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A Hybrid Approach to Bilingual Text-To-Phoneme
Mapping

Enik ő Beatrice Bilcu and Jaakko Astola

Abstract: In this paper, we address the problem of bilingual text-to-phoneme (TTP)
mapping in which the phonetic transcription of isolated written words must be found.
In general, in the bilingual/multilingual TTP mapping for isolated words, two process-
ing steps are applied to each input word. The language of eachword is first identified
and then the letters of the word are translated into their phonetic transcriptions ac-
cording to the recognized language. We use the multilayer perceptron (MLP) neural
network for the letter to phoneme conversion task and a hybrid approach composed
of a MLP and a decision rule system for the language recognition task. We introduce
a new bilingual TTP mapping system and we provide an analysisof the influence of
several different factors on its phoneme accuracy.

Keywords: Neural network, multilayer perceptron, error back-propagation with mo-
mentum, text-to-phoneme mapping, phoneme accuracy.

1 Introduction

In text-to-speech systems, TTP mapping is one of the early steps which generates
a sequence of phonemes corresponding to the input text. The synthetic speech is
then produced from this phonetic transcription. The simplified block diagram of
a text-to-speech synthesizer is depicted in Fig. 1. The block denoted as ”Bilin-
gual/multilingual TTP mapping” is responsible for transcription of the input word
into the corresponding phoneme string. For each phoneme theblock ”Concatenate
corresponding sound units” assigns a sound unit from a database called ”Stored
sound units”. The speech is then generated in the ”Speech synthesizer” block.

The problem of TTP mapping can be classified in several different dimensions.
From application point of view, TTP mapping can be divided into two main classes.
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In continuous TTP mapping the input text is translated into the corresponding
phonemes and the dependence between the adjacent words is taken into account. In
this case a word may be pronounced differently depending on the context in which
it appears. An example is the wordthewhich has a different phonetic transcription
for different contexts. Another class of TTP mapping is the phonetic translation of
isolated words. In this case, the words are generated independently and pronun-
ciation of a certain word does not depend on the previous and subsequent words.
Another dimension is to classify the TTP mapping systems based on the number
of languages to which the input words can belong. If the written words can only
belong to one input language, the TTP mapping is called monolingual. In such a
case, the TTP mapping system must perform only the transcription of the written
text into the corresponding phonemes. When the input words can belong to two
or more languages the bilingual/multilingual TTP mapping is addressed and lan-
guage identification is included into the system. In the bilingual approach the first
step is to identify the language to which the input text belongs. After that the TTP
mapping subsystem corresponding to the identified languagegenerates the output
phoneme string.

Fig. 1. A simplified block diagram of a Text-To-Speech synthesis system.

A very large number of approaches have been proposed to deal with the prob-
lem of TTP mapping. Many text-to-speech (TTS) systems use rule-based ap-
proaches or solutions based on dictionary look-up tables [1]. Dictionary look-up
tables necessitate the storage of a large amount of data and writing phonetic rules,
required in the rule-based systems, is a time consuming and difficult task. Alterna-
tively, several data-driven solutions have been proposed.One such a solution is to
use decision trees (DT) to generate the phonetic transcriptions as suggested in [2]
and many other publications. Other alternatives are the Hidden Markov Model
(HMM) [3] and the N-gram [4, 5] approaches. Solutions based on analogical rea-
soning [6] and memory-based learning [7] have also been proposed. Neural net-
works have been used, in the last few decades, in many speech processing applica-
tions such as speech and language recognition, speech coding and speech synthesis
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to mention a few. One of the early text-to-speech (TTS) systems was the NETtalk,
introduced in [8], which used a three layered neural networkfor text-to-phoneme
mapping. The NETtalk system demonstrated that even a small NN can capture a
significant part of the regularities and irregularities in the English pronunciation
which ensure good TTP mapping accuracy. Starting from the NETtalk approach
several other neural network based systems have been proposed [9–15]. Other TTP
mapping systems implementing combinations of the above mentioned techniques
have been also proposed in the open literature, for the monolingual as well as for
the multilingual case [15]. In the case of multilingual TTP mapping, one important
part of the system is the language identification module [10].

Fig. 2. The block diagrams of the bilingual (left) and monolingual (right) TTP mapping systems.

