FACTA UNIVERSITATIS (Nlé)
SER.: ELEC. ENERG. vol. 20. no. 3, December 2007, 415-436.

An Integrated Approach for Combining BDDs and SAT
Provers

Rolf Drechsler, Gorschwin Fey, and Sebastian Kinder

Abstract: Many formal verification tools today are based on Boolearoptech-
niques. The two most powerful approaches in this contexBamary Decision Di-
agrams (BDDs) and methods based on Boolean SatisfiabilA¥)(SRecent studies
have shown that BDDs and SAT are orthogonal, i.e. there pragilems where BDDs
work well, while SAT solvers fail and vice versa. Beside tliie techniques are very
differentin general. E.g. SAT solvers try to find a singleuimin and BDDs represent
all solutions in parallel.

In this paper the first integrated approach is presentedcttrabines BDDs and
SAT within a single data structure. This hybrid approach boras the advantages of
the two techniques, i.e. multiple solutions can be compwtate the memory require-
ment remains small. Experimental results demonstrate ubéty of the approach in
comparison to BDDs and SAT solvers.

Keywords: SAT, BDD, Hybrid Data Structure, Symbolic Technique

1 Introduction

Many problems in circuit design can easily be formulateceimts of Boolean vari-
ables. E.g. in verification or automatic test pattern geimraa satisfying assign-
ment for a Boolean formula has to be determined (see e.g])[1S8veral Boolean
techniques to solve this problem have been proposed in t#te pmong them are
simulation based approaches, like random pattern sinonlaBut with increasing
design complexity pure simulation is not sufficient to findisions in huge search
spaces. For this, complete methods based on formal proohitpees have been
proposed.

Manuscript received August 15, 2007.
The authors are with the Institute of Computer Science, éhsity of Bremen, Bremen, 28359
Germany (e-mail[drechsl e, fey, kinder]@nfornmatik. uni-brenen. de).

415

416 R. Drechsler, G. Fey, and S. Kinder:

The two most frequently used methods Birary Decision Diagram¢BDDs)
and provers forBoolean Satisfiability(SAT). Experimental studies have shown
that these techniques are orthogonal, i.e. there existgorabwhere BDDs work
well, while SAT solvers fail and vice versa. This trade-offinceven be formally
proven [4].

BDDs and SAT provers are very different in nature. While BDdaspute all
solutions in parallel, they require a large amount of membrgontrast SAT is very
efficient regarding memory consumption, but only gives glgisolution. There are
many applications where multiple solutions are needed€spd5, 6]). Motivated
by this, many authors tried to combine the best of the two@gugres, by applying
SAT solvers and BDDs alternatively or iteratively. Evenugb remarkable results
have been obtained, so far none of the approaches consiaeiategration of the
two methods within a single data structure. (A more detailisgussion of related
work is given in the next section.)

In this paper we present the first approach that allows tdljigiombine BDDs
and SAT. Even though the overall principle of the two techiesis very different,
there are also some similarities. In both concepts, staftom a Boolean descrip-
tion, the problem is decomposed by assigning a Boolean Yalaevariable. This
has already been observed in [7]. For this, we introduce ¢imeapt ofexpansion
nodes The given Boolean problem is initially represented by alk&irexpansion
node that is recursively expanded. If this is done in a siepth First Search
(DFS) manner, the resulting algorithm is close to a SAT pdoce. But if all op-
erations are carried out symbolically, the algorithm cotepwa BDD. The relation
between the two approaches is discussed in more detail Btperimental results
demonstrate the efficiency of the approach.

The paper is structured as follows: Related work is disaligs&ection 2. SAT
and BDDs are briefly reviewed in Section 3 to make the papécsaltained. Then,
the relation between the two is considered. The new apprisgatesented in Sec-
tion 4. In Section 5 experiments are presented. Finally ¢lselts are summarized
and directions for future work are given.

2 Related Work

In this section we discuss earlier work that is related toapproach.

Streaming BDDs have been proposed to reduce the memoryeeatgrits [10].
The idea is to represent a BDD as a bracketed sequence. Thensegcan be
processed sequentially using limited memory. But this aag be done by giving

Ipreliminary versions of this paper have already been puétisn [8, 9].

An Integrated Approach for Combining BDDs and SAT Provers 417

up canonicity.

In the context of extensions of the classical BDD conceptoduced by
Bryant [11], some approaches have been presented that reak# different types
of functional nodes.

The approach in [12] keeps control of the memory needed ®®BHBD con-
struction by projecting some parts of the graph to a new teahmodeU (=un-
known). Instead of completely calculating each subgralpd,calculation may be
stopped at a given depth and the complete tree is replacdtttigrtminal nodéJ.
As a result, exactness cannot be recovered afterward.

Nodes to represent the exclusive-or of the children hava m@educed in [13].
The purpose of these nodes is to reduce the size of the BDh, Tiebabilistic
methods are applied to find a satisfying assignment may takgndicant compu-
tational effort.

Extended BDDs as proposed in [14] apply existential quaatifbn and univer-
sal quantification as edge attributes. By introducing aated “structural variable”

s, the equality3dsf = fs+ fs can be exploited to represent the Boolean operation
f +gin terms of a noder. This can be seen as follows: Lete a node and
andg be the Boolean functions represented by its children. Theapresents the
functionsf+3g Now, assume an incoming edge has the attribute for exiatent
quantification. The function represented by this edge rienatd as follows:

Js(sf+3g9) = (sf+3gs+(sf+350s (asintroduced above)

Similarly, universal quantification is used to represéng. These structural
variables allow to control the size of the extended BDD. Ag#tie problem is to
find a satisfying assignment of the resulting extended BDDs.

