (15tis-s
fied
1. For fixed p-th subsystem, couple
[Ap+al,By]

is controlable
2. MatricesQ andR are positive definite
3. Xp(Yp) is solution of the next LMI

Cp Dp}
<0
[ p Fp

Cp = (Ap(W) +al) Xp+ Xp[Ap (W) + al]T + Yo BoR By
Dp — VE)-/ZXle/Zp Ep — Vé/le/pr’ Fp -

Xp >0, weW
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4. Forvy, >0

vy = argyminqb (o), @ (¥p) = ¥p X5 Xp (Vo) Xo

Then for feedback law

_ -1
u(t) =—R B} (Xp () " X(t)
uper bound for index of performance is

Ip<9(vp), Ywew
Proof: Let us introduce next transformation

R(t) = e™x(t), G(t)=e"u(t) (16)

Now relations (14) and (16) have the form

R(t) = (Ap (W) + al)R(t) + Bpa (t) 17)
((t) = R 'BLPuX(t) (18)
() = Ao (W), Ap(w) = Ag(w) +al — B,R *BIP, (19)
Using opservation (13) we have
. d - -
V=gV X)) = X (t) [A] (W) Py + PpAp (W) X (t)] x(t) (20)
ConditionV < 0 will be satisfied if
A (W) Py + PoAp (W) < 0 (21)
From (19) and (21) we have
(Ap(W) +al)T Py+ Py (Ap (W) +al) — 2P,B,R B P, < 0 (22)

Let us multipling last inequality from left and right side twithe matrixX, =
P, *. Follows

(Ap(W)+al)" Xp+Xp(Ap (W) +al) —2BpR'BL <0, X>0  (23)
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Last relation is linear matrix inequality and unknown vai&is matrixX. Let us
introduce parametegy, > 0 and from (23) we have

(Ap (W) +al)T Xp+ Xp (Ap (W) + al) — 2B,R B},

(24)
+ Y (BpR'BL +XpQXp) ,  Xp >0
Now we will use Lemma 1. Let us putin Lemma 1
Ap = Ap (W) = Ap(W)+al —BR BLX, (25)
U=Q+X, BR 'ByX,* (26)
From Lemma 1 follows
AL (W) Yp+ YpAp (W) = — (Q+ X, 'BpR B X, 1) (27)

Let us multiplay inequality by (24) from left and right sidetiwvthe matrixXF;l.
We have
(Ap (W) +al)T X1+ X5 (Ap (W) + al) — 2X, 'BpR 1B X,

29
< (X5 'BR BIX; 11 Q) @

Last relation can be rewritten in the next form

1

~ 1 ~
Al (w) <7pxp1> + <7pxpl> Ap(W) < —Q+ X, 'BpR 'BiX, Y (30)

If we substract relation (27) from relation (30) we have
AT Ly1_y, Loty Ay w) <0 31
p(W) vo P P + v P P p(W) < (31)

Using Lemma 2 one can conclude

X—l X—l
P _¥,>0 and P>V, (32)
Yo Yo

From (28) and (32) one can get

Jp < X% 0 (33)

Yo
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Using Schur's lemma [23] inequality (24) can be rewritterthia next form

Cp Dp
e B o
where Cp = (Ap(W) +al)Xp + Xp(Ap(W) +al)" + (yp—2) BpR 'Bj, Dp =

2 2
Vo 2XpQY2, Ep = v3/2QY2Xp, Fp =1, Xp > 0

From inequality (34) one can finde soluti®y (). After that we can construct
function

9 (Yo) = Vo X0 X (V)% (35)
Then we finde
Yo = argyminrb (Vo) (36)
P
From relation (36) we can construct feedback law
- -1
u(t) = —RBj (X (vp)) " x(1) (37)
and upper bound for index of performance is
<9 (%) (38)
Theorem is proved.
[

From Theorem 1 follows that problem to finde the LQ controldren, in the
analog part of the hybrid system , exists unmodeled dynamio,solve the system
of linear matrix inequalities. For such problem exists waite tool. When the
number of LMI is large one can use one of the known iterativeedures.

4 Robust Stability of Hybrid Control System

Using relation (14) system can be described in the form

X(t) = ApxX(t) + BpU( ), +A(X(1), p(t),w)

A(x(t), p(t),w) = Ap(W)x(t), (39)
p=12...,s

Now we will formulate hybrid control law.
The analog feedback

u(t) = —R B (Xp(¥p)) X(t), p=12....s (40)
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whereby(X, (y;)) " is solution of LMI which is defined in Theorem 1.
The discrete feedback
pL=argmin{é (¥5,) -
¢ (vp) = argming (1),
p

o (vp) = YHlXT () Xp (yp) X" (1),
p=12...,s

(41)

Now we will formulate theorem in which is proved robust stépiof hybrid
systems.
Theorem 2: Let us suppose that for dynamic hybrid system (39) - (41) lislva

Ao+ a1 = BRIB] (X5 (1)) R(0)]| < kad (1) +c

[+t~ BgRBT (X5 (1)) Y| 21
ki >0,c>0,p=12,...,s

2z RO <k (vp)
ko >0, [X(t)[|>1,p=12...,s
Then
1X|leo < (k1 +k2) ® (V) +1+C+ra
ra = supllA(x(t),p(t),w)||

wew

AX(t),p(t),w) = Bp(W)X(t)

Proof: From relation (17) for any € [t,t + 1] we have

T

R(t) = R(1) —/ [Ap+ a1 —B,RIBL (%o (1)) ] %(6)d6

lO

‘ (42)
+ [ B1(%(8).p(6), w(9))do
t
Further we have
1RO < 1D+ [ [ (A at - BRBL (% (1)) ) %(8)]| 08
(43)
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Let us introduce the next sets

0y = {rett+1: | (A—al—BR B} (X (1p) ) x| <1}

(44)
Q=1ect,t+1 -0
Now from (43) and condition °Lof theorem follows
X < [IX(T)]| + 1+ c+ K () + 1y (45)
Using last inequality and conditior? f Theorem we have
t+1
KON [ (1RO +1+c+kad (1) +1a) dB 5)
t
< (ke+ki) ¢ (vp) +2+C+ra
Since the right-hand side is independent of t we have
IR(®)[les < (ke +k2) @ (¥p) +2+C+ra (47)
From relation (16) follows
X () [|eo < IR (E) e (48)
Theorem is proved
|

Remark 3: In this remark we will comment assumptions A) and B) of Theo-
rem2. Itis well known fact that optimally designed conteod via Riccati equations
always guarantee stability. Such fact suggests that, {Esyperformance indices
are approprietelly selected, optimality of performanceboundedness of perfor-
mance, will provide stability and robusness. Such idea edus [13]. In this
paper we prove that index of performanse for every closeg-leubsystem has a
finite upper bound. Using that fact we generalize conceptesfopmance domi-
nant condition from [13]. Generalization has the form asrist fiwo conditions in
Theorem 2.

5 Conclusions

In this paper the problem of design of robust hybrid conénols considered. The
approach is based on LMI tool. For fixed subsystem it is praved index of
performance has a explicit upper bound. The set of upperdsiormm the basis for
generation of swiching sequence. Proposed switchingateririn the presence of
analog unmodeled dynamics, guarantee robust stabilitgeafiack system.
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