FACTA UNIVERSITATIS (Nlé)
SER.: ELEC. ENERG. vol. 20, no. 3, December 2007, 367-379

BDD-based Verification of Scalable Designs

Daniel GrofRe and Rolf Drechsler

Abstract: Many formal verification techniques make use of Binary DiecisDia-
grams (BDDs). In most applications the choice of the vadastiering is crucial for
the performance of the verification algorithm. Usually BD&serate on the Boolean
level, i.e. BDDs are a bit-level data structure. In this pape present a method to
speed-up BDD-based verification of scalable designs thkésiase of a learning pro-
cess for word-level information. In a pre-processing aaulal ordering is extracted
from the RTL that is used as a static ordering for large desigixperimental results
show that significant improvements can be achieved.

Keywords: BDD, Variable ordering, Verification, RTL, Word-level Infanation

1 Introduction

As modern circuits contain up to several million transisfoverification has be-
come the major bottleneck in the design flow, i.e. up to 80%hefdverall design
costs are due to verification. This is one of the reasons wisntéy several formal
verification methods have been developed since classitailaion cannot guar-
antee sufficient coverage of the design. For example, irt [l§s been reported that
for the verification of the Pentium IV more than 200 billionctss have been sim-
ulated, but this only corresponds to 2 CPU minutes, if the ¢hrun at 1 GHz. As
alternatives, formal verification or symbolic simulatioavie been proposed and in
the meantime these have been successfully applied in majscts [2, 3]. In this
context many alternative techniques have been proposedrthased to speed up
the proof process, such Beolean Satisfiabilit{SAT) [4, 5, 6] orBinary Decision
Diagrams(BDDs) [7, 8]. A lot of work has been done to combine these iegles
resulting in very efficient solvers (see e.g. [9]). Even thlotwhese techniques are

Manuscript received August 14, 2007.
The authors are with the Institute of Computer Science, &hsity of Bremen, Bremen, 28359
Germany (e-mail[gr osse, drechsl e] @nfornmati k. uni - brenen. de).

367

368 Daniel Grof3e and Rolf Drechsler:

very powerful they all operate on the Boolean level, i.ehHigvel information that
is available on the initial RTL description is not used. Thiso applies in cases
where very regular structures are verified, such as addarkjpiers or scalable
designs. Many difficulties in the proof process result frdra fact that this infor-
mation is not used. In contrast, the front-ends that reakddrRITL — typically given
as Verilog or VHDL — transform the design into a flat netlisattonly consists of
basic gates such as AND-gates and inverters. This has shewenat advantages
for verification tools, but all structural information gdtst.

The major problem when using BDDs in the verification prodeghat a good
variable ordering has to be determined. But this is an NPpieta problem and
thus heuristics have to be applied. The most promising @ues regarding qual-
ity of the BDD are based on dynamic reordering of variabli&s, $ifting [10]. Even
though the resulting BDDs are small in size, the run timedwrtigcome prohibitive
large, such that sifting is usually switched off during BDBnstruction. Alterna-
tively, static variable ordering methods have been propdkat compute a BDD
from the circuit topology (see e.g. [11]). But these apphascoften fail to deter-
mine good results. All techniques proposed so far do not nugkeof high-level
information or consider the scalability of the design.

In this paper we present a new technique to speed up BDD-lasedl ver-
ification of scalable designs. In a first step a small instasfaae Device Under
Verification (DUV) is generated and the corresponding BDD is build. ThxB
is optimized based on dynamic variable reordering. Sineeintistance is small,
this process runs very fast. Then the resulting optimizethke ordering is an-
alyzed using a pattern matching approach. After this phasetdering is scaled
based on word-level information extracted from the sigraahes. This scaled or-
dering is then used as a static ordering for larger instarieggerimental results for
verification of combinational and sequential circuits skdwignificant reductions,
i.e. instances that took several hours before could be @dniithin a few seconds.

The paper is structured as follows: First, we introduce ddsfinitions. Then,
in Section 3 we give the main idea of the approach. In Sectionrdapproach is
discussed in detail. The experimental results are predent8ection 6. Finally,
the work is summarized in Section 7.

2 Preliminaries

As is well-known a Boolean functiofi : B" — B can be represented byBinary
Decision Diagram(BDD) which is a directed acyclic graph where a Shannon de-
composition

f =X fxi:0+xifx;:l (1< i< n)

BDD-based Verification of Scalable Designs 369

is carried out in each node.

