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Teaching Reed-Muller Techniques in Introductory Classes
on Logic Design
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Abstract: Reed-Muller techniques are not traditionally included in the textbooks for
introductory one-semester courses on logic design. Two exclusions are the textbooks
by D. Green (1986) and T. Sasao (1999). Based on our experience of developing
and instructing logic design courses, we introduce our approach to teaching the Reed-
Muller techniques for undergraduate students.
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1 Introduction

An introductory course on logic design of discrete devices is a fundament for the
study of many fields that constitute the ever-expanding discipline of computer en-
gineering, computer science, and electrical engineering.While it serves as a pre-
requisite for additional coursework in the study of theory of communication, signal
processing, digital system design, and neural networks, itis frequently encountered
in the second year of the undergraduate programs and assumesno background on
the part of the reader. The course usually includes five main topics: number sys-
tem, Boolean algebra, sum-of-product (SOP) based manipulations, and techniques
for combinational and sequential logic network design. TheSOP techniques are the
focus of the introductory course based on the textbooks suchas [1, 2]. Additional
courses are then provided that expand on the one-semester course by including a
more detailed treatment of digital system design, focusing, in particular, on simu-
lation using hardware description languages.
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Reed-Muller techniques are not being usually included in introductory one-
semester courses on logic design, and only two exclusive efforts are known: the
textbook by D. Green [3] and the textbook by T. Sasao [4]. While SOP-based
forms are the primary focus of undergraduate curricular, Reed-Muller techniques
are often taught in classes on the advanced techniques [5, 6]. The main reason is
that Reed-Muller techniques are more complicated than SOP-based techniques.

The motivation for incorporating Reed-Muller into the introductory course on
logic design are as follows:

(a) Reed-Muller techniques are an important part of the contemporary logic de-
sign, and

(b) Reed-Muller techniques are found useful for predictable technologies.

This viewpoint is reflected in our recent textbook [7]. In this textbook, we pro-
pose several approaches for teaching the polynomial forms of Boolean functions.
Our motivation to study polynomial forms of Boolean functions is as follows:

• Polynomial expressions provide additional flexibility in terms of choice of
implementation technology. This property is efficiently utilized in logic de-
sign, especially in design for specific-area applications;in particular, encod-
ing and encryption of information.

• There are various physical and molecular effects in predictable technology
which can be interpreted as EXOR operations. Nanocomputingdevices
based on these effects can be used in logic network design andimplemen-
tation.

• Polynomial forms are well-suited to a logic with more than two values, in
particular, to the multi-valued logic. This fact is utilized in the design of
some contemporary and next-generation devices.

2 Similarities Between SOP and Polynomial Forms

This topic is based on the understanding of the SOP-based techniques. Given a
complete set of minterms, often in the form of truth vector, for a Boolean func-
tion, its standard (canonical) SOP expression is formed using the correspondence
of 1’s in the truth vector. By analogy, a polynomial form is derived from the cor-
respondence of the polarized minterms and non-zero coefficients of the vector of
coefficients.

The standard, or canonical, SOP and polynomials forms are unique given a
Boolean function. The number of terms in canonical SOP and polynomial expres-
sions are equal to 2n. Non-canonical SOP expressions can be derived from canon-
ical SOP forms. Similarly, canonical and non-canonical polynomial expressions
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can be derived given a Boolean function. Figure 1 shows the structural similarity
of standard SOP expressions and polynomial forms of Booleanfunctions.
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Fig. 1. Techniques for the manipulation of Boolean functions are based on Boolean algebra (Algebra
I) and the algebra of polynomial forms (Algebra II) (a) and the structural similarity of standard SOP
expressions and polynomial forms (b).

The polynomial form is a representation of a Boolean function derived from the
following universal set of operations over Boolean variables: the constant 1, AND
operation, and EXOR operation.

Example 1. (Completeness of operations).(a) EXOR of single variables forms,
a so-called “linear polynomial”, x1⊕·· ·⊕xn.
(b) EXOR and AND operations form a so-called “non-linear polynomial”; for ex-
ample, x1⊕x1x2⊕x1x2x3 is a non-linear polynomial.
(c) EXOR, and AND operations and the constant 1 are used to implement an arbi-
trary Boolean function. For example, a complemented variable can be represented
using EXOR and the constant 1:x = x⊕1.

Polynomial forms can be represented as follows (Figure 2):

• Algebraicforms,

• Tabulatedforms such asfunctional tablesandvectors of coefficients(similar
to truth tables and truth vectors for SOP forms);

• Graphical representations such asfunctional mapsandfunctional cubes, as
well as functional decision trees and diagrams(similar to K-maps, cubes,
and decision trees and diagrams for SOP forms); and

• Networksof logic gates or threshold elements.

Operational and functional domains

The relationship betweenoperationalandfunctionaldomains is the key to the syn-
thesis and application of the polynomial forms of Boolean functions. In polynomial
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algebras, the duality principle exists in the form offorward andinversetransforms
betweenoperationalandfunctionaldomains.Forward and inversetransforms de-
scribe the relationship betweenoperationaland functional domains for Boolean
data structures:

Operational domain
︸ ︷︷ ︸

Boolean data structure

Conversion
←→ Functional domain

︸ ︷︷ ︸

Boolean data structure

All satellite Boolean data structures (Figure 2) and the corresponding tech-
niques are aimed at providing for representation, manipulation, optimization, and
implementation of Boolean functions in the functional domain; namely:

(a) Each data structure has particular properties and characteristics, and satisfies
the requirements of specific tasks of the logic design cycle.There is no
“universal” data structure that can be used in all phases of logic design.

(b) Each data structure plays a particular role in design, and isefficient only in
solving particular tasks.

(c) Each data structure can be converted into another one. Theserelationships
between data structures are often used to achieve design goals.

