FACTA UNIVERSITATIS (Nlé)
SER.: ELEC. ENERG. vol. 20, no. 3, December 2007, 381-394

Building Free Binary Decision Diagrams Using SAT
Solvers

Robert Wille, Gorschwin Fey, and Rolf Drechsler

Abstract: Free Binary Decision Diagrams (FBDDs) are a data structorghfe rep-
resentation of Boolean functions. In contrast to OrdereuaBi Decision Diagrams
(OBDDs) FBDDs allow different variable orderings along egath. Thus, FBDDs
are the more compact representation while most of the ptiegexf OBDDs are kept.
However, how to efficiently build small FBDDs for a given fuiwn is still an open
guestion. In this work we propose FBDD construction with liedp of SAT solvers.
‘Recording’ the single steps of a SAT solver during the skgocess leads to an
FBDD.

Furthermore, by exploiting approaches for identifyingnmewphic sub-graphs,
i.e. cutlines or cutsets, reduced FBDDs are constructed.

Keywords: Decision diagrams, Boolean satisfiability, logic syntBedata structures.

1 Introduction

Ordered Binary Decision Diagram@BDDs) [1] are a data structure for efficient
representation and manipulation of Boolean functions. OBDave been success-
fully applied in many applications in VLSI CAD, but due to tbedering restric-
tions, there are many Boolean functions for which no efficiepresentation exists.
This is the reason why in the last 15 years several extensio@8DDs have been
proposed. While some of them modify the decomposition tygmgaed to each
node, others loose the ordering restriction. For an ovengae the various types
see [2].

As one extensiorFree BDDs(FBDDs) have been proposed. In FBDDs the
Shannon decomposition is carried out in each node, anasbgtu OBDDs, but

Manuscript received August 31, 2007.
The authors are with the Institute of Computer Science atthigersity of Bremen, Germany
(e-mail:[rwi | |l e, fey, drechsl e] @ nfornmati k. uni - brenen. de).

381

382 R. Wille, G. Fey, and R. Drechsler:

along different paths different orderings may occur. Hogreeach variable is still
allowed to appear only once. If the variables are chosendrséme order along all
paths, OBDDs result. In this sense FBDDs are a superset ofl3BWVith some

modification FBDDs are a canonical data structure [3]. Theeist several theoret-
ical studies (e.g. [4]) that show that Boolean functionstttiat can be efficiently
represented by FBDDs, i.e. in polynomial space, while eaBBD requires an ex-
ponential number of nodes, independent of the chosen Vamatering. The main
problem is that there do not exist efficient heuristics foCHBconstruction. First
approaches have been presented in [5, 6, 7], but no sigrifitgumovements over
OBDDs have been reported.

In the recent past, there is a significant improvement inrélyos for solving
Boolean Satisfiabilitf{ SAT). The resulting tools, so called SAT solvers, typigall
work onConjunctive Normal FormgNFs) and can cope with instances of several
thousand clauses and literals. The search tree traversaSiy solver results in
an OBDD, if the variable ordering is fixed [8, 9]. If the varlaldecisions vary
along different paths, the underlying structure becomesSEDD.

In this paper we investigate the use of SAT solvers for mination of FBDDS.
Since BDDs in general profit from merging of nodes, algorishane studied that
try to maximize the node sharing. The algorithms are basexitsets and cutlines.
Similar approaches based on cutsets were already usecbef@®BDD construc-
tion [9]. Cutlines have been applied successfully to rebitivaanalysis [12, 13].

This paper is structured as follows. Section 2 briefly rewathe background
needed for the rest of this paper and formulates the probtamidered here. The
general idea of using SAT solvers for FBDD construction isaibed in Section 3.
For identifying isomorphisms two approaches — cutlines@ridets — are presented
in Section 4. Finally, experimental results and a conclusice given in Section 5
and Section 6, respectively.

