
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 20, no. 3, December 2007, 381-394

Building Free Binary Decision Diagrams Using SAT
Solvers

Robert Wille, Görschwin Fey, and Rolf Drechsler

Abstract: Free Binary Decision Diagrams (FBDDs) are a data structure for the rep-
resentation of Boolean functions. In contrast to Ordered Binary Decision Diagrams
(OBDDs) FBDDs allow different variable orderings along each path. Thus, FBDDs
are the more compact representation while most of the properties of OBDDs are kept.
However, how to efficiently build small FBDDs for a given function is still an open
question. In this work we propose FBDD construction with thehelp of SAT solvers.
‘Recording’ the single steps of a SAT solver during the search process leads to an
FBDD.

Furthermore, by exploiting approaches for identifying isomorphic sub-graphs,
i.e. cutlines or cutsets, reduced FBDDs are constructed.

Keywords: Decision diagrams, Boolean satisfiability, logic synthesis, data structures.

1 Introduction

Ordered Binary Decision Diagrams(OBDDs) [1] are a data structure for efficient
representation and manipulation of Boolean functions. OBDDs have been success-
fully applied in many applications in VLSI CAD, but due to theordering restric-
tions, there are many Boolean functions for which no efficient representation exists.
This is the reason why in the last 15 years several extensionsto OBDDs have been
proposed. While some of them modify the decomposition type assigned to each
node, others loose the ordering restriction. For an overview on the various types
see [2].

As one extensionFree BDDs(FBDDs) have been proposed. In FBDDs the
Shannon decomposition is carried out in each node, analogously to OBDDs, but

Manuscript received August 31, 2007.
The authors are with the Institute of Computer Science at theUniversity of Bremen, Germany

(e-mail:[rwille,fey,drechsle]@informatik.uni-bremen.de).

381



382 R. Wille, G. Fey, and R. Drechsler:

along different paths different orderings may occur. However, each variable is still
allowed to appear only once. If the variables are chosen in the same order along all
paths, OBDDs result. In this sense FBDDs are a superset of OBDDs. With some
modification FBDDs are a canonical data structure [3]. Thereexist several theoret-
ical studies (e.g. [4]) that show that Boolean functions exist that can be efficiently
represented by FBDDs, i.e. in polynomial space, while each OBDD requires an ex-
ponential number of nodes, independent of the chosen variable ordering. The main
problem is that there do not exist efficient heuristics for FBDD construction. First
approaches have been presented in [5, 6, 7], but no significant improvements over
OBDDs have been reported.

In the recent past, there is a significant improvement in algorithms for solving
Boolean Satisfiability(SAT). The resulting tools, so called SAT solvers, typically
work onConjunctive Normal Forms(CNFs) and can cope with instances of several
thousand clauses and literals. The search tree traversed bya SAT solver results in
an OBDD, if the variable ordering is fixed [8, 9]. If the variable decisions vary
along different paths, the underlying structure becomes anFBDD.

In this paper we investigate the use of SAT solvers for minimization of FBDDs1.
Since BDDs in general profit from merging of nodes, algorithms are studied that
try to maximize the node sharing. The algorithms are based oncutsets and cutlines.
Similar approaches based on cutsets were already used before for OBDD construc-
tion [9]. Cutlines have been applied successfully to reachability analysis [12, 13].

This paper is structured as follows. Section 2 briefly reviews the background
needed for the rest of this paper and formulates the problem considered here. The
general idea of using SAT solvers for FBDD construction is described in Section 3.
For identifying isomorphisms two approaches – cutlines andcutsets – are presented
in Section 4. Finally, experimental results and a conclusion are given in Section 5
and Section 6, respectively.

2 Background and Problem Formulation

2.1 Boolean functions

In this work the representation of Boolean functions as FBDDs is considered. A
Boolean function is a mappingf : Bn→B over Boolean variablesX = {x1,x2, . . . ,xn}.
Each Boolean function can be represented inConjunctive Normal Form(CNF). A
CNF is the conjunction of clauses. A clause is a disjunction of literals and each
literal is a propositional variable (xi) or its negation (xi).

