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On Strong Consistency of a Class of Recursive Stochastic
Newton-Raphson Type Algorithms with Application to

Robust Linear Dynamic System Identification

Ivana Kovačevíc, Branko Kovačevic, andŽeljko D- urovi ć

Abstract: The recursive stochastic algorithms for estimating the parameters of linear
discrete-time dynamic systems in the presence of disturbance uncertainty has been
considered in the paper. Problems related to the construction of min-max optimal
recursive algorithms are demonstrated. In addition, the robustness of the proposed al-
gorithms has been addressed. Since the min-max optimal solution cannot be achieved
in practice, an approximate optimal solution based on a recursive stochastic Newton-
Raphson type procedure is suggested. The convergence of theproposed practically
applicable robustified recursive algorithm is establishedtheoretically using the mar-
tingale theory. Both theoretical and experimental analysis related to the practical ro-
bustness of the proposed algorithm are also included.

Keywords: Recursive algorithms, convergence, robustness, parameter estimation,
nonlinear filtering, nongaussian noise.

1 Introduction

The presence of large unmodelled errors may severely degrade the performance
of optimal statistical estimation methods [1–4]. Many convincing examples can
be found in areas such as flight control, electric power systems, telecommunica-
tions, industrial process control, econometrics, biomedical systems, etc. [5–9]. Es-
timation algorithms based on the Gaussian random error model have been found
to be especially inefficient when the real error distribution belongs to the heavy
tailed variety, giving rise to occasionally very large errors named outliers [1–4].
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Therefore, considerable efforts have been oriented towards the robust estimation
algorithms possessing a low sensitivity to error distribution changes, usually valid
locally within a prespecified class. The fundamental contribution to the field of ro-
bust estimation has been given by Huber, who introduced the concept of min-max
robust estimation [3]. Further developments of this idea have led to applications on
different type of problems, including system identification, state estimation, signal
processing and adaptive control [10–16]. However, the strong theoretical results in
robust identification are restricted mostly to static models [17, 18]. In the case of
dynamic systems such an analysis is difficult, owing to both the dynamic nature of
system model and nonlinear form of a robust algorithm itself[18–20]. As a con-
sequence, the convergence study of robust dynamic system identification schemes,
is rather complicated. In general, there are at least two approaches for a such anal-
ysis. The first one is the ordinary differential equation (ODE) approach [19]. The
second one uses the martingale convergence theorem, and represents an extremely
powerful method that relies on relatively weak assumptions[19,20].

The purpose of this article is to extend the concept of min-max optimal estima-
tion to the problem of robust recursive identification of linear, dynamic, discrete-
time single input single output systems in the presence of disturbance uncertainty.
Problems related to the construction of min-max optimal recursive algorithms of
stochastic gradient type are demonstrated. The link between the min-max opti-
mal recursive parameter estimation and robust recursive parameter estimation has
been also established. Since the min-max optimal solution cannot be achieved
in practice, a simple procedure for constructing a robustified recursive stochastic
Newton-Raphson type algorithm, based on a realizable nonlinear transformation of
the prediction error together with a suitable generation ofthe weighting matrix, is
suggested. The convergence of the proposed algorithm is established theoretically
using the martingale theory. This results in a set of rather weak conditions under
which the proposed algorithm should perform satisfactorily in practice. Experi-
mental analysis, based on Monte Carlo simulations, illustrate the discussion and
show efficiency of the derived robustified recursive algorithm in a non Gaussian
and impulsive noise environment.

2 Problem Formulation

Let an abstract linear, dynamic, discrete-time, time-invariant system under consid-
eration be modeled by a linear difference equation with fixedparameters

y(i) = −
n

∑
k=1

aky(i −k)+
m

∑
k=1

u(i −k)+ ξ (i) (1)
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wherey(i) ∈ R1, u(i) ∈ R1, ξ (i) ∈ R1 are system output, measurable input, and
stochastic input or noise, respectively, while the constants ai , i = 1, . . . ,n andb j ,
j = 1, . . . ,m and represent the system parameters. It will be assumed thatthe se-
quence{ξ (i)} is a stochastic process, generating an increasing sequenceof sub-
sigma algebras{Fi}, and that constantsm andn are a priory known(0 < m≤ n).
Furthermore, the probability density function (pdf) ofξ (i) is not completely
known, but some knowledge of this pdf is available, which canbe represented as
a certain classP of zero-mean symmetric pdf’s to which the real disturbance pdf
belongs.

Introducing the backward shift operatorq−ky(i) = y(i−k), the equation (1) can
be written in the polynomial form

A(q−1)y(i) = B(q−1)u(i)+ξ (i) (2)

where

A
(

q−1) = 1+
n

∑
k=1

akq
−k, B

(

q−1) =
m

∑
k=1

bkq
−k (3)

are the characteristic and control polynomial, respectively. One can also rewrite (1)
as a linear regression equation

y(i) = ZT (i)Θ+ξ (i) (4)

where ZT (i) = [−y(i −1) , ...,−y(i −n) ,u(i −1) , ...,u(i −m)] is the vector of
input-output data, andΘT = [a1 · · · an b1 · · ·bm] is the constant parameter vector.
The system representation in (2) is known as the autoregressive model with ex-
ogenous input (ARX), or the infinite impulse response filter (IIR). The problem of
recursive identification of a system described by (4) can be considered as the task
of estimation the unknown parameter vectorΘ in real-time, on the basis of current
input-output measurements. Formulation of the identification problem reduces to
the choice of a forecasting or prediction model ˆy(i) = ŷ(i/θ) and the choice of an
identification criterion or average loss [17–20]

J(θ) = E{F [ν (i,θ)]} . (5)

Hereν (i,θ) = y(i)− ŷ(i/θ) is the output prediction error, whileF(·) is the
loss function. The solution reduces to determining an identification algorithm

θ̂ (i) = f
(

θ̂ (i −1) ,y(i) ,u(i)
)

(6)

which determines the estimatesθ̂ (i) of the system parameter vectorθ from the
preceding estimated̂θ (i −1) and current input-output measurements{y(i) ,u(i)}.
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The goal is to develop a forecasting model ˆy(·), an optimal loss functionF(·) in (5)
and, finally, an algorithm (6) which should be optimal in a certain sense.