2 Background and Problem Formulation

2.1 Boolean functions

In this work the representation of Boolean functions as FBOdconsidered. A
Boolean function is a mappinfy: B" — B over Boolean variable® = {x1,X2, ..., %n}.
Each Boolean function can be represente@amjunctive Normal FornCNF). A
CNF is the conjunction of clauses. A clause is a disjunctibhiterals and each
literal is a propositional variablex) or its negation¥;).

1This work summarizes the results obtained by a diploma steghe University of Bremen [10].
Preliminary results have been proposed in [11].

Building Free Binary Decision Diagrams Using SAT Solvers 383

2.2 Binary decision diagrams

As is well-known a Boolean functiofi can be represented byBinary Decision
Diagram(BDD) [1]. A Binary Decision Diagrams a directed acyclic graph where
a Shannon decomposition

is carried out in each node.

A BDD is called Free Binary Decision Diagran{fFBDD) if each variable is
encountered at most once on each path from the root to a t@rmade. A BDD
is calledOrdered Binary Decision DiagrartOBDD) if in addition all variables are
encountered in the same order on all such paths.sizenf a decision diagram is
defined by the number of nodes.

Since OBDDs are restricted to a given order for all paths sthe for OBDDs
significantly depends on the choosen ordering [14]. In @sttthis restriction is
loosen when FBDDs are used. This may lead to smaller repiedsmTs.

(a) OBDD (b) FBDD
Fig. 1. OBDD and FBDD forf = X1 -Xp X3+ X1 X2 -Xg4+ X1 - X3 X4+ X1 - X2 - X3

Example 1 Figure 1 shows the minimal OBDD (a) and an FBDD (b) represemti
the function fXg,Xo,X3,X4) = X1 X2 - X3+ X1 - X2 - X4+ X1 - X3+ X4 + X1 - X2 - X3 (taken
from [3]). Since the OBDD is restricted to a fixed order for pdiths at least seven
nodes are needed to represent the function. In contrast BiglF-can be built with
six nodes.

The main problem to be solved is now, how to find a small FBDDefgiven
function.
2.3 Boolean satisfiability

For FBDD construction Boolean satisfiability is utilizedthis work. TheBoolean
Satisfiability(SAT) problem is defined as follows:

384 R. Wille, G. Fey, and R. Drechsler:

Definition 1 Let f be a Boolean function i€onjunctive Normal Forn{CNF).
Then the SAT problem is to determine whether there existssigranent to the
variables of f such that f evaluates to true or to prove thatsooh assignment
exists.

Example 2 Let f = (X3 +X2+X3)(X1+X3)(X2+X3). Thenx=1x=1andx =1
is a satisfying assignment for f. The values pard % ensure that the first clause
becomed while 3 ensures this for the remaining two clauses.

The corresponding decision problem is one of the central?-complete prob-
lems. In fact, it was the first known” &7-complete problem as proven by Cook in
1971 [15]. Today SAT is not only used in theorem proving, buniany application
domains, like automatic test pattern generation [16] amifie&tion [17].

In the past several (backtracking) algorithms (so caBé&d solvershave been
proposed [18, 19, 20, 21]. Most of them are based on threaigsigerocedures:

1. The decision heuristic assigns values to free variables,

2. the propagation procedure determines implications dudhé last assign-
ment(s) and,

3. the conflict analysis resolves conflicts by backtracking.

Advanced techniques like e gfficient Boolean constraint propagati¢20] or con-
flict analysis[19] are common in state-of-the-art SAT solvers today.

2.4 Circuits

Circuits represent Boolean functions. A circuit is a graph, wheredligeals are
represented by edges and the gates are represented by nodégs work only
circuits with one output are considered.

Remark 1 Circuits with more than one output can be transformed inte@esen-
tation with one output by modifying the underlying functibto its characteristic
function x;.

Each circuit can be transformed into a CNF. Therefore, fohaaternal signal
of the circuit a new free Boolean variable is introduced wldach node is substi-
tuted by a set of clauses according to the functionality efréspective gate. This
transformation is linear in time and space in the size of ihauit [22]. By addi-
tionally assigning the output to one (byait clausei.e. by a clause consisting of
one literal only), a CNF results which is equivalent to thadiion represented by
the circuit.

