
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 20, no. 3, December 2007, 367-379

BDD-based Verification of Scalable Designs

Daniel Große and Rolf Drechsler

Abstract: Many formal verification techniques make use of Binary Decision Dia-
grams (BDDs). In most applications the choice of the variable ordering is crucial for
the performance of the verification algorithm. Usually BDDsoperate on the Boolean
level, i.e. BDDs are a bit-level data structure. In this paper we present a method to
speed-up BDD-based verification of scalable designs that makes use of a learning pro-
cess for word-level information. In a pre-processing a scalable ordering is extracted
from the RTL that is used as a static ordering for large designs. Experimental results
show that significant improvements can be achieved.

Keywords: BDD, Variable ordering, Verification, RTL, Word-level Information

1 Introduction

As modern circuits contain up to several million transistors, verification has be-
come the major bottleneck in the design flow, i.e. up to 80% of the overall design
costs are due to verification. This is one of the reasons why recently several formal
verification methods have been developed since classical simulation cannot guar-
antee sufficient coverage of the design. For example, in [1] it has been reported that
for the verification of the Pentium IV more than 200 billion cycles have been sim-
ulated, but this only corresponds to 2 CPU minutes, if the chip is run at 1 GHz. As
alternatives, formal verification or symbolic simulation have been proposed and in
the meantime these have been successfully applied in many projects [2, 3]. In this
context many alternative techniques have been proposed that are used to speed up
the proof process, such asBoolean Satisfiability(SAT) [4, 5, 6] orBinary Decision
Diagrams(BDDs) [7, 8]. A lot of work has been done to combine these techniques
resulting in very efficient solvers (see e.g. [9]). Even though these techniques are

Manuscript received August 14, 2007.
The authors are with the Institute of Computer Science, University of Bremen, Bremen, 28359

Germany (e-mail:[grosse, drechsle]@informatik.uni-bremen.de).

367



368 Daniel Große and Rolf Drechsler:

very powerful they all operate on the Boolean level, i.e. high-level information that
is available on the initial RTL description is not used. Thisalso applies in cases
where very regular structures are verified, such as adders, multipliers or scalable
designs. Many difficulties in the proof process result from the fact that this infor-
mation is not used. In contrast, the front-ends that read in the RTL – typically given
as Verilog or VHDL – transform the design into a flat netlist that only consists of
basic gates such as AND-gates and inverters. This has shown several advantages
for verification tools, but all structural information getslost.

The major problem when using BDDs in the verification processis that a good
variable ordering has to be determined. But this is an NP-complete problem and
thus heuristics have to be applied. The most promising approaches regarding qual-
ity of the BDD are based on dynamic reordering of variables, like sifting [10]. Even
though the resulting BDDs are small in size, the run times might become prohibitive
large, such that sifting is usually switched off during BDD construction. Alterna-
tively, static variable ordering methods have been proposed that compute a BDD
from the circuit topology (see e.g. [11]). But these approaches often fail to deter-
mine good results. All techniques proposed so far do not makeuse of high-level
information or consider the scalability of the design.

In this paper we present a new technique to speed up BDD-basedformal ver-
ification of scalable designs. In a first step a small instanceof the Device Under
Verification (DUV) is generated and the corresponding BDD is build. This BDD
is optimized based on dynamic variable reordering. Since the instance is small,
this process runs very fast. Then the resulting optimized variable ordering is an-
alyzed using a pattern matching approach. After this phase the ordering is scaled
based on word-level information extracted from the signal names. This scaled or-
dering is then used as a static ordering for larger instances. Experimental results for
verification of combinational and sequential circuits showed significant reductions,
i.e. instances that took several hours before could be verified within a few seconds.

The paper is structured as follows: First, we introduce basic definitions. Then,
in Section 3 we give the main idea of the approach. In Section 4our approach is
discussed in detail. The experimental results are presented in Section 6. Finally,
the work is summarized in Section 7.