Starting from (1) or (4), the mean-square optimal forecasting model, minimiz-
ing the criterionE

{

ν2(i,θ)
}

, is given by [18–20]

ŷ(i/θ) =
[

1−A
(

q−1)]y(i)+B
(

q−1)u(i) = ZT (i)θ (7)

whereZ(i) andθ are given by (4). The concept of optimality is closely related to
the level of available prior information on the system and unobserved disturbances,
as it will be discussed in the next section.

3 Review of Min-Max Optimal Robust Parameter Estimation

With incomplete prior information on disturbances, one canconstruct min-max
optimal, robust identification algorithms, minimizing theperformance index for the
least favorable pdf within a given class [1–4]. Namely, letτ be a class of parameter
vector estimates andV (T, p) the asymptotic estimation error covariance matrix of
T ∈ τ when the pdf isp∈ P . Consider the game in which we chooseT ∈ τ , while
nature choosesp∈ P, andV (T, p) is the payoff. This game has a saddle point pair
(T0, p0) if T 0 andp0 satisfy

min
T∈τ

max
p∈P

V (T, p) = V (T0, p0) = max
p∈P

min
T∈τ

V (T, p) . (8)

ThisT0 is referred to as the min-max optimal robust estimate andp0 is the least
favorable pdf.

Particularly, ifτ is the class of recursive stochastic gradient type estimators of
the vectorΘ in (4), represented by [18–20]

Θ̂ (i) = Θ̂(i −1)+ Γ(i)Z(i)ψ
(

ν
(

i,Θ̂ (i −1)
))

(9)

whereν
(

i,Θ̂
)

= y(i)− Θ̂TZ(i) is the prediction error, or measurement residual,
the min-max optimal robust estimatorT0 is defined by [1–4]

F (.) = F0(.) = − log p0 (.) (10)

ψ (·) = ψ0 (·) = F ′
0 (.) (11)

Γ(i) = Γ0(i) =
[

iE
{

ψ
′

0 (·)
}

E
{

Z(i)ZT (i)
}

]−1
. (12)

Herep0(·) is the least favorable pdf minimizing the Cramer-Rao bound within
a given classP [17,18]. In this way,ψ0 (·) in (11) is the maximum likelihood (ML)
type function corresponding to a unique least favorable pdfp0 within a prespecified
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classP, and (9) reduces to the ML type identification procedure [17–20]. However,
the problem of finding the pdfp0 (·) requires the solution of a non-classical varia-
tional problem, which is tractable only by numerical methods [17,18]. It is solvable
analytically only in the case of finite memory systems, i.e.A(·) = 1 in (2), when

it reduces to the task of minimizing the Fisher informationI (p) = E
{

(p′/p)2
}

within the classP [17, 18]. Numerous examples of classesP, and the correspond-
ing solution for the pdfp0 (·) minimizing the Fisher informationI (p) within the
given classP, can be found in [18]. Moreover, the optimal weighing matrixΓ0(·)
in (12) cannot be constructed in practice, since it requiresa priory knowledge of
the real disturbance pdf. Therefore, in robust estimation,one looks for estimators
that are quite efficient if the underlying disturbance distribution is normal but are
also very efficient even though the underlying distributionhas long tails, generating
the extreme values of a measurement signal named outliers. This properties is the
so-called efficiency robustness [1–4].

In general, the construction of a practically applicable recursive robust identifi-
cation algorithm requires further approximations of the min-max optimal solution.
A possible approach based on a weighted least squares method, reducing the ef-
fects of extreme disturbances or outliers, has been proposed in [21]. An alternative
approach, based on a stochastic gradient type algorithms (9), combined with the
recursive generation of the weighting matrix in (12) by step-by-step optimization
of the additional criterion and convenient approximations, is presented in [22]. An-
other possibility for generating an approximate optimal solution of (12), based on a
recursive stochastic Newton-Raphson type procedure, is presented in the next sec-
tion. It should be noted that a recursive estimator of the type (9), not necessarily
using the particularψ function of the ML type in (11), is called an approximate
maximum likelihood recursive estimator, or recursive M-estimator [3,17–19].

4 Robustified Recursive Stochastic Newton-Raphson Type Algo-
rithms

In order to apply a Newton-Raphson type procedure, one has toapproximate the
average loss (5) with the empirical average loss [17–19]

Ji (θ) = i−1
i

∑
k=1

F (ν (k,θ)) . (13)

Under certain conditions, withi growing Ji (.) in (13) converges toJ(.) in (5)
[18]. Thus, one can resort to the approximate Newton-Raphson type method for
solving a set of nonlinear equations resulting from the optimality condition of (13).
This leads to an iterative algorithm of the form [17–19]
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θ̂ (i) = θ̂ (i −1)−
[

i∇2
θ Ji

(

θ̂ (i −1)
)]−1[

i∇θ Ji
(

θ̂ (i −1)
)]

(14)

with ∇θ (·) being the partial derivative operator

∇θ (.) =

[

∂ (·)

∂a1
, · · · ,

∂ (·)

∂an
,
∂ (·)

∂b1
, · · · ,

∂ (·)

∂bm

]T

.