Building Free Binary Decision Diagrams Using SAT Solvers 385

Example 3 Figure 2(a) shows a circuit with three inputs, one output dhiete
gates. The corresponding CNF representing this circuitivewg in Figure 2(b).
By adding the unit clausesxa formula results which is equivalent to the function
represented by the circuit.

AND: XOR: OR:
Xg+X1+X Xo+X3+Xs Xg+Xg+Xs
X4+X1 Xo+X3+X Xg+X4
X4+ X2 Xo+X3+X5 Xg+ X5
X2 +X3+Xs5
(a) Circuit (b) CNF

Fig. 2. Transforming a circuit into CNF

Since the values of all internal signals and primary outpgmas can be de-
termined from the values of the primary inputs, only inputs eonsidered as the
support for the CNF derived from the circuit. In the followionly variables in the
support are considered for FBDD construction.

In the rest of this work the following problem is considered:

How can we obtain an FBDD representing a Boolean functiorh wit
the help of a SAT solver?

Thereby the function is always provided in CNF or derivedhira circuit rep-
resentation.

3 Using SAT Solvers for FBDD Construction

In this section the general idea for FBDD construction withl Solvers is pro-

posed. SAT solvers search for an assignneerior a given functionf such that

f(a) =1 or prove that no such assignment exists. During the seaod®egs con-

flicting assignments may be found or implications are pemnfst. The SAT solver
terminates if a satisfying assignment is found. Observing process leads to
properties of the search process which can be exploitedB&rF-construction.

Observation 1 Let f:B" — B be a Boolean function in CNF. Then, three proper-
ties for FBDD construction hold:

1. Each satisfying assignment found by a SAT solver correispto al-path of
an FBDD representing f.

386 R. Wille, G. Fey, and R. Drechsler:

Fig. 3. FBDD construction using SAT solver

2. Each conflicting assignment determined by the SAT sobrezsponds to a
0-path of an FBDD representing f.

3. Each implication tox=b (x € f,b € B) performed by the SAT solver leads
to a O-path of an FBDD representing f. This path can be construdigd
using the current assignment of the SAT solver and k.

According to these properties ‘recording’ the single stepa SAT solver dur-
ing the search process leads to a partial FBDD. The folloveixample describes
this idea in more detail.

Example 4 With the help of a SAT solver an FBDD is constructed, whicherep
sents the function (Ky,Xo,X3,X4) = (X1 + X2) - (X3 + Xa) - (X1 + X3 +X4). For this
purpose each step of the SAT solver is recorded. These steplustrated in the
left side of Figure 3.

At the beginning the solver assigns=x 0 using the decision heuristic (a). This
leads to ¥ = 1, due to the first clause (b). Because the last step was andaapli
tion, according to Property 3 we conclude that=x 0 and % = 0 is a conflicting
assignment, i.e. (D,0,x3,%4) = 0, which is represented by &path (c). In a next
step % = Ois assigned. This causes a conflict an@path is recorded (d) accord-
ing to Property 2. After backtracking tgx= 1, all clauses become satisfied and
thus a satisfying assignment is found. This is recorded byath (e) according to
Property 1. Because a satisfying assignment is found, tiiesSker terminates.

As shown in the left part of Figure 3, a partial FBDD repreganthe function
was created by starting the SAT solver and recording albassents. To retrieve a
complete FBDD, the SAT solver is used to search for all sohgiinstead of only
one (also known aall Solution SAY. To this end alocking clausg23] is added
after calculating a satisfying assignment. This claustuebes the solution from the

Building Free Binary Decision Diagrams Using SAT Solvers 387

remaining search space. When the solver continues thehseanly new solutions
will be found.

Example 5 The FBDD construction of Example 4 continues. To block thisfga

ing assignmentr = (x; = 0,%, = 1,X3 = 1) and to continue the search process, the
blocking clausgx; + X2 +X3) is added to the CNF. This causes a conflict and the
solver backtracks tox= 1 (f), which satisfies the first and the third clause. The
next step is the assignment @f=x 0 (g) which leads to one satisfying (h) and one
conflicting (i) assignment due to the second clause. Thefgatiy assignment will
be blocked by(X; + x4 + X3) and thus the solver backtracks tg where the last
solution is found (j). Because the whole search space hasdsgeored, no further
solutions can be found and the solver terminates. The FBDIblean completed.