The same principle was exploited in [15]. By introducingraxtodes at the
top level of two BDDs, a Boolean operation is representedenT these nodes are
moved towards the terminals by exchanging adjacent vasabft the terminals
these nodes can be eliminated. In both cases the use of nelearimplies that
a new level is introduced in the shared BDD structure.

The approach was further extended in [16] Bwolean Expression Diagrams
(BEDs). Functional nodes that directly represent Boolep@rations were intro-
duced. Again, these nodes can be eliminated by swappingedijtevels in the
BED. If a BED is built from a description of a circuit, the sinéa BED is similar
to the circuit size. All of these approaches are presentezki@mnsions of BDDs.
The advantage of using SAT-like algorithms on such a stredbas not been con-

418 R. Drechsler, G. Fey, and S. Kinder:

sidered.

Another recent direction of research are efficient all-dotu SAT solvers that
do not stop after reaching the first satisfying assignmentélculate all possible
satisfying solutions, e.g. [17]. A drawback of these apphes is the potentially
large representation of all solutions usually as cubes @2Ss. In contrast, the
hybrid approach proposed here targets applications wharallnbut a set ofyood
solutions is needed.

Recently, several techniques have been proposed to corBiDs and SAT
solvers (see e.g. [18-21]), but no real integration is dém&tead, the proof engines
are started one after the other, or alternating. By thisdgexperimental results
have often been obtained, demonstrating the potential oftagrated approach.

3 Proof Techniques

In this section we briefly review BDDs and SAT. Then the relatbetween the
two is discussed to provide a better understanding and avatiotn for the hybrid
approach presented below.

3.1 BDD

As well-known each Boolean functioh: B" — B can be represented byBanary
Decision Diagram(BDD) [11], i.e. a directed acyclic graph where the Shannon
with respect to a variablg is carried out in each node:

f =% fx—0+ X fx=1

In the following fy,—o is calledlow-child and fy,—; is calledhigh-child

A BDD is calledorderedif each variable is encountered at most once on each
path from the root to a terminal and if the variables are entered in the same
order on all such paths. A BDD is calledducedif it does not contain vertices
either with isomorphic subgraphs or with both edges pogntmthe same node.

Reduced, ordered BDDs are a canonical data structure foleBodunctions
and allow efficient manipulations [11]. In the following gnfeduced, ordered
BDDs are considered and for briefness these graphs arel &D®s.

3.2 SAT

Let f be a Boolean function i€onjunctive Normal FornfCNF), i.e. in a product-
of-sum representation. Then, the problemBwolean Satisfiability SAT) is to

An Integrated Approach for Combining BDDs and SAT Provers 419

determine an assignment of the variables stich thatf evaluates to 1 or to prove
that such an assignment does not exist.

Example 1. Let f = (X1 + X2+ X3)(X1 + X3)(X2 +x3). Thenx =1, X = 1 and
X3 = 1is a satisfying assignment. The values p&rd % ensure that the first sum
becomed, while % = 1 ensures this for the remaining sums.

In many applications, like formal verification and autornggst pattern gen-
eration, the problem is initially given in the form of a ciftuThis circuit can be
transformed to a CNF by a simple transformation. Afterwatds CNF is solved
using a SAT solver.

Recently, several very powerful SAT provers have been dgesl that make
use of e.g. Boolean constraint propagation and clausediegpto speed up the
proof process [22—-24].

Note, in the following SAT also refers to algorithms to sothe Boolean Sat-
isfiability problem.

3.3 Discussion

Both techniques have advantages and disadvantages. WDl Bepresent all
solutions in parallel at the cost of large memory requiretseA SAT solver only
provides a single solution, while the memory needed is v@ry In [7] the relation
between BDDs and SAT has been studied from a theoreticat pbwiew. It has
been proven that the BDD corresponds to a complete repeggeniof the SAT
backtrack tree, if a fixed variable order is assumed.

As a motivation for the next section, where our approach s&dieed in more
detail, an example is given to show the main difference betw&AT and BDDs.
We will later come back to this example.

Example 2. Consider a Boolean function f over four variables given by:

f = (Xa+X+x3)(Xe+Xe+Xg) (X + X2+ Xg)
(X1 + X2+ X3) (X1 + X2 + X3 + X4)

A sketch of the search tree, if the function is processed iyTasBlver is shown in
Figure 1(a). The corresponding BDD is given in Figure 1(by @an be seen, the
SAT solver by construction only gives a single solutionjentiie BDD represents
satisfying assignments in parallel at the cost of a largemiver of nodes.

420 R. Drechsler, G. Fey, and S. Kinder:

(a) SAT search tree (b) BDD

Fig. 1. Different approaches

4 Hybrid Approach

In this section we describe our approach for BDD and SAT iatégn. First, the
overall idea is given. Then the conceptexipansion nodeis introduced followed
by a discussion of expansion heuristics. Finally, we controensome issues re-
lated to an efficient implementation.

4.1 Basicldea

In our approach we start the processing by symbolic operatamalogously to
BDDs. For the operations the ITE operator [25] has been neallifiDuring the
starting phase, the constructed graphs are simply BDDs. wBain composing
BDDs a heuristic is used to decide, which parts of the satugjpace are explored.

To guarantee that the algorithm is exact, i.e. no solutiomissed, a node is
introduced where the computation can be resumed. These ane&alledexpan-
sion nodegn the following. By this, our approach stores all necessafgrmation
resulting in a complete proof method.