Moreover, with largei and by virtue of approximate truth of the optimality
condition, yielding∇θ Ji−1

(

θ̂
)

≈ 0 andν
(

i, θ̃ (i −1)
)

≈ ξ (i), one obtains from (5)
and (13) the following approximate expressions

i∇θ Ji
(

θ̂ (i −1)
)

= −Z(i)ψ
(

ν
(

i, θ̂ (i −1)
))

i∇2
θ Ji

(

θ̂ (i −1)
)

= α
i

∑
k=1

Z(k)ZT (k)
(15)

where ψ (·) = F ′ (·) and α = E{ψ ′ (ξ (i))}. In deriving he second relation in
(15) is used the fact that∇2

θ Ji
(

θ̂
)

≈ ∇2
θ J

(

θ̂
)

= αE
{

Z(i)ZT (i)
}

, together with
the approximation of the mathematical expectation with thearithmetic mean, i.e.
E

{

Z(i)ZT (i)
}

≈ i−1 ∑i
k=1 Z(k)ZT (k) . By substituting the first relation from (15)

in (14), one obtains the parameter update equation (9). Furthermore, by introducing

Γ(i) =
[

i∇2
θ Ji

(

θ̂ (i −1)
)]−1

(16)

the second relation in (15) reduces to

Γ−1(i) = Γ−1(i −1)+ αZ(i)ZT (i) . (17)

Additionally, the matrix inversion lemma states that if thematrices A, B, C and D
satisfy the equation [18–20]

A−1 = B−1 +CTD−1C

then
A = B−BCT (

CBCT +D
)−1

CB.

By choosing

A = Γ(i) , B = Γ(i −1) , CT = Z(i) , D−1 = α ,

one obtains from the matrix inversion lemma and the relation(17)

Γ(i) = Γ(i −1)−
Γ(i −1)Z(i)ZT (i)Γ(i −1)

α−1 +ZT (i)Γ(i −1)Z(i)
. (18)
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The relations (9) and (18) define a robustified recursive stochastic Newton-
Raphson type algorithm, with some initial guessesθ̂ (0) = 0, Γ(0) = cI, wherec
is some positive constant andI is the identity matrix of corresponding order.

Moreover, in practice one has to adopt a class of realizable procedures (9), with
ψ (·) being a suitable chosen nonlinearity, which has to cut off the outliers. As
mentioned before, regarding the practical importance of achieving robustness with
respect to ouliers contaminating the Gaussian disturbances, this function has to pro-
vide high efficiency at the nominal Gaussian model, as well asfor a strategically
chosen set of outlier models(efficiency robustness [1–4]).Additionally, it is de-
sirable that this function be bounded and continuous [1–3].Namely, boundedness
insures that no single observation can have an arbitrarily large influence on esti-
mates, while continuity insures that patchy outliers will not have a major effects.
This requirement is known as resistant robustness [1–4]. Thus,ψ (z) should look
like z for small values of the argumentz, in order to preserve the regular observa-
tions generated by normal distribution, but it has to grow slower than linear with
|z|, in order to suppress the influence of outliers. This corresponds, for example, to
the choice of the saturation type nonlinearity named Huber influence function [3]

ψ (z) = min

(

z
σ2 ,

k
σ2

)

sgn(z) (19)

whereσ is the disturbance standard deviation, and the tuning constant k has to be
chosen so as to give the desired efficiency at the nominal Gaussian model [3]. How-
ever, the noise varianceσ2 is usually unknown and it must be estimated. Although
ad hock, a popular robust estimate ofσ2 is the median of the absolute median
deviations [1]

d(i) = median{|y(k)−median{y(k)}|}/0.6745, k = i −L+1, · · · , i (20)

The divisor 0.6745 is used because thend ≈ σ if the sample size L is large
enough and if the sample actually arises from a normal distribution. This partic-
ular scheme of selecting d at each step i suggests appropriate values of the tuning
constant k in (19). Namely, sinced ≈ σ , the parameter k is usually taken to ap-
proximately be the value close to 1.5. Moreover, a common choice for the sliding
window length is from the intervalL ∈ (5,30) [13,15].

Otherψ (·) functions that are commonly used in robust estimation can befound
in [1–3].

Remark 1 If one chooses

ψ (·) = ψ0 (·) = − [log(p0 (·))]′ ;

p0 = argmin
p∈P

I (p) (21)
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this function does not provide the optimality in the min-maxsense (8), but
it minimizes the conditional covariance of the parameter estimate increment

E
{

[

Θ̂(i)− Θ̂(i −1)
][

Θ̂ (i)− Θ̂(i −1)
]T

∣

∣

∣
Fi−1

}

for the least favorable pdf p0 in

(21) [9]. Namely, if the aim is to desensitize the algorithm with respect to outliers
occurring at instant i, the choiceψ (·) = ψ0 (·) provides to make the incremental
covariance as small as possible, having in mind the supposedaccuracy achieved in
the preceding iteration.

Remark 2 The idea of introducingψ (·) in (21) can be justified also by analyzing
one-step optimal estimates. Supposing thatΘ in (4) is a random vector, one can
show that this function corresponds to the saddle point of the conditional error

covariance E
{

[

Θ̂ (i)−Θ
][

Θ̂(i)−Θ
]T

∣

∣

∣
Fi−1

}

[9].

Remark 3 The choice ofψ (·) in (19) corresponds to theψ0 (·) function in (21)
when P is theε− contaminated family, defined by[1–4]

P = Pε =
{

p
∣

∣p = (1− ε)N
(

0,σ2)+ εh
}

, ε ∈ [0,1) (22)

with h(·) being zero-mean symmetric pdf and N
(

0,σ2
)

is the zero-mean normal
pdf with the varianceσ2 [3]. The least favorable pdf p0 in (21) within the class
(22) is normal with exponential tails, yielding I−1(p0) = 2(1− ε)er f (k)σ2, where
erf is the error function[3].