Thus, the construction of FBDDs can be achieved by modifar8AT solver
in two steps:

1. Instruct the SAT solver to find all solutions instead of ongjiragle one
That is, add a blocking clause whenever a solution is foustl tat the SAT
solver will backtrack and continue the search.

2. Apply the properties of Observation 1 such that an FBDD tissul
That is, construct a 1-path (0-path) for each satisfyingifletiing) assign-
ment which is found by the SAT solver. Furthermore, congteuf®-path if
the SAT solver performs an implication.

However, when the SAT solver terminates the resulting FBDAY still include
isomorphisms, i.e. parts of the decision diagram are idehéind can be merged.
Approaches to identify such isomorphisms are describedemext section.

4 Identify Isomorphisms

FBDDs created by the proposed approach may include isorisongh Merging
isomorphic sub-graphs often reduces the size of a decisagmain significantly.

Example 6 An FBDD representing the circuit given in Figure 4(a) is consted.
As shown in Figure 4(b) parts of the search space are alreeayetsed and the
corresponding paths are created, respectively. By assigri= 1 the SAT solver
enters into an already traversed part of the search spaeean isomorphic sub-
graph is built. Identifying this isomorphism leads to an ABR&s shown in Fig-
ure 4(c). Thus, the size of the FBDD is reduced by one node.

388 R. Wille, G. Fey, and R. Drechsler:

(a) (b)
Fig. 4. Identifying isomorphism during FBDD construction

During OBDD construction the reduction is applied efficlgrty using auni-
gue tablei.e. a hash table, which stores all nodes in a unique way.t@tree same
order of variables along each path an isomorphic sub-graptbe detected imme-
diately. Because FBDDs may have different orders of vaembbther techniques
are needed to detect isomorphic structures while creatieagiécision diagram.

In this work we compared two techniques to identify isomdaspts: Cutlines
(previously applied to reachability analysis [12, 13]) autsets (previously applied
to OBDD construction [9]).

4.1 Cutlines

Cutlines work on CNFs derived from a circuit (see Sectior) artl with the restric-
tion that only primary inputs are assigned by the SAT sofveégcision heuristic.
The assignment of the internal signals is implied. Alreadydrsed parts of search
space can be detected by comparing internal signals of tbgitci

Definition 2 Let C be a circuit and the primary inputs of C are partially mgged.
Then, the assignments of some of the internal signals of Comawplied. The set
of internal signals, which form a border to the unassigneghals of the circuit,
defines theutline

An example illustrates the idea in more detail:

Example 7 Again the circuit given in Figure 4(a) is considered. Twofetiént
assignments to the primary inputs of this circuit are given:= (X, = 0,xz = 0)
and a; = (x3 = 0,x3 = 1). Both assignments lead t@ x 1, xs = 1 and x = 0.
This forms a border between the assigned and unassignedisighthe circuit as
depicted in Figure 5 — the cutline. Since both assignmentand a- result in the
same state, the remaining search space is equivalent.

Building Free Binary Decision Diagrams Using SAT Solvers 389

Fig. 5. Cutline

Thus, cutlines can be used for identifying isomorphic stdpgs as follows:
After a part of the search space is completely traversedulremt cutline is deter-
mined. This is done by traversing the circuit (i.e. the CNpresentation) from the
primary outputs to the primary inputs. The traversing stwpen assigned internal
signals are reached. These signalsgndx; in Example 7) are stored and form
the cutline. The resulting cutline is — supplemented by ateoito the respective
sub-graph — inserted into a hash table. When the SAT solversea new part of
the search space, a cutline is determined and synchroniizbdhe hash table. If
the respective cutline already exists, an isomorphic gaptyis identified and the
stored pointer is used to update the FBDD.