In this paper, we address the problem of bilingual TTP mapping for isolated
words. The written words can be either English or French and the pronunciation of
the current word is independent of the previous and next input words. We propose
a hybrid system composed of multilayer perceptron neural networks and decision
rules and we study its performance, in terms of phoneme accuracy, in several dif-
ferent scenarios.

2 Bilingual Text-to-Fhoneme Mapping

In bilingual TTP mapping, for isolated words, the first step is the language identifi-
cation (in our case either English or French as shown in Fig. 2). After the language
of the whole input word was estimated all its letters are transcribed into phonemes.
The transcription is done in the TTP mapping block corresponding to the identified
language (either ”TTP English” or ”TTP French” block). In the mapping process,
besides the current input letter, also context informationfrom 4 adjacent letters (2



94 Enikő Beatrice Bilcu and Jaakko Astola

previous and 2 next letters) is taken into account. Thus, theTTP system takes as
input a group of 5 adjacent letters.

For the approaches based on decision trees and analogical reasoning there is
no need to translate the letters and phonemes to numerical values. For processing
by a neural network, the input letters, the output phonemes and the language tags
must be translated into numerical values. Moreover, when monolingual or multi-
lingual TTP mapping systems are implemented, they must be trained first on some
set of words for which the phonetic transcription and the language are known. As
a consequence, prior to implementation and training of a TTPmapping system,
the available database must be pre-processed. In this section we review the steps
which we have followed for database pre-processing and we describe the encod-
ing method for letters, phonemes and language. The dictionaries used for training
and testing the neural networks in our experiments were the Carnegie Mellon Uni-
versity (CMU) pronunciation dictionary [16] for the English words and the Brulex
dictionary [17] for the French words. We denote these dictionaries ascmu.dicand
brul.dic respectively. Thecmu.diccontains 108080 English words and thebrul.dic
contains 32245 French words. Both dictionaries were pre-processed in the follow-
ing manner:

1. The words and their phonetic transcriptions were aligned, such that there is
a one-to-one correspondence between letters of each word and its phoneme
symbols [18]. Corresponding to the letters that have no pronunciation a so-
callednull phoneme( ) is introduced in the phonetic transcription in order
to have equal numbers of letters and phonemes for a given word. In the
case when the phonetic transcription of a single letter consists of 2 or more
phonemes they are combined together in a compound phoneme. For instance
the wordoxhave the phonetic transcriptionA: c s. In this case the phonemes
’c’ and ’s’ are combined together in the compound phoneme ’cs’ that corre-
sponds to the letter ’x’. After the alignment, the number of the letters and the
number of phonemes are equal for each entry in the dictionary.

2. In order to eliminate the ambiguity that can occur for multiple pronunciations
of the same word, only one phonetic transcription was chosenfor each input
in the dictionary.

3. Bothcmu.dicandbrul.dic were split into two parts. From thecmu.dicwe
randomly chosen 80% of the words for training (each word witha single
phonetic transcription). The obtained training dictionary was denoted as
train en.dicand contained 86464 words. The remaining 20% (21616 words)
from the ”cmu.dic” formed the testing dictionary ”testen.dic”. In the same
mannerbrul.dic was split intotrain fr.dic (25796 words) andtest fr.dic (6449
words). In addition we obtained the filetrain en fr.dic by concatenation of
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train en.dicand train fr.dic. The filestrain en.dic, test en.dic, train fr.dic
and test fr.dic were used for training and testing the neural networks re-
sponsible for TTP mapping of a single language (English or French). The
”train en fr.dic” was used to train the neural network for language recogni-
tion.

4. The order of the words in the training and in the testing dictionaries was
randomized. This was done to increase the modeling capability of the NN
modules [19]. After that, each letter in a word was encoded using binary
vector codes as shown in Table 1 or random codes. Letter encoding together
with phoneme and language encoding are further described inthe next sub-
section.

2.1 Letter, phoneme and language encoding

We begin first with the details of the input letter encoding. The English language
contains 26 letters and the French language contains 39 letters and we note that the
French alphabet contains all the English letters. As a consequence, it is enough to
have an encoding for the French alphabet. We have used in thispaper two letter
encoding schemes: binary orthogonal codes and randomly generated codes. Other
codes were studied for instance in [11] for the monolingual case. Since there are
39 letters in the French alphabet the binary vectors must have length 40 to encode
39 letters plus thegraphemic null(denoted as\0). Thegraphemic nullis used to
represent the spaces between words. Examples of the binary letter codes are shown
in Table 1. Several studies have concluded that orthogonal codes provide better
phoneme accuracy than non-orthogonal codes when neural networks are used for
TTP mapping [9]. This is why we selected these orthogonal encoding schemes in
our approach.