2 Preliminaries

As is well-known a Boolean functionf : Bn
→ B can be represented by aBinary

Decision Diagram(BDD) which is a directed acyclic graph where a Shannon de-
composition

f = xi fxi=0 +xi fxi=1 (1≤ i ≤ n)



BDD-based Verification of Scalable Designs 369

is carried out in each node.
A BDD is calledorderedif each variable is encountered at most once on each

path from the root to a terminal node and if the variables are encountered in the
same order on all such paths. A BDD is calledreducedif it does not contain
isomorphic subgraphs nor does it have redundant nodes. Reduced and ordered
BDDs are a canonical representation since for each Boolean function the BDD is
uniquely specified [7]. In the following, we refer to reducedand ordered BDDs
for brevity as BDDs. It is well known that BDDs are very sensitive to the chosen
variable ordering, i.e. the size may vary from linear to exponential. An example for
the function f = x1x2 +x3x4 + . . .+x2n−1x2n with n = 3 is shown in Figure 1. For
the ordering on the left the size of the resulting BDD is linear, whereas the size of
the BDD on the right is exponential.

Fig. 1. BDDs for functionf = x1x2 +x3x4 +x5x6

3 Basic Idea

Before the algorithm is described in detail, the underlyingmain idea and the result-
ing four steps of our technique are first illustrated by a simple example: Consider
then-bit adder with operandsa andb, wherea0 andb0 denote the least significant
bit, respectively. It is known for adders that an interleaved order gives an optimal
result, if the bits are ordered from the least to the most significant bit, i.e.:

a0,b0,a1,b1,a2,b2, . . . ,an−1,bn−1

In this case the resulting BDD has linear size. But if the operands are separated,
like

a0,a1,a2, . . . ,an−1,b0,b1,b2, . . . ,bn−1



370 Daniel Große and Rolf Drechsler:

the resulting BDD has exponential size as in the example above. The proposed
technique works in four steps:

1. Build the BDD for a small number of bits only.

2. Perform an optimization based on dynamic reordering.

3. Analyze the ordering and generalize it to ann-bit order.

4. Build the BDD for the large number of bits based on a static ordering.

In the example we start with the “worst case” ordering, i.e. for the adder this
means that the two operandsa andb are separated. If we start with a small number
of bits, e.g. 10 bits, then sifting determines an interleaved ordering that is afterwards
generalized and used as a static ordering for building a 32-bit adder. The benefit of
this approach is obvious: Since the time consuming Step 2 of BDD minimization is
only carried out on a small design with a small number of variables, the algorithm
runs very fast and due to the regularity of the design the quality is very good as
will be shown by experiments later. Even though the method issimple regarding
the general approach, it has shown to be very effective. In the following we first
describe the analysis phase in more detail and then discuss case studies of scalable
designs. It is shown that speed-ups of several orders of magnitude can be achieved.

4 Scalable Ordering

While the processing in Steps 1, 2 and 4 in the previous section are rather obvious,
the crucial step in the approach is the analysis phase. Basedon the ordering for
the small example the ordering for then-bit version is extrapolated. The approach
would of course benefit from various runs, i.e. if several orders could be considered.
This results from the fact that sifting is also a heuristic approach and by several
runs robustness can be obtained. In the following only a single variable ordering
is studied, since our experiments have shown that this is sufficient. But, it should
be noticed that this might become necessary for more complexand more irregular
designs. The resulting ordering is considered as a string ofcharacters, where in
each position the name of the corresponding input is given. In the example above
this would correspond to e.g.a0 or b5. The text string is evaluated by determining
the relative order of each entry. This is then matched against existing patterns.
From our studies and assuming regularity in a scalable design, it turned out that it
is sufficient to consider only four patterns:

1. Increasing

2. Decreasing

3. Interleaved increasing



BDD-based Verification of Scalable Designs 371

4. Interleaved decreasing

In the case of the adder above, this corresponds to:

1. a0,a1, . . . ,an−1,b0,b1, . . . ,bn−1

2. an−1, . . . ,a1,a0,bn−1, . . . ,b1,b0

3. a0,b0,a1,b1, . . . ,an−1,bn−1

4. an−1,bn−1, . . . ,a1,b1,a0,b0

If blocks are more complex, i.e. they do not consider a singlebit as in the case
of the adder, the method has also to take this hierarchy into account. Note that
the approach not only works for combinational but also for sequential circuits. In
this case also variables for the present states and next states are part of the BDDs
but they can be treated in the same way. The next state variables are necessary
for computing the transition relation of the sequential circuit. In the following the
analysis phase is described in more detail.