The weighting matrixΓ(i) in (18) depends onα and, as a consequence, the
rate of estimates convergence also depends on it. Moreover,the factorα allows to
make practically very important connections between the nonlinear transformation
ψ (·) and the weighting matrix sequence.Unfortunately, it is very difficult to express
these dependences explicitly. However, it can be shown thatappropriate choice of
α results in some intuitively appealing robust identification procedures, derived in
the literature within different contexts and in different ways. Namely, since the real
disturbance pdf is not known, a convenient possibility is toadoptα = Ep0{ψ ′

0 (·)}=
I (p0), with Ep0 {·} being the expectation with respect to the least favorable pdf p0

in (21). The resulting algorithm is formally similar to the robustified Kalman filter
or least squares method [13, 15]. Furthermore, whenα (i) = 1 the recursion (18)
reduces to the Riccati equation corresponding to the recursive least-squares method
[19]. This algorithm differs from the least-squares methodonly by the insertion
of nonlinear transformationψ0 (·). Finally, if one approximates the mathematical
expectationα = Ep0{ψ ′

0 (·)} by a single realizationψ ′

0 (·), one obtains an algorithm
with changing factorα = α (i) = ψ ′

0

(

ν
(

i, θ̂ (i −1)
))

in each step. An algorithm
of the same form, starting from off-line estimates of constant parameters in static
plants, has been derived in [17,18].
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The proposed algorithm has been derived on the basis of approximations and
somewhat heuristic reasoning. However, all the available practically applicable
recursive robust estimators are obtained as a result of approximations and assump-
tions, requiring further practical and/or theoretical verifications. We shall give the
figure of merit of the proposed algorithm on the basis of convergence analysis us-
ing martingale theory, combined with experimental analysis based on Monte Carlo
simulations.

5 Convergence Analysis

The basic convergence result is the lemma of Neveu [19, 20]. To be precise, let
(Ω,F,P) be a probability space andF1 ⊂ F2 ⊂ ·· · a sequence of sub-σ -algebras
of F, andx(t) is a sequence of real random variables adapted toF. Then{x(t) ,Ft} is
a martingale provided thatE{|x(t) |} < ∞ almost surely (a.s.), i.e. with probability
1 (w.p.1), andE{x(t)/Ft−1} = x(t −1) w.p.1. Alternatively, ifE{x(t)/Ft−1} ≤
x(t −1) w.p.1 we say that{x(t) ,Ft} is a supermartingale. Then, the following
lemma can be proven [19,20].

Lemma 1 Let {zn} be a sequence of nonnegative random variables and{Fn} a
sequence of increasing adapted sigma algebras, i.e. zn ∈ Fn. Suppose

E{zn/Fn−1} ≤ zn−1 + αn

and∑∞
n=1αn < ∞ w.p.1. Then{zn} converges w.p.1 to a finite nonnegative random

variable z∗ as n→ ∞, i.e. limn→∞ zn = z∗ w.p. 1.

This result is restated in a number of forms that suit better in specific theoret-
ical analysis. A unified treatment of a number of almost sure convergence theo-
rems, based on the facts that the processes involved possessa common almost su-
permartingale properties has been proposed by Robbins and Siegmund [23]. This
result is stated below.

Theorem 1 For each n let zn, βn, ξn andζn be non-negative Fn -measurable random
variables such that

E{zn+1 |Fn} ≤ zn (1+ βn)+ ξn−ζn

Thenlimn→∞ zn exists and is finite, i.e.limn→∞ zn = z∗ w.p. 1, and∑∞
n=1ζn <

∞ w.p.1, on{∑∞
n=1 βn < ∞ , ∑∞

n=1 ξn < ∞}.

The results of the Theorem 1 and/or Lemma 1 can be used to provethe conver-
gence of the proposed robustified recursive stochastic gradient type algorithm (9),
(18). The results are summarized in the theorem stated below.
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Theorem 2 Consider the model (2), (3) and the algorithm (9), (18) subject to the
conditions:

A1 All zeros of the polynomial A
(

q−1
)

are inside the unit circle, and the se-
quence{u(i)} is bounded.

A2 {ξ (i)} is a sequence of independent and identically distributed (i.i.d.)
random variables, such that the probability distribution function P(·)
is symmetric, and E{ξ (i)/Fi−1} = 0, E

{

ξ 2(i) |Fi−1
}

= σ2 < ∞, while
ν (i) − ξ (i) ∈ Fi−1, with Fi−1 being the σ -algebra generated by
ξ (0) , · · · ,ξ (i −1) ,Z(0) , · · · ,Z(i −1).

A3 The functionψ (·) is odd and continuous almost everywhere.

A4 The function ψ (·) grows slower than linear, i.e. |ψ (z)| ≤

k′1

(

1+k
′

2 |z|
)

; k
′

1 ∈ (0,∞) , k
′

2 ∈ [0,∞).

A5 The coefficientα in (18) is positive and bounded, i.e.α ∈ (0,k′′) , k′′ < ∞.

A6 If φ1 (z) = E{ψ (−ξ (i)+z) |Fi−1} then zφ1 (z)≥ 1
2αz2 for each z6= 0 andα

given by (18).

A7 The observation vector grows as||Z(i) ||2 ≤M logd r (i) , M > 0,δ > 0, where
r (i) = Tr

{

Γ−1(i)
}

with Tr{.} being the trace of a matrix and||.|| represents
the Euclidean norm.

A8 The persistent excitation conditions

lim
i→∞

λmin
{

Γ−1(i)
}

= ∞ w.p.1

lim
i→∞

logk r (i)
λmin{Γ−1(i)}

= 0 w.p.1

for some k> 1+ δ , with δ being given by A7, whereλmin{.} denotes the
minimal eigenvalue of a matrix.

ThenΘ̂(i) converges to the true parameter valueΘ with probability one (w.p.1),
i.e. P{lim i→∞ Θ̂(i) = Θ} = 1.

The proof of the theorem is given in the appendix. A similar result is derived
in the literature, but it relies on a rather strong assumption of bounded condition
number of the inverse of algorithm weighting matrix [22]. Asa consequence, a
practical application of a such algorithm requires a condition number monitoring
scheme. Moreover, a numerical difficulty may also arise whenthe condition num-
ber gets too large. This problem is overcome by introducing the assumption A8.

The assumptions A1 and A2 are commonly used in the convergence study of
recursive stochastic gradient type identification algorithms, based on martingale
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theory [19,20]. The assumption A1 means that system under consideration in (1) or
(4) is bounded input-bounded output (BIBO) stable, while A2denotes that additive
measurements noise in (2) is a zero-mean white sequence. It should be noted that
the assumption A1 is not formally needed to prove the convergence Theorem 2
(see, appendix), but it is introduced since the BIBO stability is one of the most
desired properties of a system. Thus, the convergence result of Theorem 2 is in
charge for both stable and unstable systems. On the other hand, the convergence
result exposed in [22] can be applied only for a stable system.