Table 1. Binary codes used to encode the input letters. The elements of the
vectors are zeros except one which equals unity and is placedon the position
corresponding to the letter index.

Letters Corresponding binary codes of length 40
\ 0 1 0 0. . . 0
a 0 1 0. . . 0
b 0 0 1. . . 0
... . . .
ü 0 0 0. . . 1

The letter codes shown in Table 1 are not the only orthogonal codes that can be
implemented (see for instance [11] and the references therein). Another possibility
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for letter encoding is to randomly generate the input lettercodes. In this case, for
each of the 39 letters and thegraphemic null, we have selected the elements of the
vectors representing the letter codes from a random zero-mean Gaussian-distributed
sequence with unity variance. The length of the code vectorswas in this case 40.

Table 2. Binary codes used to encode the phonemes. The elements of the vectors
are zeros except one which equals unity and is placed on the position correspond-
ing to the phoneme index.

Phonemes Corresponding binary codes of length 62
1 0 0. . . 0

A 0 1 0. . . 0
A: 0 0 1. . . 0
... . . .
ä 0 0 0. . . 1

In our system we use NN for both text-to-phoneme transcription and language
identification. Since the outputs of the neural networks arenumerical values, the
phonemes and the language tags must be numericaly encoded. In this paper, we
used a similar encoding approach as for the input letters. The phonemes were
encoded using binary vectors with all 0’s except one unity element which corre-
sponded to the phoneme index (there are 62 English and Frenchphonemes to-
gether). Examples of phoneme encoding are shown in Table 2 where in the first
line the code of thenull phonemeis shown. For language encoding we have used
the following binary codes: for English[0 1] and for French[1 0].

2.2 Multilayer perceptron for text-to-phoneme mapping

Once the database is prepared and the letters, phonemes and languages are encoded
we can build the bilingual TTP mapping system. In this subsection we describe in
detail the TTP mapping blocks for English and French words transcription (denoted
as TTP English and TTP French in Fig. 2). In the next subsection we describe the
implementation and the functionality of the language identification block and then
the overall bilingual TTP mapping is introduced and we show how it is used for
letter to phoneme translation. To implement the TTP Englishand TTP French
blocks we have used a three layer MLP neural network with one input layer, one
hidden layer and one output layer. Such a network is depictedin Fig. 3 where the
synaptic connections and the activation functions are alsoshown.

The multilayer perceptron was trained, to learn the letter to phoneme correspon-
dences, using the error back-propagation with momentum algorithm (cf. [19]). In
detail the algorithm does the following:
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Fig. 3. A detailed diagram of the multilayer perceptron neural network used in our experiments.

1. Generate the inputs of the neural network by concatenating the vectors cor-
responding to 5 adjacent letters (as we have seen in the previous subsection
all letters from the dictionary were encoded as vectors):

X(n) =
[

L t
1(n) L t

2(n) L t
3(n) L t

4(n) L t
5(n) 1

]t
, (1)

wheren is the iteration number,xt represents the transposed of vectorx,
L i(n) is the vector corresponding to theith input letter in the neural network
(for instance for the letter ”a” we haveL i(n) = [0 1 0. . .0] if we use the
binary orthogonal codes from Table 1), 1 stands for the inputbias andX(n)
is the vector of the inputs. Since we deal with isolated word TTP mapping,
the first letter of each word goes in the middle position of theinput vector.
In this caseL1(n) andL2(n) correspond to thegraphemic null. Similarly,
the last letter of the current word goes always in the middle of the input
vector and the last two vector codes,L4(n) andL5(n) are set equal to the
graphemic null. In this manner, the context dependence between adjacent
words during training and testing is not taken into account.Of course, in
applications where the context dependence is important, such as the case of
continuous TTP mapping, the first 2 letters and the last 2 letters are taken
from the previous and next word respectively. The input window X(n) of
5 adjacent letters is shifted over the entire current word and the subsequent
training steps are followed for each position of the input window.

2. Compute the induced local field of the hidden layer:

Y1(n) = W1(n)X(n), (2)



98 Enikő Beatrice Bilcu and Jaakko Astola

whereW1(n) is anM× (5N+1) matrix containing the synaptic connections
between the inputs and the hidden neurons. The length of the input vector
is 5N + 1, whereN is the length of an input letter code and 1 stands for the
input bias andM is the number of hidden neurons.