5 Analysis Algorithm

Given a scalable design consisting ofn blocks. Then the corresponding BDD or-
dering string is of the form “aibicidi . . .” where i is the number of a block and each
character string corresponds to an input, a current state ora next state variable of a
block. The current state and next state variables are used for representing the tran-
sition relation. The ordering analysis algorithm is split into two parts. The first part
is used to identify increasing or decreasing patterns. The second part is applied to
identify the interleaved increasing or decreasing patterns. A sketch of the analysis
algorithm is given in Figure 2 and Figure 3.

The first part of the algorithm works as follows (for the integrated examples
assume that the given ordering stringos is “a0a1a2a3c0c1c2b3c3b0b1b2”):

1. First the numbernv of different variable names and the different variable
names are determined. (Example:nv is 3 and the variable names area,c
andb).

2. Now the variables with the same names are collected and consecutive vari-
ables in the ordering string are enclosed by brackets. This results innv
strings. (Example: “[a0a1a2a3]”, “ [c0c1c2]c3” and “b3[b0b1b2]”).

3. For each string of Step 2 the longest consecutive string isconsidered and in-
creasing or decreasing of indices is measured. This is realized by comparing
the indexi of a variable with the indexj of each successor. Ifi < j then an
increasing pair is found, ifi > j the pair is decreasing. In order to obtain an



372 Daniel Große and Rolf Drechsler:

(1) scaleordering(orderingstringos)
(2) /* first part: identify increasing/decreasing */
(3) nv= get number of different variable names (os);
(4) varNames= get variable names (os);
(5) equalVarNamesList= collect equal variable names and enclose

consecutive variables (varNames, nv);
(6) increasing= decreasing= 0;
(7) for (eachs in equalVarNamesList) do
(8) ls = get longest enclosed string(s);
(9) for (each variablevi in ls) do

(10) for (each variablev j aftervi in ls) do
(11) if (i < j) increasing++;
(12) if (i > j) decreasing++;
(13) end-for
(14) end-for
(15) end-for
(16) runLengthList= count run lengths of consec. variable names (os);
(17) max f = acc. max. run length of each var. name (runLengthList);
(18) relativeOrderList= max. frequently variables (runLengthList);
(19) ratio = max f/(number o f variables);
(20) if (ratio ≥ 0.75)do
(21) if (increasing> decreasing)
(22) return (“increasing”,relativeOrderList);
(23) else return (“decreasing”,relativeOrderList);
(24) end-for

Fig. 2. Sketch of ordering analysis algorithm (first part)

overall score for increasing/decreasing of all longest consecutive strings, the
number of all increasing/decreasing pairs is counted. (Example: increasing
is 6+3+3= 12 and decreasing is 0+0+0 = 0).

4. Now by starting from the left side of the ordering string the run lengths of
consecutive variable names are counted. From this result the maximum run
length of each variable name is accumulated tomaxfand a listrelativeOrderList
with the corresponding variable names is generated. (Example: 4·a,3·c,1·
b,1·c,3·b, maxf is 10 andrelativeOrderList= a c b).

5. Then the ratiomaxf/(number o f variables) is computed. This ratio indicates
the probability of an increasing or decreasing pattern. (Example: ratio is
10/12= 0.83).

6. If ratio ≥ 0.75, then the ordering string is an increasing or decreasing pat-
tern. In this case the overall result of the first part of the analysis algo-
rithm is increasing or decreasing depending on a comparisonof increasing
and decreasing from Step 3 and therelativeOrderListfrom Step 4. (Exam-



BDD-based Verification of Scalable Designs 373

(25) /* second part: ident. interleaved increasing/decreasing*/
(26) mostlyincreasing= mostlydecreasing= 0;
(27) for (each variablevi in os) do
(28) for (each variablewj aftervi in os) do
(29) if (i < j) mostlyincreasing++;
(30) if (i > j) mostlydecreasing++;
(31) end-for
(32) end-for
(33) roList = vars belonging to same block + encl. consecutive vars(os);
(34) roLengthList= get diff. lengths of consec. var strings (roList);
(35) for (decreasing lengthl in roLengthList) do
(36) roSameLengthList= all consec. var strings of lengthl (roList);
(37) for (eachs in roSameLengthList) do
(38) for (eacht in roSameLengthListafters in roSameLengthList) do
(39) if (smatchest) matches++;
(40) end-for
(41) score[s] = l · matches;
(42) end-for
(43) end-for
(44) sh= get string with highest score (score);
(45) if (shdoes not contain all variables of a block)do
(46) roContainShList= get allroi whereshmatches (roList);
(47) compare eachs in roContainShList with all t in roContainShListafter