A sketch of a configuration during the run is shown in Figurea)2(In this
case the upper part is “SAT-like” while the lower part is a g@dete symbolic rep-
resentation as it occurs in BDDs. The expansion nodes aretetbioy E. The
decomposition nodes are labeled by variables, these \esiazcur in the same
order on all paths. The order is fixed, i.e. the variables otba reordered. In the
following we refer to such graphs that allow a smooth traosibetween SAT and
BDDs ashybrid structure

Remark 1. Several expansion nodes in a hybrid structure may reprabergsame
function. This cannot be detected before completely expariie node. Thus, a
hybrid structure is not a canonical representation of Baoléunctions.

An Integrated Approach for Combining BDDs and SAT Provers 421

’
/
/ ;
/ -
-

(a) Sketch of the hybrid approach (b) Hybrid representation

Fig. 2. Hybrid approach

4.2 Expansion Nodes

The hybrid approach makes use of three types of hodes (seseFR):

(&) Terminal nodes
(b) Decomposition nodes
(c) Expansion nodes

P

(a) Terminal (b) Decomposition nodg(c) Expansion node

Fig. 3. Overview over different node types

The first two can also be found in BDDs. Terminal nodes repriefe constant
functions 0 and 1. In decomposition nodes the Shannon dexsitigm is carried
out.

Expansion nodes are labeled by a Boolean operatjpand have two succes-
sorsf andg, that represent Boolean functions (which are also denogefldndg
for simplicity). The expansion node represents the fumcfiop g

Example 3. Consider again the function from Example 2 and Figures 1(& a
1(b). A possible hybrid structure is shown in Figure 2(b).isTéne results if the
top variable is only decomposed in one direction, while o ¢ther branch an
expansion node is placed. As can be seen the structure ismmnreory efficient.
Compared to the BDD five instead of seven nodes are neededhe Atime time

422 R. Drechsler, G. Fey, and S. Kinder:

three solutions are represented in contrast to the SAT agbrahat only returns a
single solution.

This simple example demonstrated that the approach coslteetwo proof
techniques SAT and BDD. A crucial point to address is whengldoe the expan-
sion nodes. For this, we propose a heuristic in the next@ecti

4.3 Expansion Heuristics

Inserting expansion nodes at suitable locations is crdiciahe approach to work.
If too many expansion nodes are inserted, no solutions cdauvel. Only struc-
tures without a path to a terminal will be constructed andekgansion of partial
trees will take most of the run time until computing a solati@n the other hand
not inserting enough expansion nodes will lead to a memaow-ip as known
from BDDs.

In a BDD-based approach the final solutions are computed byosing in-
termediate BDDs. This is similar for the new approach. THeWang steps are
necessary to retrieve solutions:

(1) Build BDDs for basic functions without any expansion asdFor example,
the clause(x; + X2 + X3) from Example 2 may be built completely without
using expansion nodes.

(2) Compose the function and insert expansion nodes acaptdia predeter-
mined heuristic.

(3) Select expansion nodes to expand the hybrid structudeohtain (further)
solutions.

Which functions are considered as basic functions in stgddpends on the prob-
lem and the input format, e.g. projection functions and sulvere chosen in our
experiments. Building BDDs for these basic functions ismetessary for the ap-
proach to work, but having the basic functions completelyresented improves
the performance drastically by reducing the number of resmgsexpansions.

In the following several heuristics to limit the size of thesulting hybrid struc-
ture in step (2) have been evaluated:

(S1) Afast procedure is to directly limit the memory constimp. This limit can
be determined efficiently. Once the limit is reached no ferrtlecomposition
nodes are created, but only expansion nodes. Therefooe,tprperforming
an expansion the memory limit is increased by a user definke@ va

(52) The second procedure is to limit the number of nodes inbgraph to a
certain threshold. Tracking this limit is computationatlyore expensive.
But allowing more tham nodes in a subgraph guarantees that there is at least
one path to a terminal node. |.e. for at least one assignrherfutiction can
directly be evaluated.

An Integrated Approach for Combining BDDs and SAT Provers 423

Nodex DFS(N){
if (isTerminal(N)) return NULL;
if (isFuncNode(N)) return N;
tmp = DFS(Nhigh);
if (tmp) return tmp;
tmp = DFS(Nlow);
return tmp;

O~NO O WNPE

—

Fig. 4. Depth first traversal

The selection of nodes to expand in step (3) has also beenusimg different
heuristics:

Fig. 5. Cube heuristic

(E1) Randomly

(E2) “DFS-like” (using the algorithm in Figure 4). The hybrstructure is tra-
versed in a depth first manner until an expansion node is eshchrhis node
is selected and then expanded by carrying out the storeciper |.e., they
are expanded with the operation they are labeled with. Theestcheme is
applied recursively if further selections are necessary.

424 R. Drechsler, G. Fey, and S. Kinder:

1 Nodex applyCube(F, G, op, cube{)

2 if (terminalCase)return result;

3 if (computedTableHasEntry(F, G, op))

4 return result;

5 index = topVariable(F, G);

6 if (cube[index] == 1)

7 Rlow = expNode(Flow, Glow, op);

8 Rhigh = applyCube(Fhigh, Ghigh, op, cube);
9 } else if(cube[index] == 0}

10 Rlow = applyCube(Flow, Glow, op, cube);
11 Rhigh = expNode(Fhigh, Ghigh, op);

12 } else if(cubel[index] == -){

13 Rlow = applyCube(Flow, Glow, op);

14 Rhigh = applyCube(Fhigh, Ghigh, op);

15

16 if (Rlow == Rhigh) return Rlow;

17 R = findOrAddUniqueTable (index, Rlow, Rhigh);
18 insertComputedTable(F, G, op, R);
19 return R;

Fig. 6. Apply for Heuristic SE3

Alternatively, there is a heuristic which integrates batHeuristic for composing
and a heuristic for expanding the hybrid structure:

(SE3) “Cube-oriented”: Exemplarily, a hybrid structureddhe corresponding cube
are sketched in Figure 5. This cube is defined over the inpidhas. For
the example given in Figure 5 the cube is:

il ——-10— ---

In Figure 6 the algorithm for the composition using this h&lig is pre-
sented. In general, this algorithm corresponds to the atandpply algo-
rithm used for BDDs. To obtain an apply algorithm for the histiz lines 6
to 12 have to be added. An additional functiexpNodegLines 7 and 11),
which inserts expansion nodes into the structure, is imptaed. The algo-
rithm in Figure 6 also has a new parametebe The cube is a sequence
of the tokens: ‘1’, ‘0’ and ~’. A ‘1’ in this sequence means that only the
high-child of a node is calculated and for the low-child apaxsion node
is inserted (lines 6 — 8). A ‘0’ indicates that only the lowidhs calculated
(lines 9 — 11) and a-’ indicates that both children have to be calculated
(lines 12 — 15). The expansion part of this heuristic worka gimilar way.
Now, if such a cube is used to expand nodes in the hybrid sieithe cube

An Integrated Approach for Combining BDDs and SAT Provers 425

has to be changed, e.g.:
el -1 — — ...

An expansion with this cube would result in the complete walion of vari-
ablexn, (i.e. all reachable nodes of this level within the hybridisture).

The heuristic to choose a cube depends strongly on the gpgication. A
heuristic is exemplarily shown in Section 5.3.

Heuristic (E2) ensures a moderate growth of the memory ndexserimental
studies showed that the combination of a hard limit on menconsumption (S1)
with deterministic DFS (E2) gives the best results, i.e.lsroa times and a large
number of solutions. From a more general point of view thisibmation of heuris-
tics leads to a SAT-like search tree in the upper part of tHeitystructure which
is enriched by a BDD-like lower part. These heuristics ar# agplicable if there
is no information about the search space which has to be mplon contrast,
heuristic (SE3) allows for a targeted exploration of thersleapace. Hence, this
heuristic is applied if there are already information abihatsearch space which is
to be explored.

Remark 2. When using heuristics (S1) and (E2) in combination the $espace

is traversed similar as with “BDDs at SAT leaves” in [18, 28But the proposed
hybrid structure is more general in the sense that switclietyveen SAT-like and
BDD-like behavior is subject to heuristics.

Remark 3. During expansion canonicity is also an issue. When expanainode,
a function that is already represented by another node maghberesult. The
hybrid structure can be reduced at a computational costdiria the number of
nodes using an algorithm similar to [27]. In our implememat no reduction was
carried out to save run time.

4.4 Implementation

The technique described above has been integrated intolid¥(ackage [28],

where the core data structures are taken from. To store thansion nodes, the
structure for storing nodes has been extended (see lineigumg=7). The structure
for the new type is given in lines 11-14.

Table 1. Index of node types (32-bit)

Node type Index |
decomposition nodes 0 - 65532
XOR-node 65533
AND-node 65534
terminal node 65535

426 R. Drechsler, G. Fey, and S. Kinder:

1 struct Node {

2 HalfWord index;

3 HalfWord ref;

4 Node *next;

5 union {

6 Terminal value;
7 Children kids;
8 ExpNode func;

9 }

10 }

11 struct ExpNod¢

12 Node *F;

13 Node *G;

14 }

Fig. 7. Modified node structure

In case of an expansion node, also the operation has to lelsteor reasons
of efficiency we restrict ourselves to store only operatioh/pe AND and XOR.
Negation is realized by complemented edges [25]. All otheolBan operators are
mapped accordingly. The information is stored in the indéxach node. The
complete encoding is given in Table 1, i.e. three indiceslamgpecial meaning,
while all the remaining ones are used for decompositionaldes. A hash table
is used for the expansion nodes. Therefore, a particulaaresipn node with the
stored nodeg andg and the operatioo p exists only once.

5 Applications and Experimental Results

In this section experimental results are presented. Fiestristics (S1), (S2), (E1)
and (E2) are evaluated with the well knowrQueens problem which is consid-
ered as an example of a combinational problem where BDDsrawik to perform
poorly on large instances while a large number of solutianaviailable. In this
way, the best combination of heuristics is determined. ifseds, the combina-
tion if heuristics is applied to the synthesis problem of imizing EXOR-Sum-Of-
Product(ESOP) representations. This optimization problem is kméwsvbe hard.
Often, ESOP representations are optimized heuristicilignce, a framework to
estimate the quality of heuristically obtained ESOP regméations is introduced in
the last section using a problem specific heuristic ((SEB)}his case the transi-
tion from “SAT-like” to “BDD-like” behavior of the hybrid aproach is of particular
importance.

An Integrated Approach for Combining BDDs and SAT Provers 427

Fig. 8. Solution for the 5-Queens problem

5.1 n-Queens

Then-Queens problem is a well-known combinational problem. ®bgctive is

to placen queens on an x n board such that no queen can be captured by another
one. An example for a solution of the 5-Queens problem is shiowFigure 8.
This game problem is encoded usimgybinary input variables, each one deciding,

if a queen is placed on the corresponding field of the chessllmpanot. Obviously,

the constraints are to place one queen per row and columntandsi one queen
per diagonal.

