
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 20. no. 3, December 2007, 415-436.

An Integrated Approach for Combining BDDs and SAT
Provers

Rolf Drechsler, Görschwin Fey, and Sebastian Kinder

Abstract: Many formal verification tools today are based on Boolean proof tech-
niques. The two most powerful approaches in this context areBinary Decision Di-
agrams (BDDs) and methods based on Boolean Satisfiability (SAT). Recent studies
have shown that BDDs and SAT are orthogonal, i.e. there existproblems where BDDs
work well, while SAT solvers fail and vice versa. Beside this, the techniques are very
different in general. E.g. SAT solvers try to find a single solution and BDDs represent
all solutions in parallel.

In this paper the first integrated approach is presented thatcombines BDDs and
SAT within a single data structure. This hybrid approach combines the advantages of
the two techniques, i.e. multiple solutions can be computedwhile the memory require-
ment remains small. Experimental results demonstrate the quality of the approach in
comparison to BDDs and SAT solvers.

Keywords: SAT, BDD, Hybrid Data Structure, Symbolic Technique

1 Introduction

Many problems in circuit design can easily be formulated in terms of Boolean vari-
ables. E.g. in verification or automatic test pattern generation a satisfying assign-
ment for a Boolean formula has to be determined (see e.g. [1–3]). Several Boolean
techniques to solve this problem have been proposed in the past. Among them are
simulation based approaches, like random pattern simulation. But with increasing
design complexity pure simulation is not sufficient to find solutions in huge search
spaces. For this, complete methods based on formal proof techniques have been
proposed.

Manuscript received August 15, 2007.
The authors are with the Institute of Computer Science, University of Bremen, Bremen, 28359

Germany (e-mail:[drechsle, fey, kinder]@informatik.uni-bremen.de).

415

416 R. Drechsler, G. Fey, and S. Kinder:

The two most frequently used methods areBinary Decision Diagrams(BDDs)
and provers forBoolean Satisfiability(SAT). Experimental studies have shown
that these techniques are orthogonal, i.e. there exist problems where BDDs work
well, while SAT solvers fail and vice versa. This trade-off can even be formally
proven [4].

BDDs and SAT provers are very different in nature. While BDDscompute all
solutions in parallel, they require a large amount of memory. In contrast SAT is very
efficient regarding memory consumption, but only gives a single solution. There are
many applications where multiple solutions are needed (seee.g. [5, 6]). Motivated
by this, many authors tried to combine the best of the two approaches, by applying
SAT solvers and BDDs alternatively or iteratively. Even though remarkable results
have been obtained, so far none of the approaches consideredan integration of the
two methods within a single data structure. (A more detaileddiscussion of related
work is given in the next section.)

In this paper we present the first approach that allows to tightly combine BDDs
and SAT. Even though the overall principle of the two techniques is very different,
there are also some similarities. In both concepts, starting from a Boolean descrip-
tion, the problem is decomposed by assigning a Boolean valueto a variable. This
has already been observed in [7]. For this, we introduce the concept ofexpansion
nodes. The given Boolean problem is initially represented by a single expansion
node that is recursively expanded. If this is done in a strictDepth First Search
(DFS) manner, the resulting algorithm is close to a SAT procedure. But if all op-
erations are carried out symbolically, the algorithm computes a BDD. The relation
between the two approaches is discussed in more detail later. Experimental results
demonstrate the efficiency of the approach.1

The paper is structured as follows: Related work is discussed in Section 2. SAT
and BDDs are briefly reviewed in Section 3 to make the paper self-contained. Then,
the relation between the two is considered. The new approachis presented in Sec-
tion 4. In Section 5 experiments are presented. Finally the results are summarized
and directions for future work are given.

2 Related Work

In this section we discuss earlier work that is related to ourapproach.

Streaming BDDs have been proposed to reduce the memory requirements [10].
The idea is to represent a BDD as a bracketed sequence. The sequence can be
processed sequentially using limited memory. But this can only be done by giving

1Preliminary versions of this paper have already been published in [8,9].

An Integrated Approach for Combining BDDs and SAT Provers 417

up canonicity.

In the context of extensions of the classical BDD concept introduced by
Bryant [11], some approaches have been presented that make use of different types
of functional nodes.

The approach in [12] keeps control of the memory needed for the BDD con-
struction by projecting some parts of the graph to a new terminal nodeU (=un-
known). Instead of completely calculating each subgraph, the calculation may be
stopped at a given depth and the complete tree is replaced by the terminal nodeU .
As a result, exactness cannot be recovered afterward.

Nodes to represent the exclusive-or of the children have been introduced in [13].
The purpose of these nodes is to reduce the size of the BDD. Then, probabilistic
methods are applied to find a satisfying assignment may take asignificant compu-
tational effort.

Extended BDDs as proposed in [14] apply existential quantification and univer-
sal quantification as edge attributes. By introducing a so-called “structural variable”
s, the equality∃s f = fs+ fs can be exploited to represent the Boolean operation
f + g in terms of a nodev. This can be seen as follows: Letv be a node andf
andg be the Boolean functions represented by its children. Then,v represents the
function s f + sg. Now, assume an incoming edge has the attribute for existential
quantification. The function represented by this edge is retrieved as follows:

∃s(s f +sg) = (s f +sg)s+(s f +sg)s (as introduced above)

= f +g

Similarly, universal quantification is used to representf · g. These structural
variables allow to control the size of the extended BDD. Again, the problem is to
find a satisfying assignment of the resulting extended BDDs.