Since cutlines consist of assigned variables only, they easily be stored
by clauses (similar to blocking clauses). If such a clauseses a conflict, the
solver does not have to add a O-leaf to the FBDD but the respestib-graph,
whose pointer is associated with the clause. Thus, the laddé is replaced by
such ‘cutline’-clauses. This leads to an improved accesthdocutlines since
e.g. Boolean constraint propagatiof20] can be exploited using clauses instead
of a hash table.

However, to apply cutlines in general, the search procetisedBAT solver has
to be restricted in such a way that implications are onlyvedld from the primary
inputs to the output. In comparison: When no cutlines arelude output can
be assigned to one (as described in Section 2.4). This madytéeamplications
from the outputs to the inputs, which decrease the size okdaech space and
might result in better FBDDs. The experiments in Sectiondsthe effect of this
restriction.

4.2 Cutsets

Cutsets directly work on the CNF formula. An already traeerpart of the search
space is stored by a subset of clauses in combination with &f sssigned vari-
ables. Cutsets are defined as follows:

Definition 3 Let f:B" — B be a Boolean function in CNF over variables=X

390 R. Wille, G. Fey, and R. Drechsler:

{X1,%2,..., %} and § C X is a set containing all variables x X, which are as-
signed by the SAT solver. Then, for a givgnig CNF can be separated into three
subsets:

1. Clauses, containing assigned literals only,
2. clauses, containing unassigned literals only and

3. clauses containing at least one assigned and one unasksigeral, respec-
tively.

The third subset is defined as thatset

The general idea behind cutsets is the following: All clausethe first sub-
set can be ignored when identifying isomorphic sub-graphse they are either
satisfied or conflicting. In the former case, the SAT solverldracks and contin-
ues the search in another part of the search space. In thedatie the respective
clauses do not affect the remaining search space. Furthermiauses in the sec-
ond subset can be ignored, since they have not been altecaddgenone of their
variables have been set. Thus, the third set — the cutsetffigent to identify an
isomorphic subset.

To apply this for identifying isomorphisms, both the Sgtof all assigned vari-
ables and the cutset have to be determined and synchroriized SAT solver
enters a new part of the search space. Both can easily beetiaie. in contrast
to cutlines no complex modifications or any restrictionshi® CNF are necessary.

However, storingS, and cutsets by clauses is not as easy as it is for cutlines.
Thus, using a hash table is the better choice here. Furtmermd FBDDs are
built — cutsets do not ensure that isomorphisms will be found as the following
example shows.

Example 8 Once again the circuit given in Figure 4(a) is considered.dascribed
in Example 7 the assignments = (X = 0,x, = 0) and a2 = (x; = 0,x3 = 1)
lead to an isomorphism. Since the set dffers for both assignments 4S=
{X1,X%2,%5,X6,X7} # Sa, = {X1,X3,%s5,X6,%X7}), the isomorphism cannot be deter-
mined by using cutsets.

However, the experiments in the next section show that te sithese negative
effects, better results can be achieved when using cutssttsad of cutlines.

5 Experimental Results

This section provides experimental results for the cowsivtn of FBDDs with a
SAT solver. The proposed approaches were implemented ino@tep of the SAT

Building Free Binary Decision Diagrams Using SAT Solvers 391

solver MiniSat [21]. Instances of the LG-Synth93 packageused as benchmarks.
Here, allm-output functions were transformed into their characterifunctions,
which has a single output. All experiments have been camwigdon an AMD
Athlon 3500+ with 1 GB of main memory. The timeout was set t0 §PU sec-
onds.

The results are presented by bar charts. The x-axis refettsetbenchmark,
while the y-axis refers to the size of the resulting decigigagram (in number of
nodes). Note the logarithmic scale of the y-axis. Aborteddbenarks are indicated
by bars exceeding the y-axis.