1This work summarizes the results obtained by a diploma thesis at the University of Bremen [10].
Preliminary results have been proposed in [11].



Building Free Binary Decision Diagrams Using SAT Solvers 383

2.2 Binary decision diagrams

As is well-known a Boolean functionf can be represented by aBinary Decision
Diagram(BDD) [1]. A Binary Decision Diagramis a directed acyclic graph where
a Shannon decomposition

f = xi fxi=0 +xi fxi=1 (1≤ i ≤ n)

is carried out in each node.
A BDD is called Free Binary Decision Diagram(FBDD) if each variable is

encountered at most once on each path from the root to a terminal node. A BDD
is calledOrdered Binary Decision Diagram(OBDD) if in addition all variables are
encountered in the same order on all such paths. Thesizeof a decision diagram is
defined by the number of nodes.

Since OBDDs are restricted to a given order for all paths, thesize for OBDDs
significantly depends on the choosen ordering [14]. In contrast this restriction is
loosen when FBDDs are used. This may lead to smaller representations.

(a) OBDD (b) FBDD
Fig. 1. OBDD and FBDD forf = x1 ·x2 ·x3 +x1 ·x2 ·x4 +x1 ·x3 ·x4 +x1 ·x2 ·x3

Example 1 Figure 1 shows the minimal OBDD (a) and an FBDD (b) representing
the function f(x1,x2,x3,x4) = x1 ·x2 ·x3 +x1 ·x2 ·x4 +x1 ·x3 ·x4 +x1 ·x2 ·x3 (taken
from [3]). Since the OBDD is restricted to a fixed order for allpaths at least seven
nodes are needed to represent the function. In contrast the FBDD can be built with
six nodes.

The main problem to be solved is now, how to find a small FBDD fora given
function.

2.3 Boolean satisfiability

For FBDD construction Boolean satisfiability is utilized inthis work. TheBoolean
Satisfiability(SAT) problem is defined as follows:



384 R. Wille, G. Fey, and R. Drechsler:

Definition 1 Let f be a Boolean function inConjunctive Normal Form(CNF).
Then the SAT problem is to determine whether there exists an assignment to the
variables of f such that f evaluates to true or to prove that nosuch assignment
exists.

Example 2 Let f = (x1+x2+x3)(x1+x3)(x2+x3). Then x1 = 1,x2 = 1 and x3 = 1
is a satisfying assignment for f . The values of x1 and x2 ensure that the first clause
becomes1 while x3 ensures this for the remaining two clauses.

The corresponding decision problem is one of the centralN P-complete prob-
lems. In fact, it was the first knownN P-complete problem as proven by Cook in
1971 [15]. Today SAT is not only used in theorem proving, but in many application
domains, like automatic test pattern generation [16] and verification [17].

In the past several (backtracking) algorithms (so calledSAT solvers) have been
proposed [18, 19, 20, 21]. Most of them are based on three essential procedures:

1. The decision heuristic assigns values to free variables,

2. the propagation procedure determines implications due to the last assign-
ment(s) and,

3. the conflict analysis resolves conflicts by backtracking.

Advanced techniques like e.g.efficient Boolean constraint propagation[20] or con-
flict analysis[19] are common in state-of-the-art SAT solvers today.

2.4 Circuits

Circuits represent Boolean functions. A circuit is a graph, where thesignals are
represented by edges and the gates are represented by nodes.In this work only
circuits with one output are considered.

Remark 1 Circuits with more than one output can be transformed into a represen-
tation with one output by modifying the underlying functionf to its characteristic
functionχ f .

Each circuit can be transformed into a CNF. Therefore, for each internal signal
of the circuit a new free Boolean variable is introduced while each node is substi-
tuted by a set of clauses according to the functionality of the respective gate. This
transformation is linear in time and space in the size of the circuit [22]. By addi-
tionally assigning the output to one (by aunit clause, i.e. by a clause consisting of
one literal only), a CNF results which is equivalent to the function represented by
the circuit.