The same principle was exploited in [15]. By introducing extra nodes at the
top level of two BDDs, a Boolean operation is represented. Then, these nodes are
moved towards the terminals by exchanging adjacent variables. At the terminals
these nodes can be eliminated. In both cases the use of new variables implies that
a new level is introduced in the shared BDD structure.

The approach was further extended in [16] forBoolean Expression Diagrams
(BEDs). Functional nodes that directly represent Boolean operations were intro-
duced. Again, these nodes can be eliminated by swapping adjacent levels in the
BED. If a BED is built from a description of a circuit, the sizeof a BED is similar
to the circuit size. All of these approaches are presented asextensions of BDDs.
The advantage of using SAT-like algorithms on such a structure has not been con-

418 R. Drechsler, G. Fey, and S. Kinder:

sidered.

Another recent direction of research are efficient all-solution SAT solvers that
do not stop after reaching the first satisfying assignment but calculate all possible
satisfying solutions, e.g. [17]. A drawback of these approaches is the potentially
large representation of all solutions usually as cubes or asBDDs. In contrast, the
hybrid approach proposed here targets applications where not all but a set ofgood
solutions is needed.

Recently, several techniques have been proposed to combineBDDs and SAT
solvers (see e.g. [18–21]), but no real integration is done.Instead, the proof engines
are started one after the other, or alternating. By this, good experimental results
have often been obtained, demonstrating the potential of anintegrated approach.

3 Proof Techniques

In this section we briefly review BDDs and SAT. Then the relation between the
two is discussed to provide a better understanding and a motivation for the hybrid
approach presented below.

3.1 BDD

As well-known each Boolean functionf : Bn → B can be represented by aBinary
Decision Diagram(BDD) [11], i.e. a directed acyclic graph where the Shannon
with respect to a variablexi is carried out in each node:

f = xi fxi=0 +xi fxi=1

In the following fxi=0 is calledlow-child and fxi=1 is calledhigh-child.

A BDD is calledorderedif each variable is encountered at most once on each
path from the root to a terminal and if the variables are encountered in the same
order on all such paths. A BDD is calledreducedif it does not contain vertices
either with isomorphic subgraphs or with both edges pointing to the same node.

Reduced, ordered BDDs are a canonical data structure for Boolean functions
and allow efficient manipulations [11]. In the following only reduced, ordered
BDDs are considered and for briefness these graphs are called BDDs.

3.2 SAT

Let f be a Boolean function inConjunctive Normal Form(CNF), i.e. in a product-
of-sum representation. Then, the problem ofBoolean Satisfiability(SAT) is to

An Integrated Approach for Combining BDDs and SAT Provers 419

determine an assignment of the variables off such thatf evaluates to 1 or to prove
that such an assignment does not exist.

Example 1. Let f = (x1 + x2 + x3)(x1 + x3)(x2 + x3). Then x1 = 1, x2 = 1 and
x3 = 1 is a satisfying assignment. The values of x1 and x2 ensure that the first sum
becomes1, while x3 = 1 ensures this for the remaining sums.

In many applications, like formal verification and automatic test pattern gen-
eration, the problem is initially given in the form of a circuit. This circuit can be
transformed to a CNF by a simple transformation. Afterwards, the CNF is solved
using a SAT solver.

Recently, several very powerful SAT provers have been developed that make
use of e.g. Boolean constraint propagation and clause recording to speed up the
proof process [22–24].

Note, in the following SAT also refers to algorithms to solvethe Boolean Sat-
isfiability problem.

3.3 Discussion

Both techniques have advantages and disadvantages. While BDDs represent all
solutions in parallel at the cost of large memory requirements, A SAT solver only
provides a single solution, while the memory needed is very low. In [7] the relation
between BDDs and SAT has been studied from a theoretical point of view. It has
been proven that the BDD corresponds to a complete representation of the SAT
backtrack tree, if a fixed variable order is assumed.

As a motivation for the next section, where our approach is described in more
detail, an example is given to show the main difference between SAT and BDDs.
We will later come back to this example.

Example 2. Consider a Boolean function f over four variables given by:

f = (x1 +x2 +x3)(x1 +x2 +x4)(x1 +x2 +x4)

(x1 +x2 +x3)(x1 +x2 +x3 +x4)

A sketch of the search tree, if the function is processed by a SAT solver is shown in
Figure 1(a). The corresponding BDD is given in Figure 1(b). As can be seen, the
SAT solver by construction only gives a single solution, while the BDD represents
satisfying assignments in parallel at the cost of a larger number of nodes.

420 R. Drechsler, G. Fey, and S. Kinder:

(a) SAT search tree (b) BDD

Fig. 1. Different approaches

4 Hybrid Approach

In this section we describe our approach for BDD and SAT integration. First, the
overall idea is given. Then the concept ofexpansion nodesis introduced followed
by a discussion of expansion heuristics. Finally, we comment on some issues re-
lated to an efficient implementation.

4.1 Basic Idea

In our approach we start the processing by symbolic operations analogously to
BDDs. For the operations the ITE operator [25] has been modified. During the
starting phase, the constructed graphs are simply BDDs. Butwhen composing
BDDs a heuristic is used to decide, which parts of the solution space are explored.

To guarantee that the algorithm is exact, i.e. no solution ismissed, a node is
introduced where the computation can be resumed. These nodes are calledexpan-
sion nodesin the following. By this, our approach stores all necessaryinformation
resulting in a complete proof method.