The assumptions A3 and A4 define the class of nonlinear functions which pro-
vide for the consistent parameter estimates. Manyψ (·) functions that are com-
monly used in robust estimation, such as Huber’s, Hampel’s,Tukey’s, and An-
drew’s nonlinearity satisfy the above assumptions [1–4]. Although the assumption
A4 means thatψ (·) function may be unbounded, all the mentionedψ (·) functions
are bounded and continuous from practical reasons related to the resistant robust-
ness. Moreover, the noise varianceσ2 in A2 has not to be finite providedψ (·)
function is bounded. Finally, it is hoped, and some numerical simulations seem to
substantiate this hope, that the robust estimators approach their asymptotic behavior
providedψ (·) function is bounded [9–17].

The assumption A6 is a new one. A condition for A6 to be satisfied is that

φ1 (a) =
∫ ∞

0
[ψ (u+a)−ψ (u−a)]dP(u)

is monotonically nondecreasing. Bearing in mind A2 and A3, this will be fulfilled
if both the functionsψ (·) andP(·) have a common raising point, i.e.ψ (z+ ε) >
ψ (z− ε); P(z+ ε) > P(z− ε) for somezand everyε > 0, yieldingaφ1 (a) > 0 for
a 6= 0 andφ1 (0) = 0. Thus, the assumption A6 is fulfilled ifψ (·) function is odd,
continuous almost everywhere, monotone increasing and piecewise continuously
differentiable. As mentioned before, a desirable practical property is thatψ (·)
function is also bounded (k2 = 0 in A4).

Particularly, ifP is the class of pdf’s with bounded variance, i.e.

P =

{

p

∣

∣

∣

∣

∫ ∞

−∞
z2p(z)dz≤ σ2

}

the least favourable pdf in (21) is zero-mean Gaussian with the varianceσ2, yield-
ing ψ0 (z) = z/σ2 [17, 18]. Thus, the resulting algorithm is the recursive least
squares method [19,20]. Moreover,α = I (p0) = σ−2 andφ1 (z) = z/σ2, so that the
condition A6 is fulfilled. On the other hand, for theε -contaminated class of pdf’s
(22) the optimal nonlinearityψ0 (·) in (21) is defined by (19), yieldingφ1 (z) = βz
whereβ = σ−2∫ k

−k p(u)du [17,18]. Therefore, the hypothesis A6 is also satisfied,
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and the resulting algorithm is a robust version of the conventional linear recursive
least squares method [19,20].

The assumption A7 determines the rate of the observation vector growth, but it
is not restrictive sinceM is an arbitrary positive constant.

Furthermore, it is fairly obvious that some condition on theinput sequence
must be introduced in order to secure a reasonable identification results. Clearly,
an input that is identically zero will not be able to yield full information about the
system input-output properties. Required input should excite all natural modes of
the system. Such an input is called persistently exciting, and A8 represents one of
the weakest versions of the persistent excitation assumption [19,20].

Remark 4 The results of Theorem 2 are also valid if the noise sequenceξ (i) in (1)
is no more a zero mean white, but represents a colored or correlated zero mean se-
quence generated by a moving average process C

(

q−1
)

e(i) = ξ (i) with e(i) being
a zero mean white sequence, while C

(

q−1
)

= 1+ ∑l
i=1 ciq−i represents a polyno-

mial whose roots lies inside the unit circle. The system representation (2) with a
such noise model is known as autoregressive moving average model with exoge-
nous input (ARMAX). Then, all assumptions of the Theorem 2 remains the same
with the exceptions that A6 changes to z

[

Φ1
(

z/C
(

q−1
))

−1/2αz
]

> 0 for every
z 6= 0. Moreover, the forecasting model (7) becomes [19,20]

ŷ(i/θ) =
B

(

q−1
)

C(q−1)
u(i)+

[

1−
A

(

q−1
)

C(q−1)

]

y(i) = ZT (i/θ)θ (23)

where

θT ={a1, · · · ,an,b1, · · · ,bm,c1, · · · ,cl}

ZT (i/θ) ={−y(i −1) , · · · ,−y(i −n) ,u(i −1) ,

· · · ,u(i −m) ,ν (i −1,θ) ,ν (i − l ,θ)}

with the output prediction errorν (i,θ) = y(i)− ŷ(i/θ) . In the implementation
of the algorithm, one has to replace the unknownθ with the corresponding most
recent estimate, i.e. to replaceν ( j,θ) with ν

(

j, θ̂ ( j −1)
)

, j = 1, · · · , i.

6 Numerical Examples

In order to investigate more precisely the practical robustness of the pro-
posed algorithm, Monte Carlo simulations have been undertaken. The re-
sults presented are related to the fourth-order model, given in the form (4):
ZT (i) = [−y(i −1) ... −y(i −4) u(i −1)], andΘT = [1 −0.18 0.78 −0.656 2].



On Strong Consistency of a Class of Recursive Stochastic ... 13

The sequence{u(i)} is adopted to be a white noise, withu(i) being the standard
normal random variableN(0,1), while the disturbanceξ (i) is confined to the class
of ε -contaminated pdf’s (22) withε = 0.1 andσ2 = 1. The following algorithms
have been tested: 1) recursive least-squares algorithm, denoted as RLS; 2) recur-
sive robust algorithm (9), (18) with the nonlinearity (19) with k=1.5, and the scale
factor (20), calculated on the sliding frame length ofL=10 samples, denoted as
RRA.