Table 2. Heuristics to limit the size of the hybrid structure

Limit for the size

BDD Memory (S1) Subgraph (S2)
n #sol. sec. sec.| overhead sec.| overhead
6 4 0.00 0.00 - 0.01 -
7 40 0.01 0.01 0.00 % 0.03| 200.00 %
8 92 0.05 0.06| 20.00% 0.18| 260.00 %
9 352 0.37 0.37 0.00 % 1.30| 251.35%

10 724 1.56 1.59 1.92% 8.20| 425.64%

11

12

13

2680 7.81 7.82| 0.13% 62.39| 698.84%
14200| 48.12| 48.54| 0.87%| 490.33| 918.97 %
73712 | 352.11|| 353.21| 0.31% || 4566.75| 1196.97 %

The experiments given here have been carried out on an leiium 4 proces-
sor with 3 GHz and 1 GByte of main memory running Linux. In atfeésperiment
the heuristics to limit the size were considered. For allegkpents the limits were
loose enough to retrieve all solutions. Therefore the cea&dhof the heuristics to
limit the size can directly be measured in comparison to BOResults are reported
in Table 2. Given are the number of solutions for increasialyes ofn and run
times in CPU seconds for BDDs and the two heuristics intredua Section 4.3,
respectively. The resource requirements for BDDs increagielly and no further
solutions beyonah = 13 could be retrieved. Also the computational overhead of

428 R. Drechsler, G. Fey, and S. Kinder:

limiting the size of subgraphs using heuristic (S2) is tagéa But directly limit-
ing the memory consumption according to heuristic (S1) doiesduce almost no
overhead. This heuristic has been used in all remainingrerpats to restrict the
size.

The performance of heuristics to select nodes for exparsisnbeen investi-
gated in the next experiment. Expansion was carried outt aitdital memory limit
of 750 MB was reached. Due to the expansion of subfunction® ithan one so-
lution can be contained in the final representation. Thelteawe shown in Table
3. Up ton = 13 all solutions were obtained with both heuristics.

Table 3. Selection of expansion nodes

Randomly (E1) DFS (E2)
n | #var || #sol. sec.|| #sol. sec.
3 9 0 0.00 0 0.00
4 16 2 0.00 2 0.00
5 25 10 0.00 10 0.00
6 36 4 0.00 4 0.00
7 49 40 0.02 40 0.01
8 64 92 0.06 92 0.06

9 81 352 0.37 352 0.37
10| 100 724 2.10 724 1.83
11| 121 | 2680 16.54 || 2680 10.30
12 | 144 | 14200| 158.86| 14200 73.34
13| 169 || 73712| 2062.39| 73712| 578.54

14| 196 0| 384.45|| 56672| 1836.93
15| 225 0| 289.01| 33382| 1669.50
16 | 256 0| 652.64| 20338| 2555.35
17 | 289 0 | 1366.25|] 5061 | 2055.97
18 | 324 0| 693.13 204 | 2238.79
19| 361 0| 529.37| 1428| 3357.97
20 | 400 0 | 1923.07 38 | 1592.94
21| 441 0| 1957.39 111 | 1972.60

Then, the random selection performs very poorly. When edjpanthe last
node in a cascade of expansion nodes new decomposition aceleseated. But
the next expansion will often occur at an expansion node iiff@rent subgraph.
Thus, the previously created decomposition nodes cannatilized for the next
step.

In contrast the deterministic DFS starts the next expansioere new decom-
position nodes have been constructed previously. As atrdsilnew approach
yields solutions up to = 21 in a moderate amount of time.

An Integrated Approach for Combining BDDs and SAT Provers 429

5.2 ESOP Minimization

Compared to a SOP-representation of a function the ESOfRgeptation can be
exponentially smaller. But most algorithms for ESOP mirzation only apply
local transformations to improve from an initial solutioa.g. [29, 30]. In [31]
the problem to compute an ESOP for a given Boolean functiomer n variables
has been formulated using the Helliwell equation. The Melli equationH; for
function f has 3 input variables, each input variable corresponds to a coteésal,
iff this cube is chosen for the ESOP bf A satisfying assignment tid¢ determines
an ESOP forf and vice versa. The Helliwell equation is defined in Equafion

H = = f 1)

© = [1[(@e)=r)]
D = {(do,...,dn)]ax=CkVax=—}
nkeN;0<k<nde{0,1,—}"

In Equation (1) all assignmengsof a functionf are iterated. The correct value
of ®-sums of the cubes, is enforced by the comparison fda). Afterwards, all
valid @-sums of the cubes are joint to the Helliwell equati$y(c). For a detailed
description we refer to [31].

The hybrid structure was built for the Helliwell equationy Bdditional con-
straints the number of cubes was limited to be at nkodthe experimental results
for applying this method td = @i“zlxi are shown in Table 4. Given are results for
using BDDs, the hybrid structure, and the SAT solver zch2g] [We modified the
SAT solver zchaff to calculate more than one solution: Fahesplution a block-
ing clause is added and the solve process is continued. Edmybrid structure
results are reported when different numbers of solutioescatculated: more than
1, more than 1®and more than 10solutions, respectively. For different values
of k the CPU time in seconds, the memory requirements in kB anduher of
nodes in the BDD or the hybrid structure, respectively, amorted (measured on
a computer with an Intel Pentium 4 processor with 3 GHz and ¥t€Bf main
memory). For zchaff the CPU time is given. The number of aNdd solutions is
not reported, but grows rapidly. While there are only 38d/aolutions fork = 4,
there are 564 fok = 5 and more than.3- 10’ for k = 10.