Building Free Binary Decision Diagrams Using SAT Solvers 385

Example 3 Figure 2(a) shows a circuit with three inputs, one output andthree
gates. The corresponding CNF representing this circuit is given in Figure 2(b).
By adding the unit clause x6, a formula results which is equivalent to the function
represented by the circuit.

(a) Circuit

AND: XOR: OR:
x4 +x1 +x2 x2 +x3 +x5 x6 +x4 +x5

x4 +x1 x2 +x3 +x5 x6 +x4

x4 +x2 x2 +x3+x5 x6 +x5

x2 +x3 +x5

(b) CNF
Fig. 2. Transforming a circuit into CNF

Since the values of all internal signals and primary output signals can be de-
termined from the values of the primary inputs, only inputs are considered as the
support for the CNF derived from the circuit. In the following only variables in the
support are considered for FBDD construction.

In the rest of this work the following problem is considered:

How can we obtain an FBDD representing a Boolean function with
the help of a SAT solver?

Thereby the function is always provided in CNF or derived from a circuit rep-
resentation.

3 Using SAT Solvers for FBDD Construction

In this section the general idea for FBDD construction with SAT solvers is pro-
posed. SAT solvers search for an assignmentα for a given functionf such that
f (α) = 1 or prove that no such assignment exists. During the search process con-
flicting assignments may be found or implications are performed. The SAT solver
terminates if a satisfying assignment is found. Observing this process leads to
properties of the search process which can be exploited for FBDD construction.

Observation 1 Let f : B
n → B be a Boolean function in CNF. Then, three proper-

ties for FBDD construction hold:

1. Each satisfying assignment found by a SAT solver corresponds to a1-path of
an FBDD representing f .



386 R. Wille, G. Fey, and R. Drechsler:

Fig. 3. FBDD construction using SAT solver

2. Each conflicting assignment determined by the SAT solver corresponds to a
0-path of an FBDD representing f .

3. Each implication to xi = b (xi ∈ f ,b∈ B) performed by the SAT solver leads
to a 0-path of an FBDD representing f . This path can be constructedby
using the current assignment of the SAT solver and xi = b.

According to these properties ‘recording’ the single stepsof a SAT solver dur-
ing the search process leads to a partial FBDD. The followingexample describes
this idea in more detail.

Example 4 With the help of a SAT solver an FBDD is constructed, which repre-
sents the function f(x1,x2,x3,x4) = (x1 + x2) · (x3 + x4) · (x1 + x3 + x4). For this
purpose each step of the SAT solver is recorded. These steps are illustrated in the
left side of Figure 3.

At the beginning the solver assigns x1 = 0 using the decision heuristic (a). This
leads to x2 = 1, due to the first clause (b). Because the last step was an implica-
tion, according to Property 3 we conclude that x1 = 0 and x2 = 0 is a conflicting
assignment, i.e. f(0,0,x3,x4) = 0, which is represented by a0-path (c). In a next
step x3 = 0 is assigned. This causes a conflict and a0-path is recorded (d) accord-
ing to Property 2. After backtracking to x3 = 1, all clauses become satisfied and
thus a satisfying assignment is found. This is recorded by a1-path (e) according to
Property 1. Because a satisfying assignment is found, the SAT solver terminates.

As shown in the left part of Figure 3, a partial FBDD representing the function
was created by starting the SAT solver and recording all assignments. To retrieve a
complete FBDD, the SAT solver is used to search for all solutions instead of only
one (also known asAll Solution SAT). To this end ablocking clause[23] is added
after calculating a satisfying assignment. This clause excludes the solution from the



Building Free Binary Decision Diagrams Using SAT Solvers 387

remaining search space. When the solver continues the search, only new solutions
will be found.