5.1 Construction of FBDDs

ID nolsomorphismDet 0 noQutputAssignmnt m cutlines \

100000

10000

1000

100 + H

rrrrr

Bxp1
9sym 1

alu2
b12 |

b1
cmi3sa |

cmi5la

Fig. 6. Effect of using cutlines

First, the effect of using cutlines is discussed. The resafe given in Fig-
ure 6. Bars denoted bgolsomorphismDeteport the results of the approach
without detection of isomorphismapOutputAssignmrdenotes the results of the
same approach, but without the use of unit clauses whichratise primary output
(i.e. with the restrictions necessary for cutlines), antlinesdenotes the approach
which identifies isomorphisms with the help of cutlines.

Omitting unit clauses (i.e. applying the restriction fotlmes) leads to signif-
icant larger FBDDs in most cases (comparisomofsomorphismDeto noOut-
putAssignmnt This negative effect can be partially compensated by #teation
of isomorphisms (comparison ablsomorphismDeto cutlineg: This reduces the
size of many FBDDs (e.g. @ml62aandpm1). However, there are still FBDDs
which are larger than the ones constructed by the approatttowti detection of
isomorphisms (e.gdlecodandsqrt8).

In contrast this cannot happen when using cutsets. Hereesidations are

392 R. Wille, G. Fey, and R. Drechsler:

[=nolsomerphismDet @ cutlines ® cutsets

100000

10000

1000 H —

- EY O - @ 8@ & @ © & — 3 T O F 2 T T @ o @ o o

mmmmmm

mmmmm

& E E £ G

S [

Fig. 7. Identification of isomorphisms

applied to the SAT solver. Thus, in comparison to the the @ggr without detec-
tion of isomorphisms all resulting FBDDs have the same sizeo(isomorphism
was detected) or are smaller (if at least one isomorphismdetected). This is
approved by the results shown in Figure 7 (bars denoteculsetsreport the re-
sults of the cutset approach). Overall with the help of oelismaller FBDDs can
be constructed only in six of 24 cases. In contrast, for allaming benchmarks
smaller FBDDs result by exploting cutsets.

5.2 Comparison to OBDDs

Fig. 8. Comparison to OBDDs

In this section the FBDDs obtained by the proposed appreaatecompared
to OBDDs obtained witlCUDD [24]. Two orderings are used: The first (denoted
by cudd 1) orders all variables according to their index o, . . ., Xn). The second
ordering (denoted bgudd 2) is derived by a depth-first search from the outputs to

Building Free Binary Decision Diagrams Using SAT Solvers 393

the inputs of the respective circuit. Additionally the nrmrdl OBDDs size for each
benchmark is given (denoted bydd opt). The results are shown in Figure 8.

For some benchmarks the SAT-based approach is able to firlteshecision
diagrams than CUDD using the first ordering (ecgn1513. Moreover, for some
other benchmarks using CUDD and the first ordering no OBDDus @l within the
given time limit (i.e.b12 ex1010andpml. Fordecodthe smallest decision dia-
gram is found by the SAT-based approach only. Here, the nah@BDD cannot
be constructed within the given time limit.

However, apart from that it is clear to see, that most of th®BB built by the
SAT-based approach are larger than the respective OBDIiguCUDD.

6 Conclusion

In this work we described FBDD construction with the help 8if$olvers. There-
fore, two steps have to be performed: (1) instruct the SAVesolo find all so-
lutions instead of only a single one and (2) construct respepaths for each
satisfying and conflicting assignment as well as for eachligagon. For iden-
tifying isomorphic sub-graphs, cutlines and cutsets aeslwd their advantages
and disadvantages are discussed. The resulting conciusiere approved by ex-
periments. However, in comparison to OBDDs for most of thachenarks the
resulting FBDDs are still larger than the respective OBDpresentations.

References

[1] R. Bryant, “Graph-based algorithms for Boolean funotimanipulation,” |[EEE
Trans. on Compwvol. 35, no. 8, pp. 677-691, 1986.

[2] R. Drechsler and B. Becker, “Overview of decision diagss’ IEE Proceedingsvol.
144, pp. 187-193, 1997.