A sketch of a configuration during the run is shown in Figure 2(a). In this
case the upper part is “SAT-like” while the lower part is a complete symbolic rep-
resentation as it occurs in BDDs. The expansion nodes are denoted byE. The
decomposition nodes are labeled by variables, these variables occur in the same
order on all paths. The order is fixed, i.e. the variables cannot be reordered. In the
following we refer to such graphs that allow a smooth transition between SAT and
BDDs ashybrid structure.

Remark 1. Several expansion nodes in a hybrid structure may representthe same
function. This cannot be detected before completely expanding the node. Thus, a
hybrid structure is not a canonical representation of Boolean functions.

An Integrated Approach for Combining BDDs and SAT Provers 421

(a) Sketch of the hybrid approach (b) Hybrid representation

Fig. 2. Hybrid approach

4.2 Expansion Nodes

The hybrid approach makes use of three types of nodes (see Figure 3):

(a) Terminal nodes
(b) Decomposition nodes
(c) Expansion nodes

(a) Terminal (b) Decomposition node(c) Expansion node

Fig. 3. Overview over different node types

The first two can also be found in BDDs. Terminal nodes represent the constant
functions 0 and 1. In decomposition nodes the Shannon decomposition is carried
out.

Expansion nodes are labeled by a Boolean operationop and have two succes-
sors f andg, that represent Boolean functions (which are also denoted by f andg
for simplicity). The expansion node represents the function f op g.

Example 3. Consider again the function from Example 2 and Figures 1(a) and
1(b). A possible hybrid structure is shown in Figure 2(b). This one results if the
top variable is only decomposed in one direction, while on the other branch an
expansion node is placed. As can be seen the structure is morememory efficient.
Compared to the BDD five instead of seven nodes are needed. At the same time

422 R. Drechsler, G. Fey, and S. Kinder:

three solutions are represented in contrast to the SAT approach that only returns a
single solution.

This simple example demonstrated that the approach combines the two proof
techniques SAT and BDD. A crucial point to address is where toplace the expan-
sion nodes. For this, we propose a heuristic in the next section.

4.3 Expansion Heuristics

Inserting expansion nodes at suitable locations is crucialfor the approach to work.
If too many expansion nodes are inserted, no solutions can befound. Only struc-
tures without a path to a terminal will be constructed and theexpansion of partial
trees will take most of the run time until computing a solution. On the other hand
not inserting enough expansion nodes will lead to a memory blow-up as known
from BDDs.

In a BDD-based approach the final solutions are computed by composing in-
termediate BDDs. This is similar for the new approach. The following steps are
necessary to retrieve solutions:

(1) Build BDDs for basic functions without any expansion nodes. For example,
the clause(x1 + x2 + x3) from Example 2 may be built completely without
using expansion nodes.

(2) Compose the function and insert expansion nodes according to a predeter-
mined heuristic.

(3) Select expansion nodes to expand the hybrid structure and obtain (further)
solutions.

Which functions are considered as basic functions in step (1) depends on the prob-
lem and the input format, e.g. projection functions and cubes were chosen in our
experiments. Building BDDs for these basic functions is notnecessary for the ap-
proach to work, but having the basic functions completely represented improves
the performance drastically by reducing the number of necessary expansions.

In the following several heuristics to limit the size of the resulting hybrid struc-
ture in step (2) have been evaluated:

(S1) A fast procedure is to directly limit the memory consumption. This limit can
be determined efficiently. Once the limit is reached no further decomposition
nodes are created, but only expansion nodes. Therefore, prior to performing
an expansion the memory limit is increased by a user defined value.

(S2) The second procedure is to limit the number of nodes in a subgraph to a
certain threshold. Tracking this limit is computationallymore expensive.
But allowing more thann nodes in a subgraph guarantees that there is at least
one path to a terminal node. I.e. for at least one assignment the function can
directly be evaluated.

An Integrated Approach for Combining BDDs and SAT Provers 423

1 Node∗ DFS(N){
2 i f (i s T e r m i n a l (N)) re tu rn NULL;
3 i f (isFuncNode (N)) re tu rn N;
4 tmp = DFS(Nhigh) ;
5 i f (tmp) re tu rn tmp ;
6 tmp = DFS(Nlow) ;
7 re tu rn tmp ;
8 }

Fig. 4. Depth first traversal

The selection of nodes to expand in step (3) has also been doneusing different
heuristics:

Fig. 5. Cube heuristic

(E1) Randomly

(E2) “DFS-like” (using the algorithm in Figure 4): The hybrid structure is tra-
versed in a depth first manner until an expansion node is reached. This node
is selected and then expanded by carrying out the stored operation. I.e., they
are expanded with the operation they are labeled with. The same scheme is
applied recursively if further selections are necessary.

424 R. Drechsler, G. Fey, and S. Kinder:

1 Node∗ applyCube (F , G, op , cube){
2 i f (t e rm i n a l C a s e) re turn r e s u l t ;
3 i f (computedTab leHasEnt ry (F , G, op))
4 re turn r e s u l t ;
5 index = t o p V a r i a b l e (F , G) ;
6 i f (cube [i ndex] == 1){
7 Rlow = expNode (Flow , Glow , op) ;
8 Rhigh = applyCube (Fhigh , Ghigh , op , cube) ;
9 } e l s e i f (cube [i ndex] == 0){

10 Rlow = applyCube (Flow , Glow , op , cube) ;
11 Rhigh = expNode (Fhigh , Ghigh , op) ;
12 } e l s e i f (cube [i ndex] == −){
13 Rlow = applyCube (Flow , Glow , op) ;
14 Rhigh = applyCube (Fhigh , Ghigh , op) ;
15 }
16 i f (Rlow == Rhigh) re turn Rlow ;
17 R = f indOrAddUniqueTable (index , Rlow , Rhigh) ;
18 inse r tCompu tedTab le (F , G, op , R) ;
19 re turn R;
20 }