3 Algebra of the Polynomial Forms

Boolean algebra is defined as a set of elements, operations, and postulates. This
algebraic structure is the formal basis of the SOP representation. The formal basis
of the polynomial forms is thefinite fields. Finite fields are algebraic structures too,
but they are characterized by theelements, operations, andpostulatesof a finite
field. The theory of polynomial representations of Boolean functions has been
adopted from the related fields, such as digital signal processing.

3.1 Theoretical background

A finite fieldF is an algebraic structure defined as follows:

• It is a set of elements, together with two binary operations,each having asso-
ciative, commutative, and distributive properties, closure under addition and
multiplication, inverse properties, and a unique element.

• The number of elements in the field is called theorder of the field. A field
with order m exists iff m is a prime power, i.e., m = pn for some integer
n and with p a prime integer. In this case, addition and multiplication are
defined by a table composed such that the requirements for thefield are true.
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Fig. 2. Data structures for representation of the EXOR function of two variables in the operational
domain (SOP form) and the functional domain (polynomial form).

• In any finite field, the number of elements must be a power of a prime, pk.
This field is the Galois field GF(k).

• Every field with pk elements is isomorphic to every other field withpk ele-
ments. Some of these fields are useful in the representation,manipulation,
analysis, and implementation of Boolean functions.

Binary operations are defined asaddition over a fieldF , andmultiplication
over a fieldF .
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Galois field

An example of a fieldF is aGalois fielddenoted as GF(q):

• It consists ofq elements 0,1,2, . . . ,q.

• The number of elements in a Galois field must be equal top= 2n, wherep is
a primenumber andn is a positive integer (a natural numberp≥ 2 is called
prime if and only if the only natural numbers which dividep are 1 andp).

• In cases wherep = 2, all 2n elements are derived using a polynomial of
degreen.

• Operations in GF(q) are the moduloq sum and moduloq multiplication.

The field of integer numbers modulo a prime numberk is a field.

Polynomials

A polynomialin the variablex is the representation of a functionf as a sum over
an algebraic fieldF

f =
N−1

∑
i=0

aix
i over the fieldF (1)

The valuesa0,a1, . . . ,aN−1 are calledcoefficientsof the polynomial. Expression 1
means that there exist many polynomials, which are distinguished by the properties
of the fields; namely, by the types of operation being addition and multiplication.

Example 2. (Fields for Boolean functions.)The following fields are used for the
representation of Boolean functions:

(a) Galois fieldof order 2, GF(2). This field consists of two elements, 0 and 1.
In GF(2), sum and multiplication correspond to EXOR and AND operations,
respectively.

(b) A set of integer numbers, or the field of integers, that includes only the ele-
ments 0 and 1. In this field, traditional sum and multiplication are used.

In addition, the sets of rational and complex numbers, together with the arith-
metic operations of sum and multiplication, can be used for various representations
of Boolean functions.
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3.2 Polynomials for Boolean functions

The polynomial in Equation 1 is defined for a single variablex. Boolean algebra
operates with a set of variablesx1,x2, . . . ,xn. To apply this polynomial equation to
Boolean functions, some restrictions are needed. These restrictions are based on
the fundamental theorem of arithmetic, which states that every integeri > 2 can be
written in the formi = i1i2 . . . in for the uniqueprimes i1i2 . . . in. This means that
if any number is completely factored, this expression is unique. Given a Boolean
function ofn variablesx1,x2, . . . ,xn,

f =
2n−1

∑
i=0

ai

Minterm overF
︷ ︸︸ ︷

(xi1
1 · · · xin

n ) over the fieldF , (2)

whereai is a coefficient,i j is the j-th bit ( j = 1,2, . . . ,n,) in the binary representa-

tion of the indexi = i1i2 . . . in, and theliteral x
i j
j is defined as

x
i j
j =

{
1, if i j = 0;
x j , if i j = 1.

over the fieldF (3)

The group of variablesxi1
1 xi2

2 · · ·x
in
n is called aminterm over the fieldF . While the

values of Boolean functions are used in SOP (operational domain), the coefficients
ai are used in polynomial forms of Boolean functions (functional domain).

The polynomial form (Equation 2) is characterized as follows:

(a) Theoperations, of sum and multiplication are specified by the properties of
the fieldF ; that is, they are eitherlogical or arithmeticoperations;

(b) Thecoefficients ai are computed for each Boolean function using the proper-
ties of the fieldF ; and

(c) Mintermsover the fieldF are specified by multiplication ofliterals x
i j
j , j =

1,2, . . . ,n, overF (Equation 3).

Example 3. (Polynomials for Boolean functions.) The following polynomials
represent the Boolean function EXOR in the two fields (algebras):

f1 = x1⊕x2 overGF(2)

f2 = x1 +x2−2x1x2 over the field of integers

In the polynomials f1 and f2, logical and arithmetical operations are used, respec-
tively. In f1, the coefficients are 0 or 1 because the field GF(2) consists of0’s and
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1’s only. The coefficients in the polynomial f2 are integer numbers. Once the values
of the Boolean variables x1 and x2 are assigned, polynomials f1 and f2 assume the
values of the initial function EXOR.

The above brief introduction to the basics of finite fields implies that the poly-
nomial forms are more complicated compared than SOP forms, since special tech-
niques are required for computing the coefficients of polynomial forms.

3.3 The functional table

A Boolean function ofn variables f (xi) i = 1,2, . . . ,n, in theoperationaldomain
can be described in tabulated form using truth tables. In thefunctionaldomain, a
Boolean function is represented in a polynomial formf (xi ,a j) i, j ∈ {1,2, . . . ,n},
which is a function of variablesxi and coefficientsa j , and can be described by a
functional table.

A functional table is a list of all combinations of 1’s and 0’sassigned to the
binary coefficientsa0,a1, . . . ,a2n−1 and corresponding polynomials. The structural
properties of the functional table are given below:

Structural properties of the functional table
• Each row corresponds to a combination of the 2n coefficientsa0,a1, . . . ,a2n−1 of

the polynomial. The number of rows in the table is 22n
, wheren is the number

of variables of the Boolean function.
• The columns are the 22n

polynomial forms of all Boolean functions ofn vari-
ables. The truth table can be obtained for each polynomial.