A BDD is calledorderedif each variable is encountered at most once on each
path from the root to a terminal node and if the variables a@oentered in the
same order on all such paths. A BDD is calletlucedif it does not contain
isomorphic subgraphs nor does it have redundant nodes. ceeédand ordered
BDDs are a canonical representation since for each Boolaaction the BDD is
uniquely specified [7]. In the following, we refer to reducadd ordered BDDs
for brevity as BDDs. It is well known that BDDs are very seivsitto the chosen
variable ordering, i.e. the size may vary from linear to exgratial. An example for
the functionf = XyXo + XgXq + . . . + Xon_1Xon With n= 3 is shown in Figure 1. For
the ordering on the left the size of the resulting BDD is lineghereas the size of
the BDD on the right is exponential.

Fig. 1. BDDs for functionf = X1Xo 4+ X3X4 + XsXg

3 Basic ldea

Before the algorithm is described in detail, the underlyangin idea and the result-
ing four steps of our technique are first illustrated by a $emgxample: Consider
the n-bit adder with operanda andb, whereag andbgy denote the least significant
bit, respectively. It is known for adders that an interleheeder gives an optimal
result, if the bits are ordered from the least to the mostigamt bit, i.e.:

a07 b07 a17 b17 a-27 b27 e 7an717 bnfl
In this case the resulting BDD has linear size. But if the apds are separated,
like
a07 a17 a27 e 7an71a b07 b17 b27 sty bnfl

370 Daniel Grof3e and Rolf Drechsler:

the resulting BDD has exponential size as in the example eabdhe proposed
technique works in four steps:

1. Build the BDD for a small number of bits only.

2. Perform an optimization based on dynamic reordering.

3. Analyze the ordering and generalize it torahit order.

4. Build the BDD for the large number of bits based on a statilenng.

In the example we start with the “worst case” ordering, ic.the adder this
means that the two operandsindb are separated. If we start with a small number
of bits, e.g. 10 bits, then sifting determines an interleleamelering that is afterwards
generalized and used as a static ordering for building aiS2dder. The benefit of
this approach is obvious: Since the time consuming Step 2@ Biinimization is
only carried out on a small design with a small humber of \#es, the algorithm
runs very fast and due to the regularity of the design theityual very good as
will be shown by experiments later. Even though the methaingple regarding
the general approach, it has shown to be very effective. drfdhowing we first
describe the analysis phase in more detail and then disesssstudies of scalable
designs. Itis shown that speed-ups of several orders of iu@gncan be achieved.

4 Scalable Ordering

While the processing in Steps 1, 2 and 4 in the previous geatie rather obvious,
the crucial step in the approach is the analysis phase. Basélde ordering for
the small example the ordering for thebit version is extrapolated. The approach
would of course benefit from various runs, i.e. if severabosttould be considered.
This results from the fact that sifting is also a heuristiprgach and by several
runs robustness can be obtained. In the following only alsingriable ordering
is studied, since our experiments have shown that this feceuft. But, it should
be noticed that this might become necessary for more congwidxmore irregular
designs. The resulting ordering is considered as a strinthafacters, where in
each position the name of the corresponding input is giverihé example above
this would correspond to e.gg or bs. The text string is evaluated by determining
the relative order of each entry. This is then matched aga&ixisting patterns.
From our studies and assuming regularity in a scalable degiturned out that it
is sufficient to consider only four patterns:

1. Increasing
2. Decreasing
3. Interleaved increasing

BDD-based Verification of Scalable Designs 371

4. Interleaved decreasing

In the case of the adder above, this corresponds to:

1. ag,a1,...,an_1,b0,b1,...,bp_1
2. an_1,...,a41,80,bp_1,...,b1,bg
3. ag,bg,a1,b1,...,an_1,bn 1
4. an_1,bp_1,...,a1,b1,80,b0

If blocks are more complex, i.e. they do not consider a sibglas in the case
of the adder, the method has also to take this hierarchy ictoumt. Note that
the approach not only works for combinational but also faqustial circuits. In
this case also variables for the present states and negs steg part of the BDDs
but they can be treated in the same way. The next state \esialbt necessary
for computing the transition relation of the sequentiatuit. In the following the
analysis phase is described in more detail.