The results show the superiority of the hybrid approach camexqb to BDDs.
For a tightly restricted solution spack < 25) BDDs are feasible. But after that
the memory and especially the run time requirements growipitively fast. In
contrast the hybrid approach exhibits a rather stable pedace as CPU time and
memory requirements remain in the same order for all rung. ifitreased run time
for k = 10,15 when calculating more than @6olutions is due to the small number
of possible solutions. In this case a large part of the BDDtbdxe recreated using
the expansion technique without retrieving more solutidnsthis case BDDs are

R. Drechsler, G. Fey, and S. Kinder:

430

Table 4. ESOP minimization

BDD hybrid structure zchaff

all solutions > 1 solution > 10° solutions || > 1P solutions || 1 sol.|10° sol]J10° sol.

k sec| kB| #nodegsec| kBJ#node§sec| kBJ#node§ sec| kB[#node§ sec| sec| sec
4 0.55 16433 628(0.5016449 568|0.5316466 1108| 0.5316466 1108|<0.01] 0.07 0.07
5 0.58 16483 4075|0.5316450 638|0.6016534 4729| 0.6116534 4729|<0.01] 0.09 0.09
10 1.75 23610 420655%0.471645Q0 145|0.7016728 11597%|51.2819140155018<0.01f 0.14 -
15 4.9 4927014281390.4816468 352|0.6116744 11634{10.1719420172422<0.01] 0.11 -
20 53.96 6553924447820.4716484 112(0.541667Q 7459| 1.1319516177708<0.01] 0.32 -
25| 1945.01 8428C34498630.48 16500 49(0|0.5216584 5465| 0.9918732133396(<0.01] 0.37 -
30| 9985.37 9975244414630.4916500 495|0.4916534 2618| 0.6617395 48107|<0.01] 0.12 -
35|(13900.2211388353611820.5216500 544/0.51]16516 878| 0.7516931 2160§/<0.01] 0.16 -
39|(13913.441236395906441/0.4416500 217/0.4516516 1241 0.5316664 591Q0|<0.01 0.09 -

An Integrated Approach for Combining BDDs and SAT Provers 431

faster. But usually even calculating a large number of gastdoes not degrade
the performance of the new approach.

When calculating a single solution, the SAT solver is fadBert even for calcu-
lating 1@ solutions the computation time increases significantlgafy, when cal-
culating a large number of solutions the added blockings#adead to a memory
blow-up even for the SAT solver. Using a more sophisticatgor@ach the block-
ing clauses could be compacted, but only at the expense of iRfor logic
optimization. By this the new approach provides a good comse between a
SAT-based approach and a BDD-based approach.

Nevertheless, ESOP minimization is a very time consumieg. t&ahus, ESOP
representations are often obtained heuristically, buir theality is usually un-
known. Therefore, a measure is needed to determine thetygualie application
of the hybrid structure to estimate the quality of such repngations is presented
in the next section.

5.3 Estimating the Quality of ESOP Optimization Results

To estimate the quality of a solution four steps are applidtese steps are briefly
outlined below. More details are given afterwards.

(1) Obtain an initial ESOP representation for a Boolean fionct .
(2) Construct the Helliwell equatioH+ for f.

(3) Derive the neighborhood of the initial solution.

(4) Calculate all solutions dfi; within the neighborhood.

(2) Initial Solution: An initial minimization solution has to be calculated. This
is done heuristically. In our framework either Mint [32] dret truth-table of the
function were used.

(2) Helliwell Equation: The Helliwell equation is constructed. For details about
the Helliwell equation see Equation (1) in Section 5.2.

(3) Neighborhoodslo estimate whether a good solution has been found, the
neighborhood of the initial solution is considered. Thusgcan be determined
whether the initial solution was a local minimum and whetthere are local trans-
formations which can improve the solution further.

Given a single cube the 1-neighborhood is determined by all cubes that can
be derived by extending in one dimension or by inverting with respect to one
dimension.

Example 4. Consider the cube 1110 from the Karnaugh map in Figure 9(a).
The set of cubes belonging to the correspondisrgeighborhood is:

c0110 c1010 c1100 cl111
c-110 c1-10 c11-0 c111-

432 R. Drechsler, G. Fey, and S. Kinder:

X4 | X4 X4 X74
X3 @ |x3
. : X e,

o (] [)
X3 X3

_ — \®

X1 < X1 <
X3 X3

X X2 [X2 X X2 [X2
(a) Chosen cube (b) 1-Neighborhood

Fig. 9. Cube and its neighborhood

The Karnaugh map for this neighborhood is shown in Figure).9(b

This is done for all cubes chosen in the initial solution. ekftards, all sets of
neighboring cubes are joined to retrieve the 1-neighbattmidhe solution.

In a similar way them-neighborhood is determined. Timeneighborhood is
derived by extending a culzan up tomdimensions and by invertingwith respect
to up tom dimensions. An upper bound for the number of cubes neighfaai

min<(iik-2‘ - (?))3ﬂ> @)

In Equation (2),k is the number of initially chosen cubes) is the index of the
neighborhood and is the number of inputs of the corresponding function. The
first part of the upper bound is composed of the product bf possibilities to
choose the dimension andl' ®ptions to choose a cube in this dimension. This is
done for allk chosen cubes. Since the+()-neighborhood is a subset of the
neighborhood, all numbers of cubes of previous neighbatbdwve to be added
up.

There are cubes which may occur in different neighborhoddsiloes from the
initial solution. Thus, the formula given is an upper bout@ince the underlying
minimization algorithm is exact a minimal solution is olotadl if the bound of 3
allowed cubes is reached.