Example 4. (Functional table.) For a Boolean function f of two variables x1

and x2 (n = 2), the functional table is derived as follows. There are2n = 22 = 4
coefficients a0,a1,a2, and a3, which specify22n

= 222
= 16 polynomial forms of

the Boolean function. Hence, the functional table contains16 rows for all com-
binations of the coefficients a0,a1,a2,a3, and the column labeled f that contains
16 polynomials (Figure 3). For each polynomial in the functional table, a truth
table can be derived as shown for four of them. For example, the combination
of coefficients a0a1a2a3 = 0011 specifies the polynomial x1⊕ x1x2. The corre-
sponding function is specified by its values: x1x2 = 00⇒ f = 0⊕ 0 · 0 = 0;
x1x2 = 01⇒ f = 0⊕0·1 = 0, etc.

3.4 The functional map

The analog of thetruth vectorand K-map in the functional domain is thevector
of coefficients. All 22n

possible vectors of coefficients for a Boolean function ofn
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F u n c t i o n a l t a b l e

a0 a1 a2 a3 Polynomial f
0 0 0 0 0
0 0 0 1 x1x2
0 0 1 0 x1
0 0 1 1 x1⊕x1x2
0 1 0 0 x2
0 1 0 1 x2⊕x1x2
0 1 1 0 x2⊕x1
0 1 1 1 x2⊕x1⊕x1x2

F u n c t i o n a l t a b l e
(c o n t i n u a t i o n)

a0 a1 a2 a3 Polynomial f
1 0 0 0 1
1 0 0 1 1⊕x1x2
1 0 1 0 1⊕x1
1 0 1 1 1⊕x1⊕x1x2
1 1 0 0 1⊕x2
1 1 0 1 1⊕x2⊕x1x2
1 1 1 0 1⊕x1⊕x2
1 1 1 1 1⊕x2⊕x1⊕x1x2

T r u t h t a b l e s f o r t h e f i r s t f o u r

p o l y n o m i a l s

f = 0 f = x1x2 f = x1 f = x1⊕x1x2

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 0

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x1 x2 f
0 0 0
0 1 0
1 0 1
1 1 1

x1 x2 f
0 0 0
0 1 0
1 0 1
1 1 0

Fig. 3. Representation of Boolean functions of two variables in the form of a functional table and the
corresponding truth tables for the first four polynomials (Example 4).

variables are represented by thefunctional map. Each polynomial in the functional
table represents one of 22n

functions ofn variables.

Example 5. (K-map and functional map.) Let the Boolean function of three
variables f= x1x2x3∨ x1x2x3 be given in the form of a K-map (Figure 4). The
functional map contains the coefficients of the polynomial in GF(2). The gates
used for the implementation of the function in the operational domain are AND
and OR, while the gates for polynomial implementation are ANDand EXOR.

3.5 Polarized minterms

The polynomial form of Equation 2 contains only uncomplemented variables. In
order to achieve acceptable flexibility in a network design based on polynomial
forms, we need a techniques for manipulation of uncomplemented and comple-
mented variables. This techniques are based on so-calledpolarized minterms. The
polarized minterm is the product ofpolarized literals. Note that in an SOP expres-
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Fig. 4. Representation of the Boolean functionf = x1x2x3∨x1x2x3 in the operational and functional
domains (Example 5).

sion, DeMorgan’s rule provides for manipulation of complemented and uncomple-
mented variables.

Literals and polarized literals

A literal is the representation of either an uncomplementedor a complemented
variable:

Literal= x
i j
j =

{
x j , if i j = 0;
x j , if i j = 1.

(4)

Literals in the form of Equation 4 are used in the standard SOPforms. The
polarities of variables are specified by the particular Boolean function. The polarity
can be changed using DeMorgan’s rule.

Example 6. (Literals.) Let i= 0,1,2,3 (i1i2 = 00,01,10,11 for the representation
of two Boolean variables). According to Equation 4, the following literals can be
generated:

{x0
1x0

2, x0
1x1

2, x1
1x0

2, x1
1x1

2}= {x1x2, x1x2, x1x2, x1x2}.
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The polarized form of a literal provides an approach toindependentcontrol
of the polarity of variables. Apolarized literal is the representation of either an
uncomplemented or a complemented variable specified by the control parameter
calledpolarity c1,c2, . . . ,cn, c j ∈ {0,1}, j = 1,2, . . . ,n:

Polarized literal= (x j ⊕c j)
i j =

{
1, if i j = 0;
(x j ⊕c j), if i j = 1.

over GF(2) (5)

In Equation 5, the parametersi j for the variablex j are separatedfrom the
polarity c j :

• Parametersi j only specify the order of the minterms in the polynomial. They
are an inherent property of a given form; that is,i j are dependent parameters.

• Parameterc j is anindependentparameter.

The example below shows all possible combinations of the dependent and in-
dependent parameters of the literal.

Example 7. (Polarized literals.) For the polarity cj ∈ {0,1} and parameter ij ∈
{0,1}, the complete set of polarized literals is generated as follows:

cj=0, i j=0
︷ ︸︸ ︷

(x j ⊕0)0 = x0
j = 1 over GF(2);

cj=1, i j=0
︷ ︸︸ ︷

(x j ⊕1)0 = x0
j = 1 over GF(2);

cj=0, i j=1
︷ ︸︸ ︷

(x j ⊕0)1 = x1
j = x j over GF(2);

cj=1, i j=1
︷ ︸︸ ︷

(x j ⊕1)1 = x1
j = x j over GF(2).