Fig. 6. Apply for Heuristic SE3

Alternatively, there is a heuristic which integrates both,a heuristic for composing
and a heuristic for expanding the hybrid structure:

(SE3) “Cube-oriented”: Exemplarily, a hybrid structure and the corresponding cube
are sketched in Figure 5. This cube is defined over the input variables. For
the example given in Figure 5 the cube is:

· · · 1 − − 1 0 − ·· ·

In Figure 6 the algorithm for the composition using this heuristic is pre-
sented. In general, this algorithm corresponds to the standard apply algo-
rithm used for BDDs. To obtain an apply algorithm for the heuristic lines 6
to 12 have to be added. An additional functionexpNode(Lines 7 and 11),
which inserts expansion nodes into the structure, is implemented. The algo-
rithm in Figure 6 also has a new parametercube. The cube is a sequence
of the tokens: ‘1’, ‘0’ and ‘−’. A ‘1’ in this sequence means that only the
high-child of a node is calculated and for the low-child an expansion node
is inserted (lines 6 – 8). A ‘0’ indicates that only the low-child is calculated
(lines 9 – 11) and a ‘−’ indicates that both children have to be calculated
(lines 12 – 15). The expansion part of this heuristic works ina similar way.
Now, if such a cube is used to expand nodes in the hybrid structure the cube

An Integrated Approach for Combining BDDs and SAT Provers 425

has to be changed, e.g.:

· · · 1 − − 1 − − ·· ·

An expansion with this cube would result in the complete calculation of vari-
ablexm (i.e. all reachable nodes of this level within the hybrid structure).

The heuristic to choose a cube depends strongly on the given application. A
heuristic is exemplarily shown in Section 5.3.

Heuristic (E2) ensures a moderate growth of the memory needs. Experimental
studies showed that the combination of a hard limit on memoryconsumption (S1)
with deterministic DFS (E2) gives the best results, i.e. small run times and a large
number of solutions. From a more general point of view this combination of heuris-
tics leads to a SAT-like search tree in the upper part of the hybrid structure which
is enriched by a BDD-like lower part. These heuristics are well applicable if there
is no information about the search space which has to be explored. In contrast,
heuristic (SE3) allows for a targeted exploration of the search space. Hence, this
heuristic is applied if there are already information aboutthe search space which is
to be explored.

Remark 2. When using heuristics (S1) and (E2) in combination the search space
is traversed similar as with “BDDs at SAT leaves” in [18, 26].But the proposed
hybrid structure is more general in the sense that switchingbetween SAT-like and
BDD-like behavior is subject to heuristics.

Remark 3. During expansion canonicity is also an issue. When expanding a node,
a function that is already represented by another node may bethe result. The
hybrid structure can be reduced at a computational cost linear in the number of
nodes using an algorithm similar to [27]. In our implementation no reduction was
carried out to save run time.

4.4 Implementation

The technique described above has been integrated into the CUDD package [28],
where the core data structures are taken from. To store the expansion nodes, the
structure for storing nodes has been extended (see line 8 in Figure 7). The structure
for the new type is given in lines 11-14.

Table 1. Index of node types (32-bit)

Node type Index
decomposition nodes 0 - 65532
XOR-node 65533
AND-node 65534
terminal node 65535

426 R. Drechsler, G. Fey, and S. Kinder:

1 s t r u c t Node {
2 HalfWord index ;
3 HalfWord r e f ;
4 Node ∗ nex t ;
5 union {
6 Termina l v a l u e ;
7 C h i l d re n k i d s ;
8 ExpNode func;
9 }

10 }
11 s t r u c t ExpNode{
12 Node ∗F ;
13 Node ∗G;
14 }

Fig. 7. Modified node structure

In case of an expansion node, also the operation has to be stored. For reasons
of efficiency we restrict ourselves to store only operationsof type AND and XOR.
Negation is realized by complemented edges [25]. All other Boolean operators are
mapped accordingly. The information is stored in the index of each node. The
complete encoding is given in Table 1, i.e. three indices have a special meaning,
while all the remaining ones are used for decomposition variables. A hash table
is used for the expansion nodes. Therefore, a particular expansion node with the
stored nodesf andg and the operationopexists only once.

5 Applications and Experimental Results

In this section experimental results are presented. First,heuristics (S1), (S2), (E1)
and (E2) are evaluated with the well knownn-Queens problem which is consid-
ered as an example of a combinational problem where BDDs are known to perform
poorly on large instances while a large number of solutions is available. In this
way, the best combination of heuristics is determined. Afterwards, the combina-
tion if heuristics is applied to the synthesis problem of minimizing EXOR-Sum-Of-
Product(ESOP) representations. This optimization problem is known to be hard.
Often, ESOP representations are optimized heuristically.Hence, a framework to
estimate the quality of heuristically obtained ESOP representations is introduced in
the last section using a problem specific heuristic ((SE3)).In this case the transi-
tion from “SAT-like” to “BDD-like” behavior of the hybrid approach is of particular
importance.

An Integrated Approach for Combining BDDs and SAT Provers 427

Fig. 8. Solution for the 5-Queens problem

5.1 n-Queens

Then-Queens problem is a well-known combinational problem. Theobjective is
to placen queens on ann×n board such that no queen can be captured by another
one. An example for a solution of the 5-Queens problem is shown in Figure 8.
This game problem is encoded usingn2 binary input variables, each one deciding,
if a queen is placed on the corresponding field of the chess board or not. Obviously,
the constraints are to place one queen per row and column and at most one queen
per diagonal.