5 Analysis Algorithm

Given a scalable design consistingroblocks. Then the corresponding BDD or-
dering string is of the formé;b;cid; ...” wherei is the number of a block and each
character string corresponds to an input, a current stageneixt state variable of a
block. The current state and next state variables are usedgoesenting the tran-
sition relation. The ordering analysis algorithm is spiita two parts. The first part
is used to identify increasing or decreasing patterns. Eaersd part is applied to
identify the interleaved increasing or decreasing pattefsketch of the analysis
algorithm is given in Figure 2 and Figure 3.

The first part of the algorithm works as follows (for the integd examples
assume that the given ordering striog)is “apa; aazCoCy Cob3c3bgb1by”):

1. First the numbenv of different variable names and the different variable
names are determined. (Examplev is 3 and the variable names aaec
andb).

2. Now the variables with the same names are collected anskcative vari-
ables in the ordering string are enclosed by brackets. Tésslis innv
strings. (Example: [apayagag]”, “ [CoC1C2|C3” and “bs[bobiby]”).

3. For each string of Step 2 the longest consecutive striegrisidered and in-
creasing or decreasing of indices is measured. This izexhlly comparing
the indexi of a variable with the index of each successor. if< j then an
increasing pair is found, if> j the pair is decreasing. In order to obtain an

372 Daniel Grof3e and Rolf Drechsler:

(1) scaleordering(orderingstringos)

(2) [*first part: identify increasing/decreasing */

(3) nv=get number of different variable names (0s);

(4) varNames= get variable name®§);

(5) equalvarNamesList collect equal variable names and enclose
consecutive variableg§rNamesnv);

(6) increasing= decreasing= 0;

(7) for (eachsin equalVarNamesLiytdo

(8) Is = get longest enclosed strirgy(

(9) for (each variable; in Is) do

(10) for (each variable; aftery; in Is) do
(11) if (i < j)increasing+;

(12) if (i > j) decreasing+,;

(13) end-for

(14) end-for

(15) end-for

(16) runLengthList= count run lengths of consec. variable nanmes; (
(17) maxf=acc. max. run length of each var. namenlLengthLis};
(18) relativeOrderList= max. frequently variablesnLengthLis};
(19) ratio =maxf/(number of variables

(20) if (ratio > 0.75)do

(21) if (increasing> decreasiny

(22) return (“increasing” relativeOrderLis);

(23) else return (“decreasing’relativeOrderLis);

(24) end-for

Fig. 2. Sketch of ordering analysis algorithm (first part)

overall score for increasing/decreasing of all longestsegutive strings, the
number of all increasing/decreasing pairs is counted. itipte: increasing
is 6+ 3+ 3 =12 and decreasing isP0+ 0= 0).

4. Now by starting from the left side of the ordering string thun lengths of
consecutive variable names are counted. From this resulngximum run
length of each variable name is accumulatech&xfand a listrelativeOrderList
with the corresponding variable names is generated. (Ekampa,3-c,1-
b,1-c,3-b, maxfis 10 andrelativeOrderList=a c b).

5. Then the rationaxf/(number of variablesis computed. This ratio indicates
the probability of an increasing or decreasing pattern. a(&ple: ratio is
10/12=0.83).

6. If ratio > 0.75, then the ordering string is an increasing or decreasatg p
tern. In this case the overall result of the first part of thalgsis algo-
rithm is increasing or decreasing depending on a compan$ancreasing
and decreasing from Step 3 and tledativeOrderListfrom Step 4. (Exam-

BDD-based Verification of Scalable Designs 373

(25) /* second part: ident. interleaved increasing/decreasingy/
(26) mostlyincreasing= mostlydecreasing= 0;

(27) for (each variable; in 0s) do

(28) for (each variablev; afterv; in os) do

(29) if (i < j) mostlyincreasing-+;

(30) if (i > j) mostlydecreasing+;

(31) end-for

(832) end-for

(833) roList = vars belonging to same block + encl. consecutive ways(
(34) roLengthList= get diff. lengths of consec. var string®List);
(35) for (decreasing lengthin roLengthLis) do

(36) roSamelengthList all consec. var strings of lengti{roList);
(37) for (eachsin roSamelLengthLi¥do

(38) for (eacht in roSamelLengthListftersin roSameLengthLi¥ido
(39) if (smatcheg) matches+;

(40) end-for

(41) scorgs| = | - matches

(42) end-for

(43) end-for

(44) sh=get string with highest scorsc¢ore;

(45) if (shdoes not contain all variables of a bloak)

(46) roContainShList= get allro; whereshmatchesipList);

47) compare eachin roContainShLiswith all t in roContainShLisafter

(48) ?h: most frequently matched string of comparison;
(49) end-for

(50) if (mostlyincreasing> mostlydecreasing

(51) return (“interleaved increasing’sh);

(52) elsereturn (“interleaved decreasingsh);

Fig. 3. Sketch of ordering analysis algorithm (second part)

ple: increasing, since 12 0 and ‘a c I, i.e. scaled ordering fon will be
“ap...an-1Co...Cn_1bp...bn_1").