The effect of desensitizing the estimates to the influence ofoutliers is illustrated
in Tab. 1, depicting the average square error norm for different outlier character-
istics, calculated on the basis of 100 Monte Carlo trials and500 iterations. Ob-
viously, the least-squares algorithm is slightly superiorto robust algorithm in the
case of Gaussian disturbances (Tab. 1;h(.) = N(0,1) in (22)). The robust algo-
rithm is superior than the least-squares method even for smaller outlier variances
(Tab. 1,h(.) = N(0,10) orh(.) = L(0,1). It should be noted that the total noise
variance is equal to 0.9+0.1∗var{h(.)}, wherevar{L(0,1)}= 2, var{C(0,1)}=
∞, var{N(0,10)}= 10 ), and gives significantly better performances for largerout-
lier variances (Tab. 1,h(.) =C(0,1) ). Moreover, the robust method performs quite
well uniformly for different outlier statisticsh(·), under the circumstances charac-
terized by a small or moderate value of the contamination degreeε ≤ 0.1. This is
encouraging from the point of view of its application, sincethe real outlier pdfh(·),
as well as the contamination degreeε , are not known in practice.

Table 1. Average mean-square error norm for ARX model (2) anddifferent
outlier statisticsh ( L - Laplace,C- Cauchy,N - normal pdf;σ2 = 1, ε = 0.1,
k = 1.5, Θ̂(0) = 0, Γ(0) = 0.1I )

Algor. L(0,1) C(0,1) N(0,1) N(0,10)

RLS 0.1249 0.9721 0.0122 0.1235
RRA 0.0167 0.0194 0.0139 0.0160

Moreover, the proposed robust procedure is nonlinear and, consequently, the
estimates may be highly influenced by initial conditionsΘ̂(0) andΓ(0). However,
a low sensitivity to initial conditions is important for achieving practical robustness.
The problem of initial conditions can be circumvented by using a good starting
value as a result of off-line robust M-estimation [3,9,13–15].

Additionally, the application of algorithm requires the exact knowledge ofα =
I (p0), which depends on the contamination degreeε (see, remark 3). However,ε
is not known in practice, and one has to adopt it a priory. The usual values ofε are
from the range(0.02,0.1) [1–4]. The experiments have shown that the algorithm is
rather insensitive to the choice ofε belonging to the above region.. As mentioned
before, another possibility is to approximate the expectation by a single realization,
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i.e. α = α (i) ≈ ψ ′
(

ν
(

i,Θ̂ (i −1)
))

, resulting in an algorithm with adaptive factor
α in each step. The results obtained are similar to those presented above, but this
algorithm is more sensitive to the initial conditions.

To illustrate the characteristic of the proposed algorithmin a case of correlated
measurement noise, we have applied the RLS and RRA algorithms to the ARMAX
model (2) (see, remark 4)

A
(

q−1) = 1+0.83q−1−0.167q−2, B
(

q−1) = 0.167q−1, C
(

q−1) = 1+0.2q−1

As before,{u(i)} is taken to be white normal sequenceN(0,1), while {x(i)} is
contaminated normal, distributed as (22) withε = 0.1 andσ2 = 1. Table 2 depicts
the average mean-square error norm, obtained on the basis of100 Monte Carlo
trials and 500 iterations, for different outlier statistics h(·).

Table 2. Average mean-square error norm for ARMAX model and different
outlier statisticsh ( L - Laplace,C- Cauchy,N - normal pdf;σ2 = 1, ε = 0.1,
k = 1.5, Θ̂(0) = 0, Γ(0) = 0.1I )

Algor. L(0,1) C(0,1) N(0,1) N(0,10)

RLS 0.1544 1.9151 0.0220 0.1635
RRA 0.0360 0.0484 0.0309 0.0278

Similarly as in the previous example, linear RLS is slightlysuperior than the
nonlinear robust RRA for the Gaussian noise (Tab. 2;h(.) = N(0,1) in (22)). How-
ever, in the presence of outliers (Tab. 2,h(.) = L(0,1) orC(0,1) orN (0,10) ) it
leads to the biased RLS estimates, while RRA performs quite well in all situations.
As before, the reason lies not only in the nonlinear transformation of the prediction
errors, but also in an adequate way of generating the weighting matrixΓ(i), where
the factorα keeps the eigenvalues ofΓ(i) at values high enough to provide for
noise immunity.

7 Conclusion

The problem of recursive robust identification of linear dynamic discrete-time sin-
gle input-single output systems has been considered in the paper. A theoretical
analysis has shown that the asymptotically min-max optimal, robust algorithms
cannot be constructed in practice. Arguments are given indicating possibilities of
applying realizable, but nonoptimal, nonlinear transformation of the prediction er-
ror. As a result, a general form of robustified recursive stochastic Newton-Raphson
type identification schemes is adopted. The convergence of the proposed recur-
sive algorithm is established theoretically using the martingale theory. In order
to investigate practical robustness of the algorithm, Monte-Carlo simulations have



On Strong Consistency of a Class of Recursive Stochastic ... 15

been undertaken. The results obtained have shown that the efficiency of the ro-
bust algorithm is generally better than for the conventional recursive least-squares
method. Moreover, the implementation of the robust recursive algorithm is inex-
pensive, since it requires effectively no additional cost in either computer time or
program complexity.

Appendix

A Proof of the Convergence Theorem 2

If we denoteΘ̃ (i) = Θ̂(i)−Θ and introduce the Lyapunov’s stochastic function
V (i) = Θ̃T (i)Γ−1(i)Θ̃ (i), we obtain from (9)

V (i) =Θ̃T (i −1)Γ−1(i) Θ̃(i −1)

+2Θ̃T (i −1)Z(i)ψ
(

ν
(

i,Θ̂ (i −1)
))

+ZT (i)Γ(i)Z(i)ψ2(

ν
(

i,Θ̂ (i −1)
))

.

(24)

By adding and subtractingV (i −1) to the right hand side of (24) and taking into
account (17), one obtains

V (i) =V (i −1)+2Θ̃T (i −1)Z(i)ψ
(

ν
(

i,Θ̂ (i −1)
))

+ α
(

Θ̃T (i −1)Z(i)
)2

+ZT (i)Γ(i)Z(i)ψ2(

ν
(

i,Θ̂ (i −1)
))

.