Table 2. Heuristics to limit the size of the hybrid structure

Limit for the size
BDD Memory (S1) Subgraph (S2)

n #sol. sec. sec. overhead sec. overhead
6 4 0.00 0.00 - 0.01 -
7 40 0.01 0.01 0.00 % 0.03 200.00 %
8 92 0.05 0.06 20.00 % 0.18 260.00 %
9 352 0.37 0.37 0.00 % 1.30 251.35 %

10 724 1.56 1.59 1.92 % 8.20 425.64 %
11 2680 7.81 7.82 0.13 % 62.39 698.84 %
12 14200 48.12 48.54 0.87 % 490.33 918.97 %
13 73712 352.11 353.21 0.31 % 4566.75 1196.97 %

The experiments given here have been carried out on an Intel Pentium 4 proces-
sor with 3 GHz and 1 GByte of main memory running Linux. In a first experiment
the heuristics to limit the size were considered. For all experiments the limits were
loose enough to retrieve all solutions. Therefore the overhead of the heuristics to
limit the size can directly be measured in comparison to BDDs. Results are reported
in Table 2. Given are the number of solutions for increasing values ofn and run
times in CPU seconds for BDDs and the two heuristics introduced in Section 4.3,
respectively. The resource requirements for BDDs increaserapidly and no further
solutions beyondn = 13 could be retrieved. Also the computational overhead of

428 R. Drechsler, G. Fey, and S. Kinder:

limiting the size of subgraphs using heuristic (S2) is too large. But directly limit-
ing the memory consumption according to heuristic (S1) doesintroduce almost no
overhead. This heuristic has been used in all remaining experiments to restrict the
size.

The performance of heuristics to select nodes for expansionhas been investi-
gated in the next experiment. Expansion was carried out until a total memory limit
of 750 MB was reached. Due to the expansion of subfunctions more than one so-
lution can be contained in the final representation. The results are shown in Table
3. Up ton = 13 all solutions were obtained with both heuristics.

Table 3. Selection of expansion nodes

Randomly (E1) DFS (E2)
n #var #sol. sec. #sol. sec.
3 9 0 0.00 0 0.00
4 16 2 0.00 2 0.00
5 25 10 0.00 10 0.00
6 36 4 0.00 4 0.00
7 49 40 0.02 40 0.01
8 64 92 0.06 92 0.06
9 81 352 0.37 352 0.37

10 100 724 2.10 724 1.83
11 121 2680 16.54 2680 10.30
12 144 14200 158.86 14200 73.34
13 169 73712 2062.39 73712 578.54
14 196 0 384.45 56672 1836.93
15 225 0 289.01 33382 1669.50
16 256 0 652.64 20338 2555.35
17 289 0 1366.25 5061 2055.97
18 324 0 693.13 204 2238.79
19 361 0 529.37 1428 3357.97
20 400 0 1923.07 38 1592.94
21 441 0 1957.39 111 1972.60

Then, the random selection performs very poorly. When expanding the last
node in a cascade of expansion nodes new decomposition nodesare created. But
the next expansion will often occur at an expansion node in a different subgraph.
Thus, the previously created decomposition nodes cannot beutilized for the next
step.

In contrast the deterministic DFS starts the next expansionwhere new decom-
position nodes have been constructed previously. As a result the new approach
yields solutions up ton = 21 in a moderate amount of time.

An Integrated Approach for Combining BDDs and SAT Provers 429

5.2 ESOP Minimization

Compared to a SOP-representation of a function the ESOP-representation can be
exponentially smaller. But most algorithms for ESOP minimization only apply
local transformations to improve from an initial solution,e.g. [29, 30]. In [31]
the problem to compute an ESOP for a given Boolean functionf overn variables
has been formulated using the Helliwell equation. The Helliwell equationH f for
function f has 3n input variables, each input variable corresponds to a cube and is 1,
iff this cube is chosen for the ESOP off . A satisfying assignment toH f determines
an ESOP forf and vice versa. The Helliwell equation is defined in Equation1.

H f (c) = ∏
a∈Bn

[

(
⊕

b∈D

cb
)

≡ f (a)
]

(1)

D = {(d0, . . . ,dn)|ak = dk∨ak = −}

n,k∈ N;0≤ k≤ n;d ∈ {0,1,−}n

In Equation (1) all assignmentsa of a function f are iterated. The correct value
of ⊕-sums of the cubescb is enforced by the comparison tof (a). Afterwards, all
valid ⊕-sums of the cubes are joint to the Helliwell equationH f (c). For a detailed
description we refer to [31].

The hybrid structure was built for the Helliwell equation. By additional con-
straints the number of cubes was limited to be at mostk. The experimental results
for applying this method tof =

⊕4
i=1xi are shown in Table 4. Given are results for

using BDDs, the hybrid structure, and the SAT solver zchaff [23]. We modified the
SAT solver zchaff to calculate more than one solution: For each solution a block-
ing clause is added and the solve process is continued. For the hybrid structure
results are reported when different numbers of solutions are calculated: more than
1, more than 103 and more than 106 solutions, respectively. For different values
of k the CPU time in seconds, the memory requirements in kB and thenumber of
nodes in the BDD or the hybrid structure, respectively, are reported (measured on
a computer with an Intel Pentium 4 processor with 3 GHz and 1 GByte of main
memory). For zchaff the CPU time is given. The number of available solutions is
not reported, but grows rapidly. While there are only 38 valid solutions fork = 4,
there are 564 fork = 5 and more than 3.3·107 for k = 10.