Minterm structure

The minterm is defined for the assignmenti1, i2, . . . , in of Boolean variables
x1,x2, . . . ,xn for which a Boolean function is equal to 1; that is,x1 = i1,x2 =
i2, . . . ,xn = in if f = 1:

Minterm=

n literals
︷ ︸︸ ︷

xi1
1 xi2

2 · · ·x
in
n (6)

These minterms are used in the standard SOP expressions. Thesimplest method
for generating the minterms is to use the truth table of the Boolean function.
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Polarized minterm structure

A polarized mintermis defined by the equation

Polarized minterm=

n polarized literals
︷ ︸︸ ︷

(x1⊕c1)
i1(x2⊕c2)

i2 · · · (xn⊕cn)
in over GF(2) (7)

where

(x j ⊕c j)
i j =

{
1, if i j = 0;
(x j ⊕c j), if i j = 1.

over GF(2)

In Equation 7, the polarities of the variablesx1,x2, . . . ,xn are specified by the
polarity parametersc1,c2, . . . ,cn, respectively. An arbitrary polarityci ∈ {0,1} can
be chosen for each Boolean variablexi , i = 1,2, . . . ,n.

Example 8. (Polarized minterms.)A polarized minterm of two variables is rep-
resented as follows:

Polarized minterm= (x1⊕c1)
i1(x2⊕c2)

i2 over GF(2)

For example, all four polarized minterms for the polarity c= 2 (c1c2 = 10), can be
in four forms:

(x1⊕1)0(x2⊕0)0 = 1; (x1⊕1)0(x2⊕0)1 = x2;

(x1⊕1)1(x2⊕0)0 = x1; (x1⊕1)1(x2⊕0)1 = x1x2.

4 Techniques for Manipulation of Polynomial Forms

The termpolynomial formsspecifies the forms of Boolean functions in which
minterms are combined using the EXOR operation. An arbitrary Boolean func-
tion can be represented by polynomial expression. The laws of the GF(2) algebra
of polynomial forms are given in Table 1. In the example below, techniques for the
manipulation of polynomial expressions using laws and identities are introduced.

Example 9. (GF(2) algebra.) The below manipulations illustrate application of
the laws of algebra of polynomial forms from Table 1:

(a) x1⊕x2⊕x1x2 = x1⊕x2(1⊕x1) = x1⊕x2x1

(b) 1⊕x1x2⊕x1x3 = 1⊕x1(x2⊕x3) = x1(x2⊕x3)
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Table 1. The EXOR algebra and identities for manipulations (fragment).

Laws and identities Formal notation Logic network

Associative law

x1⊕ (x2⊕x3) =(x1⊕x2)⊕x3

=x1⊕x2⊕x3

x1(x2x3) =(x1x2)x3

=x1x2x3
 
= 

x1 
x2 

x3 

x1 
x2 
x3 

Identities for vari-
ables

x⊕x = 0, x ·x = x

x⊕x = 1, x ·x = 0
 

= x 
x 

0 

= x 
x 

1 

DeMorgan’s rules
for polynomials

x1⊕x2 = x1⊕x2

x1⊕x2 = x1⊕x2

x1⊕x2 = x1⊕x2

 

= 
= 

x2 
x1 

x2 

x1 

x1 
x2 

x1 
x2 

4.1 Relationship between standard SOP and polynomial forms

Polynomial form of a Boolean function can be derived directly from the SOP ex-
pression of this function using the following rule:

Deriving a polynomial form given a standard SOP expression
Given: The standard SOP expression of a Boolean function
Find: The standard polynomial form
Procedure: Replace the OR operations with EXOR operation
Result: The standard polynomial form of the Boolean

function

This standard polynomial form is not an optimal in terms of the implementation
cost and representation; additional manipulations are needed for its simplification.

Example 10. (A SOP and polynomial forms.)The truth table of Boolean function
is given in Table 2. A standard SOP of this function is

f = x1x2x3∨x1x2x3∨x1x2x3∨x1x2x3

The polynomial expression is derived by replacing OR operations by the EXOR
operations:

f = x1x2x3⊕x1x2x3⊕x1x2x3⊕x1x2x3

Note that this polynomial expression consists of a the minterms with variables of
different polarities.
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Table 2. Relationship between the standard SOP and polynomial forms (Example 10).

Assignment of Value of Minterm
variables Boolean function

000 1 x1x2x3
001 1 x1x2x3
010 0
011 1 x1x2x3
100 0
101 0
110 0
111 1 x1x2x3

4.2 Local transformations for EXOR expressions

A local transformationis defined as a set of rules for the simplification of a data
structure. In this section, we consider a local transformations for a logic networks,
which consist of various types of logic gates, including EXOR gates. These trans-
formations are based on the theorems of Boolean algebra and polynomial algebra
GF2, and are applied locally. The following rules can be applied to logic networks
with EXOR gates:

The rules for local transformations
Rule 1: Replacing an EXOR gate with a constant:

– Replace an EXOR gate with the corresponding constant using the rules of
identities for constants if the inputs of this gates are constants

– Replace an EXOR gate with the corresponding constant using the rules of
identities for variables if the inputs of this gates are literals of the same
variable

Rule 2: Replacing an EXOR gate with a variable:An EXOR gate can be replaced with
a variable using the rules of identity for variables and constants if one of the inputs
is a constant

The rules for removing the duplicated gates, removing the unused gates, and
merging the gates, are similar to the ones for OR and AND gates.

Example 11. (Local transformations.)Figure 5 illustrates two types of the local
transformations: Area A: the EXOR gate is replaced with the inverter using the
identity rule for variables and constants x2⊕1= x2; Area B: the inverter and EXOR
gates are replaced by the wire using the simplification rule x1x2⊕x1 = x1(x2⊕1) =
x1x2.
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x2 
f 

x1 
1  

A B 

Apply the rule 
 x2  ⊕ 1 = x2 

Apply  the rule 
x1x2  ⊕  x1  =  x1(x2⊕ 1) 

Area A Area B 

 

 

x2 f 

x1 

A B 

Area A Area B 

1  

Apply  the rule 
x2  ⊕  1  =  x2 

 
 x1 

x2 f 

Fig. 5. Local transformations in logic network (Example 11).