3. Compute the output of the hidden layer by applying the activation function
f1(z) to every element of the vectorY1(n):

Z(n) = f1(Y1(n)) . (3)

4. Compute the induced local field of the output layer:

Y2(n) = W2(n)
[

Zt(n) 1
]t

, (4)

whereW2(n) is anP× (M +1) matrix containing the synaptic connections
between the hidden neurons and the outputs,P is the number of neural net-
work outputs andM +1 is the number of hidden neurons plus the bias of the
hidden layer.

5. The outputsO(n) of the neural network are then obtained by applying an
activation function toY2(n):

O(n) = f2(Y2(n)) . (5)

The hyperbolic tangent activation functionf1(x) was implemented in the hid-
den layer and the softmax functionf2(x) has been used at the output of the neural
network:

f1(xi) =
1−exp(xi)

1+exp(xi)
, f2(xi) =

exp(xi)
P
∑
j=1

exp(x j)

. (6)

The softmax activation function gives a good approximationof the class poste-
rior probabilities [19]. As a consequence, for every input pattern presented at the
input of the NN, at the output we obtain a vector of length 62 that has a maximum
value in the position corresponding to the recognized phoneme. For example if
the phonemeA : correspond to a certain input pattern the 3rd element of the output
vector will be the maximum (see Tab. 2).

The synaptic weights are modified by back-propagation of theoutput error
through the neural network, as follows:

1. Compute the output error vector:

e(n) = D(n)−O(n). (7)
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with O(n) being the output of the neural network computed in (5) andD(n)
is the vector of the corresponding known phoneme (during training of the
NN’s words with known phonetic transcription are used. For each letter of a
word the vectorD(n) of its corresponding phoneme is known.).

2. For the output neurons the weight changes are given by:

∆W2i j (n) = α∆W2i j (n−1)+ λδ2i(n)Z j(n), (8)

with ∆W2i j (n) being the correction applied to thei j element of the matrix
W2(n), α = 0.9 is the momentum constant,λ = 0.1 is the learning rate pa-
rameter:

δ2i (n) = ei(n) f ′2 (Y2i (n)) , (9)

whereei(n) is theith element ofe(n) obtained in (7),f ′2(x) is the first deriva-
tive of f2(x) andZi(n) is defined in (3).

3. For the hidden neurons the weight changes are given by:

∆W1i j (n) = α∆W1i j (n−1)+ λδ1i (n)Xj(n), (10)

with ∆W1i j (n) being the correction applied to thei j element of the matrix
W1(n) and:

δ1i (n) = ehi (n) f ′1 (Y1i (n)) , eh = Wt
2(n)δ2(n) (11)

with f ′1(x) being the derivative off1 (x).

The above described training algorithm is applied to the MLPneural network
in on-line mode where at each iteration a vector containing the codes of 5 adjacent
letters are presented to the network. The error between the output of the neural net-
work (estimated phoneme corresponding to the center input letter) and the desired
known phoneme is computed. The error is back-propagated through the network
and the synaptic weights are modified. The input window is then shifted one letter
and again 5 adjacent letters (current letter, 2 letters at left and 2 letters at right of
the current letter) are input into the neural network. The error between the NN
output and the vector of the known corresponding phoneme is computed and back-
propagated through the neural network in order to update thesynaptic weights. The
above mentioned training algorithm is used to update the synaptic weights of both
MLP neural networks that perform the phonetic transcription of English words and
the phonetic transcription of the French words.

After the synaptic weights of the MLP neural networks are trained, they can
be used in the TTP mapping framework. When the phoneme transcription of an
input word must be generated for each letter of the word the corresponding neural



100 Enikő Beatrice Bilcu and Jaakko Astola

network is computed using (1)-(5). For each output network the corresponding
recognized phonemeCc is then calculated using the following criterion:

Cc = argmax
i=1,...,62

(O(n)) . (12)

whereCc is the index of the recognized phoneme into the list of total phonemes
(see Table 2).

For example, if the second element ofO(n) is the maximum, thenCc = 2 and
the recognized phoneme isA.