s;
(48) sh= most frequently matched string of comparison;
(49) end-for
(50) if (mostlyincreasing> mostlydecreasing)
(51) return (“interleaved increasing”,sh);
(52) elsereturn (“interleaved decreasing”,sh);

Fig. 3. Sketch of ordering analysis algorithm (second part)

ple: increasing, since 12> 0 and “a c b”, i.e. scaled ordering forn will be
“a0 . . .an−1c0 . . .cn−1b0 . . .bn−1”).

Note that the described first part of the analysis algorithm does not find a solution
for interleaved increasing/decreasing orderings. So to identify this type of order-
ings the following pattern matching technique is applied (for the examples assume
ordering stringosto be “a0b0c0a1c1b1a2b2c2a3b3c3”):

1. First, it is determined whether the total ordering is mostly increasing or
mostly decreasing. This works by comparing the index of a variable with
all the indices of its successor variables analogously to the third step of the
first part of the analysis algorithm. (Example:mostlyincreasingis 9·3+6·
3+3·3+3·0= 54 andmostlydecreasingis 0).



374 Daniel Große and Rolf Drechsler:

2. In the second step the ordering string is scanned from the beginning and for
each block all variables are collected. During this scanning also all consec-
utive variables of the same block are enclosed by brackets. This results inn
relative ordering stringsroi each containing all variables of the correspond-
ing blocki. The goal of this step is to determine the relative order within each
block. (Example:ro0 = “ [a0b0c0]

′′, ro1 = “ [a1c1b1]
′′, ro2 = “ [a2b2c2]

′′, ro3 =
“ [a3b3c3]

′′).

3. Then, starting with the longest consecutive string of block 0, this string is
matched against all other strings of the same length of the following blocks.
This matching works only considering the names of variables, i.e. for ex-
ample the string “[a0b0c0]” of length 3 from block 0 matches the string
“ [a2b2c2]” of block 2. The number of matches for every string is counted.
This method is iterated for all consecutive strings down to length 2. As a
result, every consecutive string obtains a score determined by string length·
matches. (Example: highest score is 6= 3·2 of ro0).

4. If the ordering string is not as regular as in the example the stringsh with
the highest score does not contain all variables of a block, i.e. sh is only a
sub-string of someroi . So allroi which containsh (only variable names are
matched) are compared with all followingro j analogously to Step 3. The
most frequently matchedroi represents the local ordering of a block and will
be used as a result together with increasing or decreasing based on decision
of Step 1. (Example: increasing and “a0b0c0”, i.e. scaled ordering forn will
be “a0b0c0a1b1c1 . . .an−1bn−1cn−1”).

With the described analysis algorithm the ordering of a small instance can be an-
alyzed and a generalization for larger designs can be computed. In the following
experimental results show the efficiency of the approach.

6 Experimental Results

In this section experimental results are given. The proposed technique has been
implemented in C++. All run times are given in CPU seconds on an Intel Pentium
IV with 1,7 GHz and 512 MByte of main memory. We used the BDD package
CUDD [12]. The run times given for our approach always contain the times for the
complete flow, i.e. including analysis and construction forsmall instances. For the
experiments three scalable designs have been considered:

1. Adders

2. Multipliers

3. Arbiters



BDD-based Verification of Scalable Designs 375

While the first two are combinational instances, the third class describes a se-
quential problem, i.e. the computation of reachable states. The first two instances
are very different in nature, since adders are known to be very easy to verify by
BDDs, if a good variable ordering is chosen. But BDDs always blow up for multi-
pliers. Our experiments will demonstrate that the approachhas significant advan-
tages in both cases: For adders the construction is sped up significantly for larger
instances, while the method also has benefits for difficult instances, like multipliers.
In this case the method gives up very fast, while classical approaches, like sifting,
spend a lot of time on useless optimization runs.