The results show the superiority of the hybrid approach compared to BDDs.
For a tightly restricted solution space (k < 25) BDDs are feasible. But after that
the memory and especially the run time requirements grow prohibitively fast. In
contrast the hybrid approach exhibits a rather stable performance as CPU time and
memory requirements remain in the same order for all runs. The increased run time
for k = 10,15 when calculating more than 106 solutions is due to the small number
of possible solutions. In this case a large part of the BDD hasto be recreated using
the expansion technique without retrieving more solutions. In this case BDDs are

43
0

R
.D

re
ch

sl
er

,G
.F

ey
,a

nd
S

.K
in

de
r:

Table 4. ESOP minimization

BDD hybrid structure zchaff
all solutions ≥ 1 solution ≥ 103 solutions ≥ 106 solutions 1 sol. 103 sol.106 sol.

k sec. kB #nodes sec. kB #nodes sec. kB #nodes sec. kB #nodes sec. sec. sec.

4 0.55 16433 628 0.5016449 568 0.5316466 1108 0.5316466 1108 <0.01 0.07 0.07
5 0.58 16483 4075 0.5316450 638 0.6016534 4729 0.6116534 4729 <0.01 0.09 0.09

10 1.75 23610 4206550.4716450 145 0.7016728 1159751.2819140155018<0.01 0.14 -
15 4.96 4927014281390.4816468 352 0.6116744 1163410.1719420172422<0.01 0.11 -
20 53.96 6553924447820.4716484 112 0.5416670 7459 1.1319516177708<0.01 0.32 -
25 1945.01 8428034498660.4816500 490 0.5216582 5465 0.9818732133396<0.01 0.37 -
30 9985.37 9975244414630.4916500 495 0.4916534 2618 0.6617395 48107<0.01 0.12 -
35 13900.2211388353611820.5216500 544 0.5116516 878 0.7516931 21608<0.01 0.16 -
39 13913.4412363559064410.4416500 217 0.4516516 1241 0.5316662 5910 <0.01 0.09 -

An Integrated Approach for Combining BDDs and SAT Provers 431

faster. But usually even calculating a large number of solutions does not degrade
the performance of the new approach.

When calculating a single solution, the SAT solver is faster. But even for calcu-
lating 103 solutions the computation time increases significantly. Finally, when cal-
culating a large number of solutions the added blocking clauses lead to a memory
blow-up even for the SAT solver. Using a more sophisticated approach the block-
ing clauses could be compacted, but only at the expense of CPUtime for logic
optimization. By this the new approach provides a good compromise between a
SAT-based approach and a BDD-based approach.

Nevertheless, ESOP minimization is a very time consuming task. Thus, ESOP
representations are often obtained heuristically, but their quality is usually un-
known. Therefore, a measure is needed to determine the quality. The application
of the hybrid structure to estimate the quality of such representations is presented
in the next section.

5.3 Estimating the Quality of ESOP Optimization Results

To estimate the quality of a solution four steps are applied.These steps are briefly
outlined below. More details are given afterwards.

(1) Obtain an initial ESOP representation for a Boolean function f .

(2) Construct the Helliwell equationH f for f .
(3) Derive the neighborhood of the initial solution.
(4) Calculate all solutions ofH f within the neighborhood.

(1) Initial Solution: An initial minimization solution has to be calculated. This
is done heuristically. In our framework either Mint [32] or the truth-table of the
function were used.

(2) Helliwell Equation:The Helliwell equation is constructed. For details about
the Helliwell equation see Equation (1) in Section 5.2.

(3) NeighborhoodsTo estimate whether a good solution has been found, the
neighborhood of the initial solution is considered. Thus, it can be determined
whether the initial solution was a local minimum and whetherthere are local trans-
formations which can improve the solution further.

Given a single cubec the 1-neighborhood is determined by all cubes that can
be derived by extendingc in one dimension or by invertingc with respect to one
dimension.

Example 4. Consider the cubec1110 from the Karnaugh map in Figure 9(a).
The set of cubes belonging to the corresponding1-neighborhood is:

c0110 c1010 c1100 c1111
c-110 c1-10 c11-0 c111-

432 R. Drechsler, G. Fey, and S. Kinder:

(a) Chosen cube (b) 1-Neighborhood

Fig. 9. Cube and its neighborhood

The Karnaugh map for this neighborhood is shown in Figure 9(b).

This is done for all cubes chosen in the initial solution. Afterwards, all sets of
neighboring cubes are joined to retrieve the 1-neighborhood of the solution.

In a similar way them-neighborhood is determined. Them-neighborhood is
derived by extending a cubec in up tomdimensions and by invertingc with respect
to up tom dimensions. An upper bound for the number of cubes neighboring a
solution is:

min

(

(m

∑
i=1

k ·2i ·

(

n
i

)

)

,3n

)

(2)

In Equation (2),k is the number of initially chosen cubes,m is the index of the
neighborhood andn is the number of inputs of the corresponding function. The
first part of the upper bound is composed of the product of

(n
m

)

possibilities to
choose the dimension and 2m options to choose a cube in this dimension. This is
done for allk chosen cubes. Since the (m-1)-neighborhood is a subset of them-
neighborhood, all numbers of cubes of previous neighborhoods have to be added
up.