Note that the described first part of the analysis algorittwasdnot find a solution
for interleaved increasing/decreasing orderings. So ¢atifly this type of order-
ings the following pattern matching technique is applieas he examples assume
ordering stringosto be “agbgcpaicibiazbycrazbscs”):

1. First, it is determined whether the total ordering is rogtcreasing or
mostly decreasing. This works by comparing the index of datde with
all the indices of its successor variables analogously ¢attird step of the
first part of the analysis algorithm. (Examplaostlyincreasingis 9-3+6-
3+ 3-3+ 3-0= 54 andmostlydecreasings 0).

374

Daniel Grof3e and Rolf Drechsler:

. In the second step the ordering string is scanned fromeb@bing and for

each block all variables are collected. During this scagrilso all consec-
utive variables of the same block are enclosed by brackéts. résults im
relative ordering stringso; each containing all variables of the correspond-
ing blocki. The goal of this step is to determine the relative orderwidach
block. (Examplerog = “[agboco)”,ro1 = “[aiciby]”, rox = “[axbacy]”, roz =

“ [a3b3c3]”).

. Then, starting with the longest consecutive string otkl®, this string is

matched against all other strings of the same length of th@xfimg blocks.
This matching works only considering the names of varighles for ex-
ample the string [aghoCo]” of length 3 from block O matches the string
“lagbocy]” of block 2. The number of matches for every string is counted
This method is iterated for all consecutive strings downelagth 2. As a
result, every consecutive string obtains a score deteiyestring_length-
matches (Example: highest score is-63- 2 of rog).

If the ordering string is not as regular as in the exampéeginingsh with
the highest score does not contain all variables of a bloekshis only a
sub-string of someo;. So allro; which containsh (only variable names are
matched) are compared with all following; analogously to Step 3. The
most frequently matcheab; represents the local ordering of a block and will
be used as a result together with increasing or decreasseglan decision
of Step 1. (Example: increasing anabbpcy”, i.e. scaled ordering fon will

be “aghoCoaibiCy ... an_10n-1Cn-1").

With the described analysis algorithm the ordering of a $imatance can be an-
alyzed and a generalization for larger designs can be cardpun the following
experimental results show the efficiency of the approach.

6 Experimental Results

In this section experimental results are given. The progpdeehnique has been
implemented in C++. All run times are given in CPU seconds mmél| Pentium
IV with 1,7 GHz and 512 MByte of main memory. We used the BDDkaae
CUDD [12]. The run times given for our approach always canthe times for the
complete flow, i.e. including analysis and constructiondiorall instances. For the
experiments three scalable designs have been considered:

1. Adders
2. Multipliers

3.

Arbiters

BDD-based Verification of Scalable Designs 375

While the first two are combinational instances, the thi@ssldescribes a se-
guential problem, i.e. the computation of reachable stalée first two instances
are very different in nature, since adders are known to bg gasy to verify by
BDDs, if a good variable ordering is chosen. But BDDs alwagsviup for multi-
pliers. Our experiments will demonstrate that the apprdaah significant advan-
tages in both cases: For adders the construction is spedynificantly for larger
instances, while the method also has benefits for difficstaimces, like multipliers.
In this case the method gives up very fast, while classicpiagehes, like sifting,
spend a lot of time on useless optimization runs.