6.1 Adders

The results for the adder circuits are given in Table 1. In thefirst column the number
of bits to be added are given. Then, for both approachesMemoryandTimedenote
the memory in MByte used by the BDD manager and the run time in CPU seconds,
respectively. A time limit for BDD construction of 2 CPU hours has been set. As

Table 1. Results for adders
Bits Sifting Scaling

Memory Time Memory Time
10 4.62 0.01 4.64 0.09
20 4.64 0.05 4.64 0.09
30 4.66 0.08 4.64 0.10
40 4.68 0.15 4.64 0.12
50 4.71 0.26 4.64 0.13
60 4.73 0.34 4.64 0.16
70 4.75 0.48 4.67 0.19
80 4.77 0.62 4.69 0.22
90 4.79 0.90 4.71 0.25

100 4.81 1.12 4.73 0.30
200 5.02 7.64 4.97 1.54
300 5.22 23.94 5.19 5.05
400 5.43 55.99 5.43 10.05
500 5.69 114.13 5.65 15.83
600 - - 5.89 22.96
700 - - 6.12 31.49
800 - - 6.36 40.85
900 - - 6.59 51.67

1000 - - 6.82 64.46
1100 - - 11.06 77.40
1200 - - 11.28 92.41
1300 - - 11.52 108.64
1400 - - 11.74 126.10
1500 - - 11.98 144.39



376 Daniel Große and Rolf Drechsler:

Table 2. Results for multipliers

Bits Sifting Scaling
Memory Time Memory Time

5 4.55 0.04 5.44 0.87
6 4.66 0.10 5.44 0.92
7 4.78 0.26 5.44 1.03
8 5.44 0.81 5.90 1.29
9 6.33 6.47 8.82 1.96

10 13.52 18.26 29.89 3.89
11 30.26 101.69 57.48 11.08
12 53.03 721.77 59.65 35.00

13 68.17 1047.09 58.21 23.45
14 76.59 1452.54 61.70 37.87
15 73.31 1329.90 63.14 46.91
16 65.25 808.06 62.89 46.44
17 74.51 1362.95 60.03 54.56
18 55.31 538.30 65.52 63.07
19 70.77 1018.71 60.06 66.78
20 55.81 604.59 60.40 73.02

can be seen, already for 30 variables, the new approach outperforms sifting. For
500 variables, the scaling technique is nearly a factor of 10faster.

6.2 Multipliers

In a next series of experiments we consider multiplier circuits. It is well known
that BDDs always become exponential in the number of variables independent of
the chosen variable ordering [13]. For this, it is interesting to study the run time
of the algorithms until they give up. We started with a live node limit of 2,000,000
BDD nodes. For up to 12-bit multipliers the BDDs can be constructed. For larger
instances the construction failed (shown in lower part of the table). We report the
memory consumption and the run time for sifting and our approach until 12-bit.
Beyond 12-bit the memory and run time used until the construction failed is given.
In case of sifting the values are not monotonically increasing because sifting is
called dynamically by the BDD package. Since, in the final phase of our approach
a static variable ordering is applied, the limit is reached very fast, as can be seen in
Table 2. Compared to sifting a speed-up of more than a factor of 20 can be observed
for a 12-bit multiplier.

6.3 Arbiters

As a sequential benchmark for our experiments we considereda scalable bus ar-
biter. This circuit is often used for experiments in formal verification (see e.g. [14,



BDD-based Verification of Scalable Designs 377

Fig. 4. A scalable arbiter

15]). In the upper part of Figure 2 a single arbiter cell is shown, whereas the com-
position to an n-cell arbiter is given in the lower part.