There are cubes which may occur in different neighborhoods of cubes from the
initial solution. Thus, the formula given is an upper bound.Since the underlying
minimization algorithm is exact a minimal solution is obtained if the bound of 3n

allowed cubes is reached.
(4) CalculationTo calculate the Helliwell equation the hybrid data structure

introduced in Section 4 was used. The hybrid structure usingthe cube heuristic
(SE3) facilitates a targeted exploration of the relevant search space, while irrele-
vant parts are not calculated at all. Heuristic (SE3) was also chosen because the
initial solution and its neighborhood defines the search space to be explored us-
ing the hybrid structure. The Helliwell equation was calculated using the initial
solution and the hybrid data structure. Afterwards, the hybrid structure was com-
puted using the neighborhood of the initial solution. Circuits from the LGSynth93
benchmark set were chosen to be minimized. In case of a multi output function
always the first output was considered. Because of the large search space defined

An Integrated Approach for Combining BDDs and SAT Provers 433

by the neighborhoods (see Equation (2)), only the 1-neighborhood was calculated.
The experiments were terminated by “soft limits” after either 1 hour or 768 MB of
memory usage evaluated at particular checkpoints, e.g. after every expansion step.
If these limits could not be met, the experiments were aborted without evaluation
if they needed more than two hours or consumed more than 1 GB ofmain memory.
The experiments have been carried out on a computer with two DualCore 64-Bit
Opteron 2,8GHz CPUs and 32 GB main memory.

Table 5. Quality estimation of ESOP optimizations

truth-table mint
hybrid technique hybrid technique

function n #var k #sol. min sec. % k #sol. min sec. %
cm42a 4 81 4 3 4 6694.55 76.76 4 1 4 26.89 100.00
xor4 4 81 8 144 8 5093.57 58.33 4 23 4 3.69 100.00
cm82a 5 243 4 9 4 5894.74 50.00 3 3 3 2176.66 64.52
squar5 5 243 6 66 3 6610.86 46.00 3 3 3 5718.69 93.55
majority 5 243 10 4 7 5592.06 22.67 5 - - ABORTED -
xor5 5 243 16 1 16 784.82 15.18 5 23 5 2448.27 80.49
rd53 5 243 16 1 16 784.52 15.81 5 79986 5 442.31 80.49
cm138a 6 729 6 1 6 2911.74 20.59 6 1 6 2235.38 56.90
con1 7 2187 9 1 9 931.77 8.85 4 - - ABORTED -
z4ml 7 2187 36 - - ABORTED - 13 86 13 1524.94 18.90
rd73 7 2187 64 - - ABORTED - 7 3 7 1512.90 31.31
sqrt8 8 6561 2 1 2 524.76 25.00 3 1 3 898.90 43.18

In Table 5 computational results are shown. In columnfunction the name of
the corresponding function is written. In columnsn and#var the number of inputs
of the original functions and the number of inputs of the functions representing
the Helliwell equation are given. The two big columnstruth-tableandmint show
the results starting from the initial solution obtained from the truth-table and from
Mint, respectively. The number of cubes chosen by the initial solution is presented
in columnsk. The number of chosen cubes of the best solution obtained from the
neighborhood is provided in columnmin. The number of solutions calculated is
given in the corresponding column#sol.. In columnsec. the run time in seconds
is shown. The calculation of the 1-neighborhood could not befinished for most
experiments. The percentage of the calculated neighborhood is presented in col-
umn%.

As can be seen for the experiments starting with an initial solution obtained
by Mint the 1-neighborhood was calculated farther. On average 66.93% of these
neighborhoods were explored. For the experiments startingwith a solution ob-
tained from the truth-table the 1-neighborhoods were only explored to 33.92% on
average. That is because most solutions obtained from the truth-table contain more
cubes than the ones obtained by Mint resulting in a larger neighborhood accord-
ing to Equation (2). For smaller functions, e.g.xor4 andcm42a, even the com-
plete 1-neighborhood was calculated using the initial solution from Mint. In these

434 R. Drechsler, G. Fey, and S. Kinder:

cases it is guaranteed that no better solution can be found bylocal transformations
within the 1-neighborhood. For larger functions, e.g.xor5, rd53 or cm138a, the 1-
neighborhood was explored to a high percentage. In the explored search space no
better than the initial solution was found. In contrast, better solutions were found
in the 1-neighborhood for two functions,majority andsquar5, when starting with
an initial solution from the truth-table.

In this way, a quality measure for heuristically obtained ESOP representations
is facilitated using the hybrid structure in unity with a heuristic that allows for a
directed search space exploration.

6 Conclusions and Future Work

We introduced a new approach to handle satisfiability problems. This approach can
be seen as an integrated technique using BDDs and SAT solversand incorporates
benefits of both: The memory consumption can be limited whilecalculating a large
number of solutions in a single run. Heuristics have been proposed and evaluated.
Experiments show the efficiency of the hybrid technique in contrast to classical
approaches.

Future work consists of the introduction of powerful learning techniques as
known from the SAT domain to composition and expansion heuristics. The appli-
cation to formal verification will be examined. Suitable heuristics for such applica-
tions have to be developed.

References

[1] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “Combinational test gener-
ation using satisfiability,”IEEE Trans. on CAD, vol. 15, pp. 1167–1176, 1996.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking without
BDDs,” in Tools and Algorithms for the Construction and Analysis of Systems, ser.
LNCS, vol. 1579. Springer Verlag, 1999, pp. 193–207.

[3] J. Shi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, and J. Schlöffel, “PASSAT: Eff-
cient SAT-based test pattern generation for industrial circuits,” in IEEE Annual Sym-
posium on VLSI, 2005, pp. 212–217.

[4] J. F. Groote and H. Zantema, “Resolution and binary decision diagrams cannot sim-
ulate each other polynomially,”Discrete Applied Mathmatics, vol. 130, no. 2, pp.
157–171, 2003.