Example 5 The FBDD construction of Example 4 continues. To block the satisfy-
ing assignmentα = (x1 = 0,x2 = 1,x3 = 1) and to continue the search process, the
blocking clause(x1 + x2 + x3) is added to the CNF. This causes a conflict and the
solver backtracks to x1 = 1 (f), which satisfies the first and the third clause. The
next step is the assignment of x4 = 0 (g) which leads to one satisfying (h) and one
conflicting (i) assignment due to the second clause. The satisfying assignment will
be blocked by(x1 + x4 + x3) and thus the solver backtracks to x4 where the last
solution is found (j). Because the whole search space has been explored, no further
solutions can be found and the solver terminates. The FBDD has been completed.

Thus, the construction of FBDDs can be achieved by modifyinga SAT solver
in two steps:

1. Instruct the SAT solver to find all solutions instead of only asingle one
That is, add a blocking clause whenever a solution is found such that the SAT
solver will backtrack and continue the search.

2. Apply the properties of Observation 1 such that an FBDD results
That is, construct a 1-path (0-path) for each satisfying (conflicting) assign-
ment which is found by the SAT solver. Furthermore, construct a 0-path if
the SAT solver performs an implication.

However, when the SAT solver terminates the resulting FBDD may still include
isomorphisms, i.e. parts of the decision diagram are identical and can be merged.
Approaches to identify such isomorphisms are described in the next section.

4 Identify Isomorphisms

FBDDs created by the proposed approach may include isomorphisms. Merging
isomorphic sub-graphs often reduces the size of a decision diagram significantly.

Example 6 An FBDD representing the circuit given in Figure 4(a) is constructed.
As shown in Figure 4(b) parts of the search space are already traversed and the
corresponding paths are created, respectively. By assigning x= 1 the SAT solver
enters into an already traversed part of the search space, i.e. an isomorphic sub-
graph is built. Identifying this isomorphism leads to an FBDD as shown in Fig-
ure 4(c). Thus, the size of the FBDD is reduced by one node.



388 R. Wille, G. Fey, and R. Drechsler:

(a) (b) (c)
Fig. 4. Identifying isomorphism during FBDD construction

During OBDD construction the reduction is applied efficiently by using auni-
que table, i.e. a hash table, which stores all nodes in a unique way. Dueto the same
order of variables along each path an isomorphic sub-graph can be detected imme-
diately. Because FBDDs may have different orders of variables, other techniques
are needed to detect isomorphic structures while creating the decision diagram.

In this work we compared two techniques to identify isomorphisms: Cutlines
(previously applied to reachability analysis [12, 13]) andcutsets (previously applied
to OBDD construction [9]).

4.1 Cutlines

Cutlines work on CNFs derived from a circuit (see Section 2.4) and with the restric-
tion that only primary inputs are assigned by the SAT solver’s decision heuristic.
The assignment of the internal signals is implied. Already traversed parts of search
space can be detected by comparing internal signals of the circuit.

Definition 2 Let C be a circuit and the primary inputs of C are partially assigned.
Then, the assignments of some of the internal signals of C maybe implied. The set
of internal signals, which form a border to the unassigned signals of the circuit,
defines thecutline.

An example illustrates the idea in more detail:

Example 7 Again the circuit given in Figure 4(a) is considered. Two different
assignments to the primary inputs of this circuit are given:α1 = (x1 = 0,x2 = 0)
and α2 = (x1 = 0,x3 = 1). Both assignments lead to x5 = 1, x6 = 1 and x7 = 0.
This forms a border between the assigned and unassigned signals of the circuit as
depicted in Figure 5 – the cutline. Since both assignmentsα1 andα2 result in the
same state, the remaining search space is equivalent.