4.3 Factoring of polynomials

Factoring of polynomial expressions is used, in particular, when dealing with the
fan-in problem, and when a logic network is designed using limited numbers of gate
inputs. However, techniques for factoring SOP forms are notacceptable for poly-
nomial forms. Factoring polynomial expressions is based onthe laws and identities
given in Table 1. Similarly to SOP-based techniques, the factoring of polynomial
expressions is based on the designer’s experience, and may be built into CAD tools
to a limited extent. The application of various identities does not guarantee satis-
factory results from factoring. In particular, an arbitrary Boolean variable can be
replaced by its complement as follows:

x1⊕x2 = x1⊕x2 = x1⊕x2 = (1⊕x1)x2⊕1 = x1⊕ (1⊕x2)⊕1

Extra variables can be included in the equation using the following properties:
x⊕x⊕x = x andx⊕x = 0.

Example 12. (Factoring.)The polynomial expression

f = 1⊕x4⊕x3⊕x2⊕x2x3⊕x1x3⊕x1x2⊕x1x2x3
︸ ︷︷ ︸

2 level logic network

can be directly implemented by the two-level logic network as shown in Figure
6a. The fan-in of the EXOR gate is equal to 7, which is often unacceptable. The
factoring results in the below expression

f = 1⊕x4⊕ (x3⊕x2⊕x2x3)x1
︸ ︷︷ ︸

4 level logic network

This polynomial expression is implemented by a four-level logic network (Figure
6b) using 3-input EXOR gates.
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f x2 
x2 
x3 

x3 
x4 

x1 
x3 
x1 
x2 
x1 
x2 
x3 

Level 1 Level 2 

Unacceptable 
fan-in 

f = 1⊕x4⊕x3⊕x2⊕x2x3

⊕ (1⊕ (1⊕x1)x3)

⊕ (1⊕ (1⊕x1)x2)

⊕ (1⊕ (1⊕x1)x2x3)

 

1 

f 
x1 

x2 
x3 

x4 

x2 
x3 

1 

Level 1 Level 2 Level 3 Level 4 

f = 1⊕x4⊕x3⊕x2⊕x2x3

⊕ (1⊕ (1⊕x1)x3)⊕ (1⊕ (1⊕x1)x2)

⊕ (1⊕ (1⊕x1)x2x3)

= 1⊕x4⊕x3⊕x2⊕x2x3⊕1⊕ (1⊕x1)x3

⊕ (1⊕x1)x2⊕ (1⊕x1)x2x3

= x4⊕ (x3⊕x2⊕x2x3)

⊕ (1⊕x1)(x3⊕x2⊕x2x3)

= 1⊕x4⊕ (x3⊕x2⊕x2x3)(1⊕x1)

= 1⊕x4⊕ (x3⊕x2⊕x2x3)(1⊕x1)
︸ ︷︷ ︸

4 level logic network

(a) (b)

Fig. 6. Two-level logic network implementation of a non-factored polynomial expression (a) and
four-level logic network implementation of a factored polynomial expression (b) (Example 12).

5 Fixed and Mixed Polarity Polynomial Forms

In terms of polynomial forms, two types of polarities are distinguished:fixedpo-
larity andmixedpolarity. In a fixed polarity polynomial expression of a Boolean
function f , every variable appears either complemented (xi) or uncomplemented
(xi), and never in both forms. There are 2n fixed polarity forms given a function of
n variables. In a mixed polarity form, a variable can appear inone or both polarities.
Given a function ofn variables, there are 3n mixed polarity forms.

Example 13. (Fixed and mixed polarity.) In Figure 7, the polynomial expres-
sions are given in a fixed and a mixed polarity forms. In the chosen fixed polarity,
the variable x2 appears uncomplemented; the variables x1 and x3 appear comple-
mented only. In the chosen mixed polarity form, the variables x1,x2 and x3 appear
in both uncomplemented and complemented forms
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Fixed polarity polynomial expressions

 x1 x2 x3 ⊕⊕⊕⊕ ⊕⊕⊕⊕ 
678 
Product 

x1 x2  

678 
Product 

x1 x3 

Product 
678 

x1:  fixed polarity 

x2: fixed polarity 

x3 : fixed polarity 

f =  

Mixed polarity polynomial expression

 x1 x2 x3 ⊕⊕⊕⊕ ⊕⊕⊕⊕ 
678 
Product 

x1 x2  

678 
Product 

x1 x3 

Product 
678 

x1:  mixed polarity 

x2: mixed polarity 

x3 : mixed polarity 

f =  

Fig. 7. Illustration of fixed and mixed polarity polynomial forms (Example 13).

A fixed polarity polynomial expression of a Boolean functionf of n variables
is unique; that is, only one representation exists given a polarityc (c1,c2, . . . ,cn) .

 

F i x e d   p o l a r i t y    E X O R    e x p r e s s i o n s 

Positive 
polarity  

(polarity 0 ) 
 

Polarity  

1 
Negative 
polarity 

(polarity 2n-1 ) �   �   � 

Polarity  

2 

D a t a    s t r u c t u r e s  

Fig. 8. An arbitrary Boolean function can be represented in afixed polarity polynomial form.

There are 2n various polarities, and two boundary cases among them: apositive
polarity form in which all variables are uncomplemented, and anegative polarity
form in which all variables are complemented (Figure 8).