For the resulting circuit a computation of the reachable states is carried out. For
the new approach the analysis phase was run on an example with20 cells. The run
times are negligible, since also sifting for these instances needs nearly no time. In
the following we give the results for a complete reachability analysis using sifting
and the scaling approach. The results are given in Table 3. Inthe first column the
number of arbiter cells is given. The second column shows theoverall number of
BDD variables. Then, as above for both approaches memory andtime is given. As
has been shown in [16] the reachability analysis can be performed up ton = 11
bits with 512MB of memory, if the original variable orderingas it occurs in the
benchmark description is used and sifting is disabled. Withsifting this can be



378 Daniel Große and Rolf Drechsler:

Table 3. Results for scalable arbiter
Cells BDD Sifting Scaling

variables Memory Time Memory Time
100 500 13.37 195.93 8.05 1.18
200 1000 39.91 3126.84 31.93 4.55
300 1500 - - 37.75 12.79
400 2000 - - 48.73 28.25
500 2500 - - 47.29 49.45
600 3000 - - 54.27 81.65
700 3500 - - 57.32 122.31
800 4000 - - 57.74 176.23
900 4500 - - 61.63 238.55

1000 5000 - - 66.10 320.48
1100 5500 - - 67.02 412.10
1200 6000 - - 72.92 540.57
1300 6500 - - 79.79 670.39
1400 7000 - - 87.47 822.19
1500 7500 - - 100.23 1006.89

improved. But already for 300 cells more than 7200 CPU seconds (corresponding
to 2 CPU hours) are needed. The arbiter with 200 cells alreadytakes more than
3000 CPU seconds, while the scaling approach can handle thisinstance - including
the pre-processing - within 5 seconds, i.e. a speed-up of more than a factor of 600.
Using the new technique the complete reachability can be computed for up to 1500
arbiter cells in about 1000 CPU seconds.

7 Conclusions

A new approach for finding BDD orderings has been proposed. This technique
works for scalable designs and makes use of high-level information. Experimen-
tal results have demonstrated the quality of the approach. In contrast to dynamic
reordering improvements of several orders of magnitude have been observed. It
is focus of current work to integrate the approach in an existing verification flow.
Here it is important that the ordering can be given to the prover without changing
any of the internal structures, but in the form of a pre-processing.

References

[1] B. Bentley, “Validating the Intel Pentium 4 microprocessor,” in Design Automation
Conf., 2001, pp. 244–248.

[2] R. Drechsler and S. Höreth, “Gatecomp: Equivalence checking of digital circuits in
an industrial environment,” inInt’l Workshop on Boolean Problems, 2002, pp. 195–
200.

[3] R. Drechsler,Advanced Formal Verification. Kluwer Academic Publishers, 2004.



BDD-based Verification of Scalable Designs 379

[4] M. Davis, G. Logeman, and D. Loveland, “A machine programfor theorem proving,”
Comm. of the ACM, vol. 5, pp. 394–397, 1962.

[5] J. Marques-Silva and K. Sakallah, “GRASP – a new search algorithm for satisfiabil-
ity,” in Int’l Conf. on CAD, 1996, pp. 220–227.

[6] N. Eén and N. Sörensson, “An extensible SAT solver,” inSAT 2003, ser. LNCS, vol.
2919, 2004, pp. 502–518.

[7] R. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE
Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

[8] F. Somenzi, “Efficient manipulation of decision diagrams,” Software Tools for Tech-
nology Transfer, vol. 3, no. 2, pp. 171–181, 2001.

[9] A. Kuehlmann, M. Ganai, and V. Paruthi, “Circuit-based Boolean reasoning,” inDe-
sign Automation Conf., 2001, pp. 232–237.

[10] R. Rudell, “Dynamic variable ordering for ordered binary decision diagrams,” inInt’l
Conf. on CAD, 1993, pp. 42–47.

[11] H. Fujii, G. Ootomo, and C. Hori, “Interleaving based variable ordering methods for
ordered binary decision diagrams,” inInt’l Conf. on CAD, 1993, pp. 38–41.

[12] F. Somenzi,CUDD: CU Decision Diagram Package Release 2.3.1. University of
Colorado at Boulder, 2001.

[13] R. Bryant, “On the complexity of VLSI implementations and graph representations of
Boolean functions with application to integer multiplication,” IEEE Trans. on Comp.,
vol. 40, pp. 205–213, 1991.

[14] K. McMillan, Symbolic Model Checking. Kluwer Academic Publisher, 1993.
[15] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel, “Simulation-guided property

checking based on multi-valued ar-automata,” inDesign, Automation and Test in
Europe, 2001, pp. 742–748.

[16] R. Drechsler and D. Große, “Reachability analysis for formal verification of Sys-
temC,” inEUROMICRO Symp. on Digital System Design, 2002, pp. 337–340.