[3] J. Gergov and C. Meinel, “Efficient analysis and manipiola of OBDDs can be
extended to FBDDsJEEE Trans. on Compvol. 43, pp. 1197-1209, 1994.

[4] R.Bryant, “On the complexity of VLSI implementations@graph representations of
Boolean functions with application to integer multiplicat,” IEEE Trans. on Comp.
vol. 40, pp. 205-213, 1991.

[5] W. Guntherand R. Drechsler, “Minimization of free BDDASP Design Automation
Conf, pp. 323-326, 1999.

[6] K. Takagi, H. Hatakeda, S. Kimura, and K. Watanabe, “Exaitnimization of free
BDDs and its application to pass-transistor logic optitia@a” IEICE Trans. Fun-
damentalsvol. E82-A, no. 11, pp. 2407-2413, 1999.

[7] J. Bern, C. Meinel, and A. Slobodova, “Some heuristios denerating tree-like
FBDD types,”IEEE Trans. on CADvol. 15, pp. 127-130, 1996.

[8] S. Reda, R. Drechsler, and A. Orailoglu, “On the relatimiween SAT and BDDs
for equivalence checkingfht'l Symp. on Quality Electronic Desigmpp. 394—399,
2002.

394 R. Wille, G. Fey, and R. Drechsler:

[9] J. Huang and A. Darwiche, “Using DPLL for efficient OBDD restruction,” Proc.
7th Int. Conf. on Theory and Applications of Satisfiabiliggiing pp. 157-172, 2004.

[10] R. Wille, “Erstellung von Free Binary Decision Diagrammit SAT-Beweisern,” Mas-
ter's thesis, Universitat Bremen, Bremen, Nov. 2006.

[11] R. Wille, G. Fey, and R. Drechsler, “Building free biyatecision diagrams using sat
solvers,”8th Workshop on Applications of the Reed-Muller Expansiddiicuit De-
sign and Representations and Methodology of Future Comg&chnology2007.

[12] S. Sheng and M. Hsiao, “Efficient Preimage Computati@mg A Novel Success-
Driven ATPG,” Design, Automation and Test in Eurqpp. 822—-827, Mar. 2003.

[13] B.Li, M. Hsiao, and S. Sheng, “A novel SAT all-solutiosalver for efficient preim-
age computationDesign, Automation and Test in Eurqgg. 10272-10278, 2004.

[14] B. Bollig, P. Savicky, and I. Wegener, “On the improvamhef variable orderings for
OBDDs,” IFIP Workshop on Logic and Architecture Synthesis, Greggip. 71-80,
1994.

[15] S. Cook, “The complexity of theorem proving procedyirés ACM Symposium on
Theory of Computingop. 151-158, 1971.

[16] T. Larrabee, “Test pattern generation using Booledisfiability,” IEEE Trans. on
CAD, vol. 11, no. 1, pp. 4-15, Jan. 1992.

[17] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic el checking without
BDDs,” Tools and Algorithms for the Construction and Analysis oft&ws vol.
1579, pp. 193-207, 1999.

[18] M. Davis, G. Logeman, and D. Loveland, “A machine progfar theorem proving,”
Comm. of the ACMvol. 5, pp. 394-397, 1962.

[19] J. Marques-Silva and K. Sakallah, “GRASP: A search @ailym for propositional
satisfiability,”|EEE Trans. on Compvol. 48, no. 5, pp. 506-521, 1999.

[20] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Mali&haff: Engineering
an efficient SAT solver,Design Automation Confpp. 530-535, 2001.

[21] N. Eén and N. Sorensson, “An extensible SAT solv&AT 2003 vol. 2919, pp.
502-518, 2004.

[22] G. Tseitin, “On the complexity of derivation in proptisnal calculus,”Studies in
Constructive Mathematics and Mathematical Logic, Pap2. 115-125, 1968.

[23] K. McMillan, “Applying SAT methods in unbounded symiimimodel checking,”
Computer Aided Verificatigmpp. 250-264, 2002.

[24] F. SomenziCUDD: CU Decision Diagram Package Release 2.3.Jniversity of
Colorado at Boulder, 2001.