Example 14. (Fixed polarity.) Polynomial expressions in positive polarity c=
0 (c1c2 = 00) (uncomplemented variables) and the polarity c= 2, c1c2 = 10 (only
the variable x1 is complemented) are derived as follows:
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Polarity c = 0 (c1 = 0,c2 = 0) :

f = r0(x1⊕c1)
i1(x2⊕c2)

i2⊕ r1(x1⊕c1)
i1(x2⊕c2)

i2

⊕ r2(x1⊕c1)
i1(x2⊕c2)

i2⊕ r3(x1⊕c1)
i1(x2⊕c2)

i2

= r0(x
0
1x0

2)⊕ r1(x
0
1x1

2)⊕ r2(x
1
1x0

2)⊕ r3(x
1
1x1

2)

= r0⊕ r1x2⊕ r2x1⊕ r3x1x2

Polarity c = 2 (c1 = 1,c2 = 0) :

f = r0(x1⊕1)0(x2⊕0)0⊕ r1(x1⊕1)0(x2⊕0)1

⊕ r2(x1⊕1)1(x2⊕0)0⊕ r3(x1⊕1)1(x2⊕0)1

= r0⊕ r1x2⊕ r2x1⊕ r3x1x2.

Let f = x∨y, then there are four fixed polarity polynomial expressions:
0-polarity: f = x1⊕x2⊕x1x2, no complemented variables
1-polarity: f = 1⊕x2⊕x1x2, x2 is complemented
2-polarity: f = 1⊕x1⊕x1x2, x1 is complemented
3-polarity: f = 1⊕x1x2, x1and x2 are complemented

Deriving a fixed polarity polynomial expansion given a Boolean function is a
necessary step in the process of implementation of the function given a library of
logic gates AND and EXOR together with a constant 1 signal. Itforms auniversal
basis of operations for implementing an arbitrary Boolean function.

Example 15. (Fixed polarities for gates.)In Table 3, the expressions of the AND
and EXOR Boolean functions of two variables are given in fixedpolarities. For
example, the polynomial in polarity c= 3 (c1c2 = 11) for the OR function is rep-
resented by two non-zero coefficients f= 1⊕ x1x2. This is an optimal polynomial
form of the OR function with respect to the criterion of the minimal number of
literals.

5.1 Conversion between polarities

Given one polarity of a polynomial expression of a Boolean function, one can con-
vert it to another polarity expression by algebraic manipulations.

Example 16. (Conversion between polarities.)The mixed polarity polynomial
expressionx1x2⊕x1x2⊕x1x2 can be transformed into a polynomial form of polarity
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Table 3. Polynomial expressions of fixed polarities of elementary Boolean functions (Example 15).

Function (gate) Coefficients Polynomial expression

 

x1 

x2 

f 

f = x1x2

r0
0
0
0
1

r1
0
0
1
1

r2
0
1
0
1

r3
1
1
1
1

x1x2
x1⊕x1x2
x2⊕x1x2
1⊕x2⊕x1⊕x1x2

 

x1 

x2 

f 

f = x1⊕x2

r0
0
1
1
0

r1
1
1
1
1

r2
1
1
1
1

r3
0
0
0
0

x2⊕x1
1⊕x2⊕x1
1⊕x2⊕x1
x2⊕x1

c = 2 (c1 = 1,c2 = 0):

f =

Mixed polarity
︷ ︸︸ ︷

x1x2⊕x1x2⊕x1x2

= x1(1⊕x2)⊕x1x2⊕ (x1⊕1⊕1)x2

= x1⊕x1x2⊕x1x2⊕x1x2⊕x2 =

Fixed 1−polarity
︷ ︸︸ ︷

x1⊕x1x2⊕x2

Given the same initial mixed polarity expression, the polynomial form of the
fixed polarity c= 1 (c1 = 0,c2 = 1) is obtained as follows:

f = x1x2⊕x1x2⊕x1x2

= (x1⊕1)x2⊕ (x1⊕1)(x2⊕1)⊕x1(x2⊕1)

= x1x2⊕x2⊕x1x2⊕x1⊕x2⊕1⊕x1x2⊕x1 =

Fixed 2−polarity
︷ ︸︸ ︷

x1x2⊕1

5.2 Simplification of polynomial expressions

Given a mixed polarity polynomial form, further algebraic transformations can
lead to a minimized polynomial representation. Unlike the SOP-based techniques,
minimization on a K-map cannot be directly applied to polynomial forms, since
the rules for reducing are different inGF(2). Some of these rules are given be-
low: x⊕ x = 1;x⊕ x = 0,x⊕ 1 = x, andx⊕ 0 = x. Since the EXOR operation is
commutative and associative, the following rules hold trueas wellx1x2⊕ x1x2 =
x2, x1x2⊕x1 = x1x2, and(x1⊕x2)x1 = x1x2.
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The details of the polynomial minimization are not the subject of the introduc-
tory logic design course. Exhaustive techniques, such as generation of all possible
mixed polarity forms, can be applied to find the minimal forms. Obviously, such
techniques can only be applied to small functions, and for larger functions some
heuristic approaches have been developed.

Example 17. (Minimal expressions.)The expressionx1⊕ x1x2⊕ x2 obtained in
Example 16 can be further simplified as follows:

f = x1⊕x1x2⊕x2 = x1(1⊕x2)⊕x2

= (x1⊕x2)(x2⊕x2) = x1⊕x2

The resulting expression is a minimal one.

5.3 Polarized minterms in matrix form

The matrix form of a polarized literal is based on the assumption that

• All operations are performed over GF(2);

• Multiplication of theelementarytransform matrix and the truth vector of the
variablex j results in a vector of coefficients that corresponds to the simplest
polynomial expressions, literalsx j ⊕0 or x j ⊕1.

The elementary 21×21 transform matrix is denoted asR(cj )

21 , wherec j ∈ {0,1}
is the polarity of the variablex j . The polarized literal corresponds to the elementary
transform matrices forc j = 0 andc j = 1 as follows:

Polarized literal= R(cj )

21 =







R(0)

21 =

[
1 0
1 1

]

, if c j = 0;

R(1)

21 =

[
1 0
1 1

]

, if c j = 1

over GF(2) (8)

Computing the polarized literal means multiplying the elementary transform

matrix R(cj )

21 by the truth vector of a single variablex j , F = [0 1]T . The polarized
literal is computed by the multiplication of the elementarymatrix by the truth vector
for the variablex j , F = [ 0 1 ]T , over GF(2):

R(0)

21 F =

[
1 0
1 1

][
0
1

]

=

[
0
1

]

−→ r0⊕ r1x j = x j

R(1)

21 F =

[
0 1
1 1

][
0
1

]

=

[
1
1

]

−→ r0⊕ r1x j = 1⊕x j
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The polarized minterm is formed using the Kronecker productbetweenn ele-

mentary matricesR(cj )

21 as follows:

R(c)
2n =

n⊗

j=1

R(cj )

21 , (9)

whereR(cj )

21 is defined by Equation 8. The resulting 2n×2n-matrix R(c)
2n represents

a minterm of polarityc = c1c2 . . .cn.