Building Free Binary Decision Diagrams Using SAT Solvers 389

Fig. 5. Cutline

Thus, cutlines can be used for identifying isomorphic sub-graphs as follows:
After a part of the search space is completely traversed the current cutline is deter-
mined. This is done by traversing the circuit (i.e. the CNF representation) from the
primary outputs to the primary inputs. The traversing stopswhen assigned internal
signals are reached. These signals (x6 andx7 in Example 7) are stored and form
the cutline. The resulting cutline is – supplemented by a pointer to the respective
sub-graph – inserted into a hash table. When the SAT solver enters a new part of
the search space, a cutline is determined and synchronized with the hash table. If
the respective cutline already exists, an isomorphic sub-graph is identified and the
stored pointer is used to update the FBDD.

Since cutlines consist of assigned variables only, they caneasily be stored
by clauses (similar to blocking clauses). If such a clause causes a conflict, the
solver does not have to add a 0-leaf to the FBDD but the respective sub-graph,
whose pointer is associated with the clause. Thus, the hash table is replaced by
such ‘cutline’-clauses. This leads to an improved access tothe cutlines since
e.g. Boolean constraint propagation[20] can be exploited using clauses instead
of a hash table.

However, to apply cutlines in general, the search process ofthe SAT solver has
to be restricted in such a way that implications are only allowed from the primary
inputs to the output. In comparison: When no cutlines are used, the output can
be assigned to one (as described in Section 2.4). This may lead to implications
from the outputs to the inputs, which decrease the size of thesearch space and
might result in better FBDDs. The experiments in Section 5 show the effect of this
restriction.

4.2 Cutsets

Cutsets directly work on the CNF formula. An already traversed part of the search
space is stored by a subset of clauses in combination with a set of assigned vari-
ables. Cutsets are defined as follows:

Definition 3 Let f : B
n → B be a Boolean function in CNF over variables X=



390 R. Wille, G. Fey, and R. Drechsler:

{x1,x2, . . . ,xn} and Sα ⊂ X is a set containing all variables xi ∈ X, which are as-
signed by the SAT solver. Then, for a given Sα the CNF can be separated into three
subsets:

1. Clauses, containing assigned literals only,

2. clauses, containing unassigned literals only and

3. clauses containing at least one assigned and one unassigned literal, respec-
tively.

The third subset is defined as thecutset.

The general idea behind cutsets is the following: All clauses in the first sub-
set can be ignored when identifying isomorphic sub-graphs,since they are either
satisfied or conflicting. In the former case, the SAT solver backtracks and contin-
ues the search in another part of the search space. In the latter case the respective
clauses do not affect the remaining search space. Furthermore, clauses in the sec-
ond subset can be ignored, since they have not been altered because none of their
variables have been set. Thus, the third set – the cutset – is sufficient to identify an
isomorphic subset.

To apply this for identifying isomorphisms, both the setSα of all assigned vari-
ables and the cutset have to be determined and synchronized if the SAT solver
enters a new part of the search space. Both can easily be obtained, i.e. in contrast
to cutlines no complex modifications or any restrictions to the CNF are necessary.

However, storingSα and cutsets by clauses is not as easy as it is for cutlines.
Thus, using a hash table is the better choice here. Furthermore – if FBDDs are
built – cutsets do not ensure thatall isomorphisms will be found as the following
example shows.

Example 8 Once again the circuit given in Figure 4(a) is considered. Asdescribed
in Example 7 the assignmentsα1 = (x1 = 0,x2 = 0) and α2 = (x1 = 0,x3 = 1)
lead to an isomorphism. Since the set Sα differs for both assignments (Sα1 =
{x1,x2,x5,x6,x7} 6= Sα2 = {x1,x3,x5,x6,x7}), the isomorphism cannot be deter-
mined by using cutsets.

However, the experiments in the next section show that in spite of these negative
effects, better results can be achieved when using cutsets instead of cutlines.

5 Experimental Results

This section provides experimental results for the construction of FBDDs with a
SAT solver. The proposed approaches were implemented in C++on top of the SAT



Building Free Binary Decision Diagrams Using SAT Solvers 391

solver MiniSat [21]. Instances of the LG-Synth93 package are used as benchmarks.
Here, allm-output functions were transformed into their characteristic functions,
which has a single output. All experiments have been carriedout on an AMD
Athlon 3500+ with 1 GB of main memory. The timeout was set to 400 CPU sec-
onds.