(25)

Let us define the function

φ2
(

Θ̃T (i −1)Z(i)
)

= E
{

ψ2(

−ν
(

i,Θ̂ (i −1)
))∣

∣Fi−1
}

(26)

where
ν

(

i,Θ̂ (i −1)
)

= −Θ̃T (i −1)Z(i)+ξ (i) (27)

is the prediction error, or residual. The functionΦ2 (.) exists under the same condi-
tions as the functionΦ1(.). Taking into account the hypothesis A4, one concludes

φ2
(

Θ̃T (i −1)Z(i)
)

≤ k1

[

1+k2
(

Θ̃T (i −1)Z(i)
)2

]

(28)

wherek1 andk2 are a finite positive and nonnegative constants, respectively. Since
Tr

{

bbT
}

= bTb for a column vectorb, by applying the trace operation on (17) and
choosingb = Z(i), one obtains

r (i) = r (i −1)+ αZT (i)Z(i) . (29)
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By dividing (25) with logk r (i) and taking the expectation, as well as by applying
A2, A3 and (26)-(28), one obtains further

E

{

V (i)

logk r (i)
|Fi−1

}

≤
V (i −1)

logk r (i)
−

2Θ̃T (i −1)Z(i)

logk r (i)

×
[

φ1
(

Θ̃T (i −1)Z(i)
)

−
α
2

Θ̃T (i −1)Z(i)
]

+k1k2
(

Θ̃T (i −1)Z(i)
)2 ZT (i)Γ(i)Z(i)

logk r (i)

+k1
ZT (i)Γ(i)Z(i)

logk r (i)
.

(30)

By analyzing the third term in (30), we have

k1k2
(

Θ̃(i −1)Z(i)
)2 ZT (i)Γ(i)Z(i)

logk r (i)
= k1k2Θ̃T (i −1)Γ−1/2(i −1)

×Γ1/2(i −1)Z(i)ZT (i)Γ1/2 (i −1)Γ−1/2 (i −1)

×Θ̃(i −1)
ZT (i)Γ(i)Z(i)

logk r (i)
.

(31)

Moreover, the well known result from matrix analysis statedfor a square matrix
A and vectorb [18–20]

|λmin| ‖b‖ ≤ ‖Ab‖ ≤ |λmax|‖b‖ ,

|λmin| ‖b‖2 ≤ |bTAb| ≤ |λmax| ‖b‖2 (32)

with λmin andλmax being the eigenvalues ofA with smallest and largest absolute
values, and‖b‖2 = bTb. Thus, by choosing in (32)

b = Γ−1/2(i −1)Θ̃(i −1) , A = Γ1/2 (i −1)Z(i)ZT (i)Γ1/2(i −1)

further follows

Θ̃T (i −1)Γ−1/2 (i −1)Γ1/2 (i −1)Z(i)ZT (i)Γ1/2(i −1)Γ−1/2(i −1)Θ̃ (i −1)

≤ λmax

{

Γ1/2 (i −1)Z(i)ZT (i)Γ1/2 (i −1)
}

∥

∥

∥
Γ−1/2(i −1)Θ̃(i −1)

∥

∥

∥

2

= λmax

{

Γ1/2 (i −1)Z(i)ZT (i)Γ1/2 (i −1)
}

Θ̃T (i −1)Γ−1/2(i −1)

×Γ−1/2(i −1)Θ̃(i −1)

≤ Tr
{

Γ1/2 (i −1)Z(i)ZT (i)Γ1/2 (i −1)
}

Θ̃T (i −1)Γ−1(i −1)Θ̃(i −1)

= Tr
{

Γ1/2 (i −1)Z(i)ZT (i)Γ1/2 (i −1)
}

V (i −1) .

(33)
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Bearing in mind thatTr{AB} = Tr{BA} and adopting

B = Γ1/2 (i −1) , A = Γ1/2 (i −1)Z(i)ZT (i)

one obtains

Tr
{

Γ1/2 (i −1)Z(i)ZT (i)Γ1/2 (i −1)
}

= Tr
{

Γ(i −1)Z(i)ZT (i)
}

. (34)

Furthermore, since for a square matrixA and some column vectorb is fulfilled
Tr

{

AbbT
}

= bTAb, one concludes from (32) and (34), after choosingA= Γ(i −1)
andb = Z(i)

Tr
{

Γ(i −1)Z(i)ZT (i)
}

≤ λmax{Γ(i −1)}‖Z(i)‖2 . (35)

By subtracting (35) into (33), one obtains

Θ̃T (i −1)Γ−1/2 (i −1)Γ1/2 (i −1)Z(i)ZT (i)Γ1/2(i −1)Γ−1/2(i −1)Θ̃ (i −1)

≤ λmax{Γ(i −1)}‖Z(i)‖2V (i −1) .
(36)

Moreover, by subtracting (36) into (31), further follows from A7

k1k2

(

θ̃T (i −1)Z(i)
)2

logk r (i)
ZT (i)Γ(i)Z(i)

≤ k1k2
V (i −1)

logk r (i)
λmax{Γ(i −1)} ‖ Z(i) ‖2 ZT (i)Γ(i)Z(i)

≤ k1k2
M logδ r (i)

λmin{Γ−1(i −1)}

V (i −1)

logk r (i)
ZT (i)Γ(i)Z(i)

= k3
V (i −1)

logk r (i −1)

logk r (i −1)

λmin{Γ−1(i −1)}

ZT (i)Γ(i)Z(i)
logc r (i)

(37)

wherek3 = k1k2M andc = k−δ > 1. Bearing in mind (37), the relation (30) ca be
rewritten as

E

{

V (i)

logk r (i)
|Fi−1

}

≤
V (i −1)

logk r (i −1)

[

1+k3
logk r (i −1)

λmin{Γ−1(i −1)}

ZT (i)Γ(i)Z(i)
logc r (i)

]

−2
θ̃T (i −1)Z(i)

logk r (i)

[

φ1
(

θ̃T (i −1)Z(i)
)

−
α
2

θ̃ (i −1)Z(i)
]

+k1
ZT (i)Γ(i)Z(i)

logk r (i)
.