2.3 The hybrid system for language identification

We describe here the sub-system implemented for language identification. The
block diagram of this sub-system in the learning mode and in the recognition phase
is depicted in Fig. 4. The block denoted as MLP5 is composed ofa three layer
MLP neural network trained using a similar method as the one described above.
The difference between this neural network and the one used for TTP mapping re-
lies on the fact that the output of this network represents the estimated language
and not the corresponding phoneme. As a consequence the output vectorO(n) of
this neural network will have length 2. For training this NN words that belong to
known languages are used. At each iteration, a group of 5 adjacent letters are taken
as inputs to the neural network and the output vector of length 2 is generated. The
error between the output vector of the neural network and theknown language vec-
tor of the current letter is computed. This error is back-propagated and the synaptic
weights are computed as described in the previous subsection. While the training of
this neural network is done in on-line mode, when the networkis used for language
identification of unknown words it operates in batch mode. This functionality will
be described in more details in the sequel. We mention here that a similar equation
as (12) is used at the output of this neural network to identify the language of new
words in the recognition phase. If the first element of the output vector is maximum
the assigned language is French otherwise it is English.

Besides the MLP5 neural network, the language identification subsystem con-
tains also a decision rule block. This is implemented to increase the language
recognition accuracy and to estimate the language of the entire word. The MLP5
assigns a language tag to each letter of the current word whereas the decision rule
have two roles. On one hand it identifies situations when the language of the entire
word can be estimated with unity probability by some if/elserules. On the other
hand in situations when the language of the current word cannot be estimated with
unity probability by some simple if/else rules, the decision block analyzes the lan-
guage tags of each letter, generated by the MLP5, and finally assigns the language
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Fig. 4. The block diagram of the language identification system in training mode (left) and in recog-
nition mode (right).

of the entire word. The language identification of unknown words is done in the
following manner: 5 adjacent letters are presented to the input of the system (the
first input pattern contains the first letter of the word in themiddle position and the
last input vector contains the last letter of the word in the middle position). The in-
put vector goes first into the block denoted as ”Decision” where it is checked if the
language can be identified with certainty. If so, the language tags of all letters from
the current word are set accordingly and the language identification of the current
word is stopped. If not the input vector is presented to the neural network which
assigns a language tag for the central letter (current letter of the word). Next, the
input window is shifted one letter forward and the process continues. In this man-
ner, if the language corresponding to one of the letters fromthe current word is
identified with probability 1, the entire word is assigned with that language and the
language identification stops. If none of the letters could be classified with proba-
bility 1 as English or French, the neural network is used to assign them a language
tag. When the end of the word is reached the number of letters that are assigned to
English and the number of letters that are assigned to Frenchare counted. If there
are more English letters then French letters the entire wordis assigned to English
and to French otherwise. One can argue that such a strategy oflanguage identifica-
tion implemented for each word separately and independent of the adjacent words
is incorrect. The reader should keep in mind that the problemaddressed in this
paper is isolated TTP mapping in which isolated words are pronounced by the ma-
chine. This is different than continuous TTP mapping addressed in [5] where better
language accuracy can be obtained by analyzing larger portions of text.

The block denoted as ”Decision” is implemented using some decision rules
based on the input letters. First we note again that the English alphabet is contained
in the French alphabet which includes in addition some specific letters. If one of
the French specific letters are found in the current input vector X(n) the entire
current word is classified as French. Moreover, we have performed a set of tests
to verify if groups of several adjacent letters could be directly classified to English
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or French with certainty. Due to memory limitations we have tested only groups
of 4 adjacent letters and we found out that 74% of the total number of possible
groups can be directly classified as either English or French. As a consequence the
”Decision” block works as follows: if one of the input letters is a French specific
letter the language of the current word is French. Otherwise, the first 4 letters of
the input vector (L1(n), L2(n), L3(n) andL4(n)) are checked if they have a unique
language correspondence (English or French). If this groupof 4 letters have a
unique correspondence the language of the current word is assigned accordingly
with probability 1.

As we can see from Fig. 4 the decision block influences also thetraining of
the MLP5 neural network such that not all input patterns are used to train the MLP
neural network for language recognition. If some input patterns can be a priori
classified with probability 1, as belonging to either English or French language,
they are not used to modify the synaptic weights of the neuralnetwork. In this
manner, those patterns that can be classified by some decision rules and represent
noise for the training of the NN are discarded from training.