6.1 Adders

The results for the adder circuits are given in Table 1. Irfilsecolumn the number
of bits to be added are given. Then, for both approadhesoryand Timedenote
the memory in MByte used by the BDD manager and the run timeAi €econds,
respectively. A time limit for BDD construction of 2 CPU haunas been set. As

Table 1. Results for adders

Bits Sifting Scaling
Memory Time | Memory Time
10 4.62 0.01 4.64 0.09
20 4.64 0.05 4.64 0.09
30 4.66 0.08 4.64 0.10
40 4.68 0.15 4.64 0.12
50 4.71 0.26 4.64 0.13
60 4.73 0.34 4.64 0.16
70 4.75 0.48 4.67 0.19
80 4.77 0.62 4.69 0.22
90 4.79 0.90 4.71 0.25
100 4.81 1.12 4.73 0.30
200 5.02 7.64 4.97 1.54
300 522 | 23.94 5.19 5.05
400 5.43 | 55.99 5.43 | 10.05
500 5.69 | 114.13 5.65| 15.83
600 - - 5.89 | 22.96
700 - - 6.12 | 31.49
800 - - 6.36 | 40.85
900 - - 6.59 | 51.67
1000 - - 6.82 | 64.46
1100 - - 11.06 | 77.40
1200 - - 11.28| 92.41
1300 - - 11.52 | 108.64
1400 - - 11.74| 126.10
1500 - - 11.98 | 144.39

376 Daniel Grof3e and Rolf Drechsler:

Table 2. Results for multipliers

Bits Sifting Scaling
Memory Time | Memory | Time
5 4.55 0.04 5.44| 0.87
6 4.66 0.10 5.44 | 0.92
7 4.78 0.26 5.44| 1.03
8 5.44 0.81 590 | 1.29
9 6.33 6.47 8.82| 1.96

10 13.52 18.26 29.89 | 3.89
11 30.26 | 101.69 57.48 | 11.08
12 53.03| 721.77 59.65| 35.00

13 68.17 | 1047.09 58.21 | 23.45
14 76.59 | 1452.54 61.70 | 37.87
15 73.31| 1329.90 63.14 | 46.91
16 65.25| 808.06 62.89 | 46.44
17 74.51 | 1362.95 60.03 | 54.56
18 55.31| 538.30 65.52 | 63.07
19 70.77 | 1018.71 60.06 | 66.78
20 55.81| 604.59 60.40 | 73.02

can be seen, already for 30 variables, the new approachréanps sifting. For
500 variables, the scaling technique is nearly a factor dagter.

6.2 Multipliers

In a next series of experiments we consider multiplier é¢tecult is well known
that BDDs always become exponential in the number of vasbidependent of
the chosen variable ordering [13]. For this, it is intenegtio study the run time
of the algorithms until they give up. We started with a livedadimit of 2,000,000
BDD nodes. For up to 12-bit multipliers the BDDs can be careted. For larger
instances the construction failed (shown in lower part eftdible). We report the
memory consumption and the run time for sifting and our apphountil 12-bit.
Beyond 12-bit the memory and run time used until the constradailed is given.
In case of sifting the values are not monotonically incregdbecause sifting is
called dynamically by the BDD package. Since, in the finalgghaf our approach
a static variable ordering is applied, the limit is reachednfast, as can be seen in
Table 2. Compared to sifting a speed-up of more than a fat&0 oan be observed
for a 12-bit multiplier.

6.3 Arbiters

As a sequential benchmark for our experiments we considerechlable bus ar-
biter. This circuit is often used for experiments in formatification (see e.qg. [14,

BDD-based Verification of Scalable Designs 377

token_out override_in grant_out

I |

token_in override out grant_in

O

token_out override_in grant_out
—req_in Cell n-1 ack_out —

token_in override_out grant_in

token_out override_in grant_out
—req_in Cell 1 ack_out —

token_in override_out grant_in

token_out override_in grant_out
—req_in Cell O ack_out —

token_in override_out grant_in

Fig. 4. A scalable arbiter

15]). In the upper part of Figure 2 a single arbiter cell isshpwhereas the com-
position to an n-cell arbiter is given in the lower part.

For the resulting circuit a computation of the reachableestés carried out. For
the new approach the analysis phase was run on an exampl2@gtlls. The run
times are negligible, since also sifting for these instanoeeds nearly no time. In
the following we give the results for a complete reachap#ihalysis using sifting
and the scaling approach. The results are given in Table thelfirst column the
number of arbiter cells is given. The second column show®teeall number of
BDD variables. Then, as above for both approaches memoryiraeds given. As
has been shown in [16] the reachability analysis can be pedd up ton = 11
bits with 512MB of memory, if the original variable orderirgs it occurs in the
benchmark description is used and sifting is disabled. itting this can be