(4) CalculationTo calculate the Helliwell equation the hybrid data stroetu
introduced in Section 4 was used. The hybrid structure ugliegcube heuristic
(SE3) facilitates a targeted exploration of the relevamatree space, while irrele-
vant parts are not calculated at all. Heuristic (SE3) was alosen because the
initial solution and its neighborhood defines the searcltsa be explored us-
ing the hybrid structure. The Helliwell equation was cadtad using the initial
solution and the hybrid data structure. Afterwards, thertaybtructure was com-
puted using the neighborhood of the initial solution. Citgdrom the LGSynth93
benchmark set were chosen to be minimized. In case of a rmutjpiub function
always the first output was considered. Because of the lagels space defined

An Integrated Approach for Combining BDDs and SAT Provers 433

by the neighborhoods (see Equation (2)), only the 1-neididmm was calculated.
The experiments were terminated by “soft limits” after eit hour or 768 MB of
memory usage evaluated at particular checkpoints, e gy. e@fery expansion step.
If these limits could not be met, the experiments were ablonghout evaluation
if they needed more than two hours or consumed more than 1 Giiof memory.
The experiments have been carried out on a computer with tued@ore 64-Bit
Opteron 2,8GHz CPUs and 32 GB main memory.

Table 5. Quality estimation of ESOP optimizations

truth-table mint

hybrid technique hybrid technique
function| n| #var|| k|#sol.|min sec. %1| k| #sol.|min sec. %
cmd2a |4| 81| 4 3| 4 6694.55 76.76|| 4 1| 4 26.89| 100.00
xor4 4| 81| 8| 144| 8 5093.57,58.33|| 4 23| 4 3.69|100.00
cm82a |5| 243| 4 9| 4 5894.74/50.00|| 3 3] 3 2176.66 64.52
squar5 [5| 243|| 6| 66| 3 6610.86 46.00|| 3 3] 3 5718.69 93.55
majority| 5| 243}/ 10 41 7 5592.06 22.67|| 5 - -| ABORTED -
Xor5 5| 243||16 1| 16 784.82/15.18(| 5 23| 5 2448.27 80.49
rd53 5| 243||16 1| 16 784.52/15.81|| 5/79986| 5 442.31] 80.49
cmi138a|6| 729| 6 1| 6 2911.7420.59|| 6 1| 6 2235.38 56.90
conl 712187| 9 1] 9 931.77| 8.85| 4 - -| ABORTED -
z4ml 71218736 - -|ABORTED -1113 86| 13 1524.94 18.90
rd73 71218764 - -|ABORTED -7 3 7 1512.90 31.31
sqrt8 8|6561| 2 1] 2 524.76| 25.00(3 1| 3 898.90 43.18

In Table 5 computational results are shown. In coluiwnmctionthe name of
the corresponding function is written. In colummand#var the number of inputs
of the original functions and the number of inputs of the fiorts representing
the Helliwell equation are given. The two big columinsth-table and mint show
the results starting from the initial solution obtainednfréhe truth-table and from
Mint, respectively. The number of cubes chosen by the irstéution is presented
in columnsk. The number of chosen cubes of the best solution obtained tine
neighborhood is provided in colummin. The number of solutions calculated is
given in the corresponding columifsol. In columnsec. the run time in seconds
is shown. The calculation of the 1-neighborhood could nofilished for most
experiments. The percentage of the calculated neighbdrimpresented in col-
umn%.

As can be seen for the experiments starting with an initifutsn obtained
by Mint the 1-neighborhood was calculated farther. On ayer@693% of these
neighborhoods were explored. For the experiments staiitig a solution ob-
tained from the truth-table the 1-neighborhoods were orplared to 3392% on
average. That is because most solutions obtained fromutrettble contain more
cubes than the ones obtained by Mint resulting in a largeghiirhood accord-
ing to Equation (2). For smaller functions, exgpr4 andcm42a even the com-
plete 1-neighborhood was calculated using the initial tsmhufrom Mint. In these

434 R. Drechsler, G. Fey, and S. Kinder:

cases it is guaranteed that no better solution can be foutatchy/transformations
within the 1-neighborhood. For larger functions, exgr5, rd53 or cm138athe 1-
neighborhood was explored to a high percentage. In the eglgearch space no
better than the initial solution was found. In contrasttdresolutions were found
in the 1-neighborhood for two functionsjajority andsquari when starting with
an initial solution from the truth-table.

In this way, a quality measure for heuristically obtaineddSrepresentations
is facilitated using the hybrid structure in unity with a histic that allows for a
directed search space exploration.

6 Conclusions and Future Work

We introduced a new approach to handle satisfiability probleThis approach can
be seen as an integrated technique using BDDs and SAT salndrscorporates

benefits of both: The memory consumption can be limited wdaleulating a large

number of solutions in a single run. Heuristics have beepgsed and evaluated.
Experiments show the efficiency of the hybrid technique intist to classical

approaches.

Future work consists of the introduction of powerful leagnitechniques as
known from the SAT domain to composition and expansion lséas. The appli-
cation to formal verification will be examined. Suitable hstics for such applica-
tions have to be developed.

References

[1] P. Stephan, R. Brayton, and A. Sangiovanni-Vincent&lombinational test gener-
ation using satisfiability,JEEE Trans. on CADvol. 15, pp. 1167-1176, 1996.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic medchecking without
BDDs,” in Tools and Algorithms for the Construction and Analysis ct&ns ser.
LNCS, vol. 1579. Springer Verlag, 1999, pp. 193-207.

[3] J. Shi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, andchl&fel, “PASSAT: Eff-
cient SAT-based test pattern generation for industriaigis,” in IEEE Annual Sym-
posium on VLSI2005, pp. 212-217.

[4] J. F. Groote and H. Zantema, “Resolution and binary degidiagrams cannot sim-
ulate each other polynomiallyDiscrete Applied Mathmati¢srol. 130, no. 2, pp.
157-171, 2003.