3 Simulations and Results

In this section we present experimental results obtained with the proposed bilingual
TTP mapping system and comparisons with some previously published approaches.
In order to have a fair comparison, the training parameters and the sizes of the neu-
ral networks for both methods were equal. In the training process the synaptic
weights of all neural networks were initialized with randomvalues uniformly dis-
tributed in the range[−1, 1] and the training algorithm was error back-propagation
with momentum described in Section 2. The learning rate parameter was set equal
to 0.1 and the momentum constant wasα = 0.9.

First, we did a set of experiments where we varied the size of the neural net-
works responsible for language recognition and TTP mappingfor English and
French. The results, in terms of phoneme accuracy, for both English and French
language are shown in Table 3 for the case when the input letters were encoded
using binary codes and for the case of random encoding the input letters. Com-
paring the results shown in Table 3 we can see that better phoneme accuracy for
French language is obtained with random codes for sizes larger than 10500 synaptic
weights while English words are transcribed more accurate when binary codes are
used. We note also that the phoneme accuracy of French words is about 5% larger
when random codes were used to encode the input letters compared to the case of
binary codes while the phoneme accuracy of the English wordsonly drops by 2%
(see for example the values obtained for 10500 synaptic weights). The reason can
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be found in the language recognition step which provides better results in the case
of random codes. This is also demonstrated by the results reported in [11] where
it was shown that random codes can improve the phoneme accuracy of small sized
neural networks for monolingual TTP mapping (in our experiments the smaller
neural network was used in the language recognition sub-system). This leads us to
the conclusion that different input letter encoding schemes can be used for the 3
neural networks involved.

Table 3. Phoneme accuracy, for different number of synapticweights, obtained with the proposed
hybrid approach.

Random letter codes Binary letter codes
Number of synaptic weights

2100
10500
16000
22000

English French
49.42% 44.23%
77.64% 79.84%
78.68% 80.62%
78.57% 81.05%

English French
65.92% 65.03%
79.44% 74.81%
80.51% 75.32%
80.53% 79.09%

Based on the above observations, we implemented the final bilingual TTP map-
ping system in a slightly different manner. The architecture of the system is similar
to the one depicted in Fig. 2 with the main difference that we used random vectors
to encode the inputs of the language recognition and French TTP mapping mod-
ules. In the TTP mapping module responsible for the translation of the English
words we have used binary encoding of the input letters. As a consequence, the
final bilingual system must also contain a module that translates the binary codes
into random codes which we have implemented using a look-up table.

In Table 4 we show the comparative results obtained with the proposed ap-
proach when the input letters into all 3 neural networks wereencoded using binary
and random codes. We also show in this table the results of thehybrid approach
from [20] and the phoneme accuracy obtained when binary codes were used in the
neural networks responsible for English TTP mapping and random codes in the
French TTP mapping and language recognition. We can see fromthese results that
improved performance is obtained with the proposed hybrid approach especially
for the French language.

The results shown in Table 4 might look on the low side since in[13] phoneme
accuracy levels around 90% was reported for English language. However, the re-
sults reported in [13] were obtained in a different framework. In that publication
the single language approach was studied while in this paperwe address the prob-
lem of bilingual TTP mapping. As one can expect the phoneme accuracy in our
approach, for both English and French words, drops due to theimperfect language
identification. There are also differences in the topology of the NN implemented
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Table 4. Comparison between the proposed bilingual hybrid system and the approach from [20].

Language
Binary
letter codes

Random
letter codes

Binary letter codes
for English NN.
Random letter codes
for French NN.
Random letter codes
for language NN.

Hybrid
[20]

English 80.53% 78.57% 80.05% 80.04%
French 79.09% 81.05% 81.21% 73.86%

and in the selection of the training dictionary. For instance in [13] non-symmetric
windows were used to include context dependence between adjacent letters while
in our approach we have used symmetric ones.

4 Conclusions

In this paper we have studied the problem of bilingual TTP mapping implemented
by a combination of neural networks and decision rules. Through extensive simu-
lations we have studied the influence of the neural network size and input letter en-
coding into the phoneme accuracy of the system. Based on the results of this study
we introduced a new hybrid approach to the problem of bilingual text-to-phoneme
mapping. The proposed system was implemented in the contextof isolated word
transcription from text where the input words can be either English or French. Our
bilingual TTP mapping is composed of a hybrid language recognition part imple-
mented by means of a small neural network and decision rules.It also contains
two TTP sub-systems that are responsible for the phoneme transcription of the two
languages. The bilingual approach introduced here shows better performance, in
terms of phoneme accuracy, for both English and French wordscompared with a
previously published method.
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