The results are presented by bar charts. The x-axis refers tothe benchmark,
while the y-axis refers to the size of the resulting decisiondiagram (in number of
nodes). Note the logarithmic scale of the y-axis. Aborted benchmarks are indicated
by bars exceeding the y-axis.

5.1 Construction of FBDDs

Fig. 6. Effect of using cutlines

First, the effect of using cutlines is discussed. The results are given in Fig-
ure 6. Bars denoted bynoIsomorphismDetreport the results of the approach
without detection of isomorphisms,noOutputAssignmntdenotes the results of the
same approach, but without the use of unit clauses which assign the primary output
(i.e. with the restrictions necessary for cutlines), andcutlinesdenotes the approach
which identifies isomorphisms with the help of cutlines.

Omitting unit clauses (i.e. applying the restriction for cutlines) leads to signif-
icant larger FBDDs in most cases (comparison ofnoIsomorphismDetto noOut-
putAssignmnt). This negative effect can be partially compensated by the detection
of isomorphisms (comparison ofnoIsomorphismDetto cutlines): This reduces the
size of many FBDDs (e.g. atcm162aandpm1). However, there are still FBDDs
which are larger than the ones constructed by the approach without detection of
isomorphisms (e.g.decodandsqrt8).

In contrast this cannot happen when using cutsets. Here, no restrictions are



392 R. Wille, G. Fey, and R. Drechsler:

Fig. 7. Identification of isomorphisms

applied to the SAT solver. Thus, in comparison to the the approach without detec-
tion of isomorphisms all resulting FBDDs have the same size (if no isomorphism
was detected) or are smaller (if at least one isomorphism wasdetected). This is
approved by the results shown in Figure 7 (bars denoted bycutsetsreport the re-
sults of the cutset approach). Overall with the help of cutlines smaller FBDDs can
be constructed only in six of 24 cases. In contrast, for all remaining benchmarks
smaller FBDDs result by exploting cutsets.

5.2 Comparison to OBDDs

Fig. 8. Comparison to OBDDs

In this section the FBDDs obtained by the proposed approaches are compared
to OBDDs obtained withCUDD [24]. Two orderings are used: The first (denoted
by cudd 1) orders all variables according to their index (x1,x2, . . . ,xn). The second
ordering (denoted bycudd 2) is derived by a depth-first search from the outputs to



Building Free Binary Decision Diagrams Using SAT Solvers 393

the inputs of the respective circuit. Additionally the minimal OBDDs size for each
benchmark is given (denoted bycudd opt). The results are shown in Figure 8.

For some benchmarks the SAT-based approach is able to find smaller decision
diagrams than CUDD using the first ordering (e.g.cm151a). Moreover, for some
other benchmarks using CUDD and the first ordering no OBDD is found within the
given time limit (i.e.b12, ex1010andpm1). For decodthe smallest decision dia-
gram is found by the SAT-based approach only. Here, the minimal OBDD cannot
be constructed within the given time limit.

However, apart from that it is clear to see, that most of the FBDDs built by the
SAT-based approach are larger than the respective OBDDs built by CUDD.

6 Conclusion

In this work we described FBDD construction with the help of SAT solvers. There-
fore, two steps have to be performed: (1) instruct the SAT solver to find all so-
lutions instead of only a single one and (2) construct respective paths for each
satisfying and conflicting assignment as well as for each implication. For iden-
tifying isomorphic sub-graphs, cutlines and cutsets are used and their advantages
and disadvantages are discussed. The resulting conclusions were approved by ex-
periments. However, in comparison to OBDDs for most of the benchmarks the
resulting FBDDs are still larger than the respective OBDD representations.

References

[1] R. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE
Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

[2] R. Drechsler and B. Becker, “Overview of decision diagrams,” IEE Proceedings, vol.
144, pp. 187–193, 1997.