(38)
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Let us introduce the notations

zi−1 = V (i −1)/ logk r (i −1) ;

βi−1 = k3
logk r (i −1)

λmin{Γ−1(i −1)}

ZT (i)Γ(i)Z(i)
logc r (i)

ξi−1 = k1
ZT (i)Γ(i)Z(i)

logk r (i)
;

ζi−1 = 2
Θ̃T (i −1)Z(i)

logk r (i)

[

φ1
(

Θ̃T (i −1)Z(i)
)

−
α
2

Θ̃T (i −1)Z(i)
]

.

(39)

In order to apply the convergence Theorem 2, one has to prove thatzi−1, βi−1, ξi−1

andζi−1 are nonnegativeFi−1 measurable random variables, satisfying∑∞
i=1 βi <

∞, ∑∞
i=1ξi < ∞. Starting from (29), one concludes thatr (i) is a sequence of non

decreasing values, i.e.r (i) ≥ r (i −1). Furthermore, starting from A8 and since

r (i) = Tr
{

Γ−1(i)
}

=
n+m

∑
i=1

λi
{

Γ−1(i)
}

≥ λmin
{

Γ−1(i)
}

(40)

where λi are the nonnegative eigenvalues of the positive-semidefinite matrix
Γ−1(.), with λmin being the minimal eigenvalue, one concludes that limi→∞ r (i) =
∞, or equivalently fori large enoughr (i) > 1, from which it follows logr (i) > 0.
Furthermore, due to A6 and since the quadratic formsV (i) = θ̃T (i)Γ−1(i) θ̃ (i)
andZT (i)Γ(i)Z(i) are nonnegative, one also concludes thatzi−1, βi−1, ξi−1 and
ζi−1 are nonnegativeFi−1 measurable random variables. Thus, it still remains to
show that∑∞

i=1 βi < ∞, ∑∞
i=1 ξi < ∞, and this is equivalent to the condition

∞

∑
i=1

ZT (i)Γ(i)Z(i)
logc r (i)

< ∞ w.p.1 (41)

for somec > 1. To prove (41), let us define the following matrix in the portioned
form

A =

[

A11 A12

A21 A22

]

=

[

α−1 ZT(i)
Z(i) Γ−1(i)

]

. (42)

Then, Schurs formula allows the determinant of a portioned matrix to be written as
a product of component determinants [24,25], i.e.

detA = detA11det
(

A22−A21A
−1
11 A12

)

= detA22det
(

A11−A12A
−1
11 A21

)

. (43)

By substituting (42) into (43), further follows

α−1det
(

Γ−1(i)−αZ(i)ZT (i)
)

= detΓ−1(i)
(

α−1−ZT (i)Γ(i)Z(i)
)

. (44)
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Starting from (17), one obtains

Γ−1(i −1) = Γ−1(i)−αZ(i)ZT (i) (45)

and after substituting (45) in (44), we have

detΓ−1(i −1) = detΓ−1(i)
(

1−αZT (i)Γ(i)Z(i)
)

from which it follows

αZT (i)Γ(i)Z(i) =
detΓ−1(i)−detΓ−1(i −1)

detΓ−1(i)
. (46)

Furthermore, since

detΓ−1(i) =
n+m

∏
i=1

λi
{

Γ−1(i)
}

≤ λ n+m
max

{

Γ−1(i)
}

(47)

and

r (i) = Tr
{

Γ−1(i)
}

=
n+m

∑
i=1

λi
{

Γ−1(i)
}

≥ λmax
{

Γ−1(i)
}

(48)

one concludes from (47) and (48)

r (i) ≥
[

detΓ−1(i)
]

1
n+m ,

logc r (i) ≥
logc

(

detΓ−1(i)
)

(n+m)c .
(49)

Thus, starting from the assumption A5, (46) and (49), one obtains

1
α

∞

∑
i=i0

αZT (i)Γ(i)Z(i)
logc r (i)

≤
(n+m)c

α

∞

∑
i=i0

detΓ−1(i)−detΓ−1(i −1)

detΓ−1(i) logc (detΓ−1(i))
(50)

The relation (50) is easier to interpret if one views it as a discrete-time approxi-
mation to a continuously relation defined as a function of a continuously-timet.
That is, the sum in (50) should be a reasonable approximationto the corresponding
integral, and vice verse, yielding

∞

∑
i=i0

detΓ−1(i)−detΓ−1(i −1)

detΓ−1(i) logc (detΓ−1(i))
≤

detΓ−1(∞)
∫

detΓ−1(i0)

dt
t logc t

=
1

(c−1) logc−1 (detΓ−1(i0))
< ∞ w.p.1.

(51)
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Here is used the fact thatr (i) = Tr
{

Γ−1(i)
}

is the sequence of non decreasing
reals satisfying, due to (40) and A8, limi→∞ r (i) = ∞ w.p.1, while the sequence
detΓ−1(i) has the same properties, owing to (49). Thus, starting from somei0, one
can write detΓ−1(i) > 0 for i ≥ i0 and detΓ−1(∞) = ∞ w.p.1. Moreover, starting
from (41), (50), (51) and A5, one concludes that the assumptions of the conver-
gence Theorem 2 are satisfied.

By applying this theorem on (39), one obtains limi→∞ zi = z∗ w.p.1, wherez∗

is a finite, nonnegative random variable. Additionally, starting from the definition
of zi in (39) and using the second relation in (32) withb = Z(i), A = Γ−1(i) one
obtains

zi ≥
λmin

{

Γ−1(i)
}

‖ θ̃ (i) ‖2

logk r (i)
. (52)

Taking into account the fact thatzi converges towards a finite variable and using
the assumption A8, one concludes from (52) that limi→∞ ‖ θ̃ (i) ‖= 0 w.p.1, which
completes the proof.

Moreover, bearing in mind (52), one also concludes that the ratio of estimates
convergence is defined by

‖ θ̃ (i) ‖= O

{

logk r (i)
λmin (Γ−1(i))

}

1
2

(53)

where lim|x|→∞ O(|x|)/|x| = 0. Obviously, the expression (53) depends on the pa-
rameterα , sincer (i) in (29) depends onα . Thus,α influences implicitly the rate
of estimates convergence, although it is very difficult to find the explicit expression
for this dependence.
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