[5] G. Fey and R. Drechsler, “Finding good counter-examplesto aid design verification,”
in ACM & IEEE International Conference on Formal Methods and Models for Code-
sign (MEMOCODE), 2003, pp. 51–52.

[6] C. Haubelt, J. Teich, R. Feldmann, and B. Monien, “SAT-based techniques in sys-
tem synthesis,” inDesign, Automation and Test in Europe, vol. 1, 2003, pp. 11 168–
11 169.

[7] S. Reda, R. Drechsler, and A. Orailoglu, “On the relationbetween SAT and BDDs
for equivalence checking,” inInt’l Symp. on Quality Electronic Design, 2002, pp.
394–399.

An Integrated Approach for Combining BDDs and SAT Provers 435

[8] R. Drechsler, G. Fey, and S. Kinder, “An integrated approach for combining BDD
and SAT provers,” inVLSI Design Conf., 2006, pp. 237–242.

[9] S. Kinder, G. Fey, and R. Drechsler, “Estimating the quality of AND-EXOR opti-
mization results,”Int’l Workshop on Applications of the Reed-Muller Expansion in
Circuit Design, 2007.

[10] S. Minato, “Streaming BDD manipulation,”IEEE Trans. on Comp., vol. 51, no. 5,
pp. 474–485, 2002.

[11] R. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE
Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

[12] D. Ross, K. Butler, R. Kapur, and M. Mercer, “Fast functional evaluation of candidate
OBDD variable ordering,” inEuropean Conf. on Design Automation, 1991, pp. 4–9.

[13] C. Meinel and H. Sack, “⊕-OBDDs - a BDD Structure for Probabilistic Verification,”
in Workshop on Probabilistic methods in Verification, 1998, pp. 141–151.

[14] S. Jeong, B. Plessier, G. Hachtel, and F. Somenzi, “Extended BDD’s: Trading of
canonicity for structure in verification algorithms,” inInt’l Conf. on CAD, 1991, pp.
464–467.

[15] A. Hett, R. Drechsler, and B. Becker, “MORE: Alternative implementation of BDD
packages by multi-operand synthesis,” inEuropean Design Automation Conf., 1996,
pp. 164–169.

[16] H. Andersen and H. Hulgaard, “Boolean expression diagrams,” inLogic in Computer
Science, 1997, pp. 88–98.

[17] B. Li, M. Hsiao, and S. Sheng, “A novel SAT all-solutionssolver for efficient preim-
age computation,” inDesign, Automation and Test in Europe, 2004, pp. 272–277.

[18] A. Gupta, Z. Yang, P. Ashar, and A. Gupta, “SAT-based image computation with
application in reachability analysis,” inInt’l Conf. on Formal Methods in CAD, ser.
LNCS, vol. 1954, 2000, pp. 354–371.

[19] G. Cabodi, S. Nocco, and S. Quer, “SAT-based bounded model checking by means
of BDD-based approximate traversals,” inDesign, Automation and Test in Europe,
2003, pp. 898–903.

[20] S. Safarpour, G. Fey, A. Veneris, and R. Drechsler, “Utilizing don’t care states in
SAT-based bounded sequential problems,” inGreat Lakes Symp. VLSI, 2005, pp.
264–269.

[21] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust Boolean reasoning for
equivalence checking and functional property verification,” IEEE Trans. on CAD,
vol. 21, no. 12, pp. 1377–1394, 2002.

[22] J. Marques-Silva and K. Sakallah, “GRASP – a new search algorithm for satisfiabil-
ity,” in Int’l Conf. on CAD, 1996, pp. 220–227.

[23] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering
an efficient SAT solver,” inDesign Automation Conf., 2001, pp. 530–535.

[24] E. Goldberg and Y. Novikov, “BerkMin: a fast and robust SAT-solver,” in Design,
Automation and Test in Europe, 2002, pp. 142–149.

[25] K. Brace, R. Rudell, and R. Bryant, “Efficient implementation of a BDD package,”
in Design Automation Conf., 1990, pp. 40–45.

[26] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik, “Partition-based decision
heuristics for image computation using SAT and BDDs,” inInt’l Conf. on CAD, 2001,
pp. 286–292.

[27] D. Sieling and I. Wegener, “Reduction of BDDs in linear time,” Information Process-
ing Letters, vol. 48, no. 3, pp. 139–144, 11 1993.

436 R. Drechsler, G. Fey, and S. Kinder:

[28] F. Somenzi, “Efficient manipulation of decision diagrams,” Software Tools for Tech-
nology Transfer, vol. 3, no. 2, pp. 171–181, 2001.

[29] D. Brand and T. Sasao, “Minimization of AND-EXOR expressions using rewrite
rules,” IEEE Trans. on Comp., vol. 42, pp. 568–576, 1993.

[30] A. Mishchenko and M. Perkowski, “Fast heuristic minimization of exclusive-sums-
of-products,” in Int’l Workshop on Applications of the Reed-Muller Expansion in
Circuit Design, 2001, pp. 242–250.

[31] M. Perkowski and M. Chrzanowska-Jeske, “An exact algorithm to minimize mixed-
radix exclusive sums of products for incompletely specifiedBoolean functions,” in
Int’l Symp. Circ. and Systems, 1990, pp. 1652–1655.

[32] T. Kozlowski, E. L. Dagless, and J. M. Saul, “An enhancedalgorithm for the min-
imization of exclusive-or sum-of-products for incompletely specified functions,” in
Int’l Conf. on Comp. Design, 1995, pp. 244–249.