[3] J. Gergov and C. Meinel, “Efficient analysis and manipulation of OBDDs can be
extended to FBDDs,”IEEE Trans. on Comp., vol. 43, pp. 1197–1209, 1994.

[4] R. Bryant, “On the complexity of VLSI implementations and graph representations of
Boolean functions with application to integer multiplication,” IEEE Trans. on Comp.,
vol. 40, pp. 205–213, 1991.

[5] W. Günther and R. Drechsler, “Minimization of free BDDs,” ASP Design Automation
Conf., pp. 323–326, 1999.

[6] K. Takagi, H. Hatakeda, S. Kimura, and K. Watanabe, “Exact mimimization of free
BDDs and its application to pass-transistor logic optimization,” IEICE Trans. Fun-
damentals, vol. E82-A, no. 11, pp. 2407–2413, 1999.

[7] J. Bern, C. Meinel, and A. Slobodová, “Some heuristics for generating tree-like
FBDD types,”IEEE Trans. on CAD, vol. 15, pp. 127–130, 1996.

[8] S. Reda, R. Drechsler, and A. Orailoglu, “On the relationbetween SAT and BDDs
for equivalence checking,”Int’l Symp. on Quality Electronic Design, pp. 394–399,
2002.



394 R. Wille, G. Fey, and R. Drechsler:

[9] J. Huang and A. Darwiche, “Using DPLL for efficient OBDD construction,”Proc.
7th Int. Conf. on Theory and Applications of Satisfiability Testing, pp. 157–172, 2004.

[10] R. Wille, “Erstellung von Free Binary Decision Diagrams mit SAT-Beweisern,” Mas-
ter’s thesis, Universität Bremen, Bremen, Nov. 2006.

[11] R. Wille, G. Fey, and R. Drechsler, “Building free binary decision diagrams using sat
solvers,”8th Workshop on Applications of the Reed-Muller Expansion in Circuit De-
sign and Representations and Methodology of Future Computing Technology, 2007.

[12] S. Sheng and M. Hsiao, “Efficient Preimage Computation Using A Novel Success-
Driven ATPG,”Design, Automation and Test in Europe, pp. 822–827, Mar. 2003.

[13] B. Li, M. Hsiao, and S. Sheng, “A novel SAT all-solutionssolver for efficient preim-
age computation,”Design, Automation and Test in Europe, pp. 10 272–10278, 2004.

[14] B. Bollig, P. Savicky, and I. Wegener, “On the improvement of variable orderings for
OBDDs,” IFIP Workshop on Logic and Architecture Synthesis, Grenoble, pp. 71–80,
1994.

[15] S. Cook, “The complexity of theorem proving procedures,” 3. ACM Symposium on
Theory of Computing, pp. 151–158, 1971.

[16] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE Trans. on
CAD, vol. 11, no. 1, pp. 4–15, Jan. 1992.

[17] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking without
BDDs,” Tools and Algorithms for the Construction and Analysis of Systems, vol.
1579, pp. 193–207, 1999.

[18] M. Davis, G. Logeman, and D. Loveland, “A machine program for theorem proving,”
Comm. of the ACM, vol. 5, pp. 394–397, 1962.

[19] J. Marques-Silva and K. Sakallah, “GRASP: A search algorithm for propositional
satisfiability,” IEEE Trans. on Comp., vol. 48, no. 5, pp. 506–521, 1999.

[20] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering
an efficient SAT solver,”Design Automation Conf., pp. 530–535, 2001.

[21] N. Eén and N. Sörensson, “An extensible SAT solver,”SAT 2003, vol. 2919, pp.
502–518, 2004.

[22] G. Tseitin, “On the complexity of derivation in propositional calculus,”Studies in
Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125, 1968.

[23] K. McMillan, “Applying SAT methods in unbounded symbolic model checking,”
Computer Aided Verification, pp. 250–264, 2002.

[24] F. Somenzi,CUDD: CU Decision Diagram Package Release 2.3.1. University of
Colorado at Boulder, 2001.