378 Daniel Grof3e and Rolf Drechsler:

Table 3. Results for scalable arbiter

Cells BDD Sifting Scaling
variables| Memory Time | Memory Time
100 500 13.37 | 195.93 8.05 1.18
200 1000 39.91 | 3126.84 31.93 4.55
300 1500 - - 37.75 12.79
400 2000 - - 48.73 28.25
500 2500 - - 47.29 49.45
600 3000 - - 54.27 81.65
700 3500 - - 57.32| 12231
800 4000 - - 57.74| 176.23
900 4500 - - 61.63 | 238.55
1000 5000 - - 66.10 | 320.48
1100 5500 - - 67.02| 412.10
1200 6000 - - 72.92 | 540.57
1300 6500 - - 79.79 | 670.39
1400 7000 - - 87.47| 822.19
1500 7500 - - 100.23 | 1006.89

improved. But already for 300 cells more than 7200 CPU seedoorresponding
to 2 CPU hours) are needed. The arbiter with 200 cells alr¢aklys more than
3000 CPU seconds, while the scaling approach can handlmstésce - including
the pre-processing - within 5 seconds, i.e. a speed-up of than a factor of 600.
Using the new technique the complete reachability can bepoated for up to 1500
arbiter cells in about 1000 CPU seconds.

7 Conclusions

A new approach for finding BDD orderings has been proposeds fHthnique
works for scalable designs and makes use of high-levelnmition. Experimen-
tal results have demonstrated the quality of the approagitomtrast to dynamic
reordering improvements of several orders of magnitudes timen observed. It
is focus of current work to integrate the approach in an gdsterification flow.
Here it is important that the ordering can be given to the eravithout changing
any of the internal structures, but in the form of a pre-pssaeg.

References

[1] B. Bentley, “Validating the Intel Pentium 4 microproses,” in Design Automation
Conf, 2001, pp. 244-248.

[2] R. Drechsler and S. Horeth, “Gatecomp: Equivalenceckimgy of digital circuits in
an industrial environment,” ilnt’l Workshop on Boolean Problem2002, pp. 195—
200.

[3] R. DrechslerAdvanced Formal Verification Kluwer Academic Publishers, 2004.

BDD-based Verification of Scalable Designs 379

[4] M. Davis, G. Logeman, and D. Loveland, “A machine progffamtheorem proving,”

(5]
(6]
(7]
(8]
(9]
(10]
(11]
(12]
(13]

(14]
(15]

(16]

Comm. of the ACMvol. 5, pp. 394-397, 1962.

J. Marques-Silva and K. Sakallah, “GRASP — a new seamgtrahm for satisfiabil-
ity,” in Int'l Conf. on CAD 1996, pp. 220-227.

N. Eén and N. Sorensson, “An extensible SAT solver, ST 2003ser. LNCS, vol.
2919, 2004, pp. 502-518.

R. Bryant, “Graph-based algorithms for Boolean funotimanipulation,” I[EEE
Trans. on Compuvol. 35, no. 8, pp. 677-691, 1986.

F. Somenzi, “Efficient manipulation of decision diagmfiSoftware Tools for Tech-
nology Transfervol. 3, no. 2, pp. 171-181, 2001.

A. Kuehlmann, M. Ganai, and V. Paruthi, “Circuit-baseddiean reasoning,” ibe-
sign Automation Conf2001, pp. 232—-237.

R. Rudell, “Dynamic variable ordering for ordered hipaecision diagrams,” iint’l
Conf. on CAD 1993, pp. 42-47.

H. Fujii, G. Ootomo, and C. Hori, “Interleaving basediadle ordering methods for
ordered binary decision diagrams,”lint’l Conf. on CAD 1993, pp. 38-41.

F. SomenziCUDD: CU Decision Diagram Package Release 2.3.1Jniversity of
Colorado at Boulder, 2001.

R. Bryant, “On the complexity of VLSI implementationsdgraph representations of
Boolean functions with application to integer multiplicat,” IEEE Trans. on Comp.
vol. 40, pp. 205-213, 1991.

K. McMillan, Symbolic Model Checking Kluwer Academic Publisher, 1993.

J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel, “Sitation-guided property
checking based on multi-valued ar-automata,Dasign, Automation and Test in
Europe 2001, pp. 742—-748.

R. Drechsler and D. Grol3e, “Reachability analysis fomial verification of Sys-
temC,” inEUROMICRO Symp. on Digital System Desig@02, pp. 337-340.