[5] G.Feyand R. Drechsler, “Finding good counter-examfesd design verification,”
in ACM & IEEE International Conference on Formal Methods anddédis for Code-
sign (MEMOCODE)2003, pp. 51-52.

[6] C. Haubelt, J. Teich, R. Feldmann, and B. Monien, “SABdzAtechniques in sys-
tem synthesis,” iDesign, Automation and Test in Eurgp®l. 1, 2003, pp. 11 168—
11169.

[7] S. Reda, R. Drechsler, and A. Orailoglu, “On the relatimiween SAT and BDDs
for equivalence checking,” itnt’l Symp. on Quality Electronic Desigr2002, pp.
394-399.

An Integrated Approach for Combining BDDs and SAT Provers 435

[8] R. Drechsler, G. Fey, and S. Kinder, “An integrated ag@to for combining BDD
and SAT provers,” irWVLSI Design Conf.2006, pp. 237-242.

[9] S. Kinder, G. Fey, and R. Drechsler, “Estimating the gyadf AND-EXOR opti-
mization results,Int'l Workshop on Applications of the Reed-Muller Expansiio
Circuit Design 2007.

[10] S. Minato, “Streaming BDD manipulationlEEE Trans. on Compvol. 51, no. 5,
pp. 474-485, 2002.

[11] R. Bryant, “Graph-based algorithms for Boolean fuantimanipulation,”|EEE
Trans. on Comp.vol. 35, no. 8, pp. 677—691, 1986.

[12] D.Ross, K. Butler, R. Kapur, and M. Mercer, “Fast functal evaluation of candidate
OBDD variable ordering,” irEuropean Conf. on Design Automatjdr®91, pp. 4-9.

[13] C.Meineland H. Sack,&-0OBDDs - a BDD Structure for Probabilistic Verification,”
in Workshop on Probabilistic methods in Verificatjd®98, pp. 141-151.

[14] S. Jeong, B. Plessier, G. Hachtel, and F. Somenzi, ‘fieddd BDD’s: Trading of
canonicity for structure in verification algorithms,” Int'l Conf. on CADQ 1991, pp.
464-467.

[15] A. Hett, R. Drechsler, and B. Becker, “MORE: Alternaiimplementation of BDD
packages by multi-operand synthesis,Earopean Design Automation Conf996,
pp. 164-169.

[16] H. Andersen and H. Hulgaard, “Boolean expression diagg,” inLogic in Computer
Sciencel997, pp. 88-98.

[17] B. Li, M. Hsiao, and S. Sheng, “A novel SAT all-solutiosalver for efficient preim-
age computation,” idesign, Automation and Test in Eurq@904, pp. 272-277.

[18] A. Gupta, Z. Yang, P. Ashar, and A. Gupta, “SAT-basedgma@aomputation with
application in reachability analysis,” imt'l Conf. on Formal Methods in CADser.
LNCS, vol. 1954, 2000, pp. 354-371.

[19] G. Cabodi, S. Nocco, and S. Quer, “SAT-based boundedetrtecking by means
of BDD-based approximate traversals,”resign, Automation and Test in Eurgpe
2003, pp. 898-903.

[20] S. Safarpour, G. Fey, A. Veneris, and R. Drechsler, fikltig don’t care states in
SAT-based bounded sequential problems,Great Lakes Symp. VLS2005, pp.
264-269.

[21] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “RobBsolean reasoning for
equivalence checking and functional property verificatidBeEE Trans. on CAD
vol. 21, no. 12, pp. 1377-1394, 2002.

[22] J. Marques-Silva and K. Sakallah, “GRASP — a new seagdrighm for satisfiabil-
ity,” in Int'| Conf. on CAD 1996, pp. 220-227.

[23] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Mali€haff: Engineering
an efficient SAT solver,” irDesign Automation Conf2001, pp. 530-535.

[24] E. Goldberg and Y. Novikov, “BerkMin: a fast and robuskSsolver,” in Design,
Automation and Test in Europ2002, pp. 142-149.

[25] K. Brace, R. Rudell, and R. Bryant, “Efficient implematibn of a BDD package,”
in Design Automation Conf1990, pp. 40-45.

[26] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik, “Rarh-based decision
heuristics forimage computation using SAT and BDDsJhitil Conf. on CAD 2001,
pp. 286—-292.

[27] D. Sieling and I. Wegener, “Reduction of BDDs in line@né,” Information Process-
ing Letters vol. 48, no. 3, pp. 139-144, 11 1993.

436 R. Drechsler, G. Fey, and S. Kinder:

[28] F. Somenzi, “Efficient manipulation of decision diagrs,” Software Tools for Tech-
nology Transfervol. 3, no. 2, pp. 171-181, 2001.

[29] D. Brand and T. Sasao, “Minimization of AND-EXOR exps@ms using rewrite
rules,”IEEE Trans. on Compvol. 42, pp. 568-576, 1993.

[30] A. Mishchenko and M. Perkowski, “Fast heuristic miniaiion of exclusive-sums-
of-products,” inInt'l Workshop on Applications of the Reed-Muller Expamnsio
Circuit Design 2001, pp. 242-250.

[31] M. Perkowski and M. Chrzanowska-Jeske, “An exact atgor to minimize mixed-
radix exclusive sums of products for incompletely specitdeblean functions,” in
Int’'l Symp. Circ. and System$990, pp. 1652—-1655.

[32] T. Kozlowski, E. L. Dagless, and J. M. Saul, “An enhanedgbrithm for the min-
imization of exclusive-or sum-of-products for incomplgtspecified functions,” in
Int’l Conf. on Comp. Designl995, pp. 244-249.