Example 18. (Kronecker product.) The Kronecker product of matricesR(0)
21 is

computed as shown below:

R(0)

22 = R(0)

21 ⊗R(0)

21 =

[
1 0
1 1

]

⊗

[
1 0
1 1

]

=







1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1







Example 19. (Polarized minterms.) A polarized minterm of fifth polarity (c=
5, n = 3) is constructed in matrix form as shown in Figure 9.

Using Equation 9, the polarized minterms can be generated given the polarity
of an EXOR expression. In algebraic form, the EXOR expression is a sum of
polarized minterms over GF(2)

f =
2n−1⊕

i=0

(x1⊕c1)
i1 · · · (xn⊕c1)

in (10)

where the polarized literals are formed by Equation 5.

Forward transform

A forward transform is used for the representation of the truth vector of a Boolean
function (operational domain) in the form of a vector of coefficients in polynomial
form (functional domain):

Truth vector
︸ ︷︷ ︸

Operational domain

Trans f orm
−−−−−→
︸ ︷︷ ︸

over GF(2)

Vector of coefficients
︸ ︷︷ ︸

Functional domain

Specifically, given the truth tableF = [ f (0) f (1) . . . f (2n−1)]T , the vector of

coefficients in polarityc, R(c) = [r(c)
0 r(c)

1 . . . r(c)
2n−1]

T is derived by the matrix equa-
tion

R(c) = R(c)
2n ·F over GF(2), (11)
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Deriving a polarized minterm in matrix form

Step 1. Find the corresponding elementary matrix for each literal:

Algebraic form−→ (x1⊕1)i1
︸ ︷︷ ︸
[

0 1
1 1

]

︸ ︷︷ ︸

R(1)
21

(x2⊕0)i2
︸ ︷︷ ︸

[
1 0
1 1

]

︸ ︷︷ ︸

R(0)
21

(x3⊕1)i3
︸ ︷︷ ︸

[
0 1
1 1

]

︸ ︷︷ ︸

R(1)
21

Step 2. Form the 23×23 transform matrix R(5)
23 for the fifth polarity as the Kronecker prod-

uct of the elementary matrices:

The2nd step
︷ ︸︸ ︷

R(1)
21 ⊗

The 1st step
︷ ︸︸ ︷

R(0)
21 ⊗R(1)

21 =

The second step
︷ ︸︸ ︷

[
0 1
1 1

]

⊗

The f irst step
︷ ︸︸ ︷
[

1 0
1 1

]

⊗

[
0 1
1 1

]

=

The second step
︷ ︸︸ ︷

[
0 1
1 1

]

⊗







0 1 0 0
1 1 0 0
0 1 0 1
1 1 1 1







=














0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1
0 1 0 0 0 1 0 0
1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1














= R(5)
23

Step 3. Use the matrix R(5)
23 for the matrix transform of the vector F to a vector of coeffi-

cients in the fifth polarity. In Boolean expressions, the variables x1, x2, and x3 are
used as x1, x2, and x3, respectively; that is, the polarities of variables are fixed

Fig. 9. Deriving a polarized minterm in matrix form (Example19).

where the 2n×2n-matrix R(c)
2n is generated by the Kronecker product

R(c)
2n =

n⊗

j=1

R(cj )

21 , R(c)
21 =







[
1 0
1 1

]

, c j = 0;

[
0 1
1 1

]

, c j = 1.

Example 20. (Forward transform.) Given a Boolean function of two variables
in the form of a truth vectorF = [1011]T , the vector of coefficients is computed as
follows:

R(2) = R(2)
22 ·F =







0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1













1
0
1
1







=







1
0
1
1







over GF(2)
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where the matrixR(2)

22 given c= 2 is generated using the Kronecker product

R(2)

22 = R(1)

21 ⊗R(0)

21 =

[
0 1
1 1

]

⊗

[
1 0
1 1

]

.

The vector of coefficientsR(2) = [1 0 1 1]T corresponds to the expression f=
1⊕x1⊕x1x2.

Example 21. (Network conversion.) Given a logic network that implements a
standard SOP expression (Figure 10), this logic network canbe converted into an
AND-EXOR network as follows:

Step 1: Compute the truth vector:F = [1 0 1 1]T

Step 2: Compute the vector of coefficients using the forward transform with the
given positive polarity:R = R23 ·F = [1 1 0 1]T .

Step 3:Derive the corresponding algebraic form: f= 1⊕x2⊕x1x2.

Step 4: Design the AND-EXOR network.

Implementation of the
standard SOP expression

Implementation of the
polynomial expression

 

x2 

f x1 

x2 

x1 

x1 

x2 

 

 
f 

1 
x2 

x1 

x2 

R=R23 ·F =







1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1













1
0
1
1







=







1
1
0
1







over GF(2)

f =

Operational domain
︷ ︸︸ ︷

x1x2∨x1x2∨x1x2 =

Functional domain
︷ ︸︸ ︷

1⊕x2⊕x1x2

Fig. 10. Conversion of the AND-OR logic network into the AND-EXOR network using forward
transform (Example 21).

Inverse transform

The inverse transform is used for the conversion of a vector of coefficients of the
polynomial form of a Boolean function (functional domain) into its truth vector
(operational domain):
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Vector of coefficients
︸ ︷︷ ︸

Functional domain

Trans f orm
−−−−−→
︸ ︷︷ ︸

over GF(2)

Truth vector
︸ ︷︷ ︸

Operational domain

Given a vector of positive polarity polynomial coefficientsR = [r0 r1 . . . r2n−1]
T ,

the truth vectorF = [ f (0) f (1) . . . f (2n−1)]T of a Boolean functionf is derived as
follows:

F = R−1
2n ·R over GF(2), (12)

whereR−1
21 = R21. Notice that the matrixR21 is a self-inverse matrix over AND

and polynomial operations.

Example 22. (Inverse transform.) Given the an AND-EXOR network (Figure
11), this network can be converted into an AND-OR network as follows:

Step 1: Compute the vector of coefficientsR = [0 1 0 1]T

Step 2: Compute the truth vector. Use the inverse transform given a certain po-
larity. Let the positive polarity is required:F = R(−1)

23 ·R = [0 1 0 0]T . The
truth vector corresponds to the standard SOP expression in algebraic form
f = x1x2∨x1x2.

Step 3: Design the AND-OR network.

6 Functional Decision Diagrams

Functional decision diagrams can be introduced to the students based on under-
standing of decision trees and diagrams using Shannon expansion in the nodes for
processing of Boolean functions. While the SOP representation is manipulated in
theoperational domain, the EXOR analog of Shannon expansion, known asDavio
expansion, is manipulated in thefunctional domain. In this domain, Boolean func-
tions are computed using polynomial representations, where a decision tree using
Davio expansion is called afunctionaldecision tree.

The functional decision tree can be reduced to afunctional decision diagram.
The reduction procedure for functional decision diagrams is different from the one
for decision diagrams using Shannon expansion. This is because of different tech-
niques for simplification of SOP and polynomial expressions.

Similarly to decision diagrams based on Shannon expansion,functional deci-
sion diagrams are used for various design tasks such as the representation, manip-
ulation, optimization, and implementation of Boolean functions. The difference is
that solutions of these tasks are in the functional domain.
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Implementation of the
polynomial expression

Implementation of the
standard SOP expression

 
f 

x2 

x1 

x2 

 
 x2 

f x1 

F=RRR(−1)

23 ·RRR=







1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1













0
1
0
1







=







0
1
0
0







over GF(2)

f = x2⊕x1x2 = x2⊕1⊕x1x2⊕1 =

Functional domain
︷ ︸︸ ︷

x2⊕x1x2 =

Operational domain
︷︸︸︷

x1x2

Fig. 11. Conversion of the AND-EXOR logic network into the AND-OR network using inverse
transform (Example 22).

A node in the functional decision tree of a Boolean functionf corresponds
to the EXOR analog of Shannon expansion with respect to the variable xi . It is
called Davio expansion. In decision tree and diagram construction usingSOP
form, only one type of nodes is used; that is, nodes that implement Shannon
expansion. There are two expansions in the functional domain: positive Davio
expansion andnegative Davioexpansion. This is because the polynomial form of
Boolean functions is characterized by polarity. These two expansions provide the
construction of polynomial forms as follows:

The EXOR analog of Shannon expansion (Davio expansion)
Positive polarity polynomials: If only the positive Davio expansion is applied with re-

spect to each variable of the function, the resulting polynomial is of zero polarity;
that is, all variables in the polynomial are uncomplemented.

Negative polarity polynomials: If only the negative Davio expansion is applied, the
resulting polynomial is of 2n−1 polarity; that is, all variables in the polynomial
are complemented.

Fixed polarity polynomials: Application of both positive and negative Davio expan-
sion results in fixed polarity; that is, polarity from 1 to 2n−2 of the polynomial.
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6.1 Algebraic form of the positive Davio expansions

Given a Boolean functionf of n variablesx1,x2, . . . ,xi−1,xi ,xi+1, . . . ,xn

f = f (x1,x2, . . . ,xi−1, xi ,xi+1, . . . ,xn)

The positive Davioexpansion with respect to the variablexi is defined by the
equation:

f = f0⊕xi f2 (13)

where f2 = f0⊕ f1. Equation 13 is derived as follows. Shannon expansion of a
Boolean functionf with respect to the variablexi results in the expression

f = xi f0⊕xi f1 = (1⊕xi) f0⊕xi f1
= f0⊕xi f0⊕xi f1 = f0⊕xi ( f0⊕ f1)

︸ ︷︷ ︸

f2

Given f2 = f0⊕ f1, Equation 13 follows straightforwardly.
From Equation 13 follows that an arbitrary Boolean functionf of n vari-

ables can be represented in expanded form with respect to thei-th variablexi ,
i ∈ 1,2, . . . ,n. Hence, positive Davio expansion given Equation 13 is specified by
the parametersf0, f1 and f2:

Specification of the positive Davio expansion

Factor f0: This is the function that is obtained from the functionf by replacing the
variablexi by the logic value 0

f0 = fxi=0 = f (x1, · · · ,xi−1, xi = 0 ,xi+1, · · · ,xn)

Factor f1: This is the function that is obtained from the functionf by replacing the
variablexi by the logic value 1

f1 = fxi=1 = f (x1, · · · ,xi−1, xi = 1 ,xi+1, · · · ,xn)

Factor f2: This is the function that is obtained by the EXOR sum of factors f0 and f1;
that is:

f2 = f0⊕ f1 = fxi=0⊕ fxi=1

Factor xi f2: This is the function that is obtained by the AND multiplication of the vari-
ablexi by the factorf2.
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Example 23. (Positive Davio expansion.)Let f = x1⊕ x2⊕ x1x3, the positive
Davio expansion of the Boolean function f with respect to thevariable x2 is defined
as follows:

f0 = x1⊕ (x2 = 0)⊕x1x3 = x1⊕x1x3

f1 = x1⊕ (x2 = 1)⊕x1x3 = 1⊕x1⊕x1x3

f2 = f0⊕ f1 = x1⊕x1x3
︸ ︷︷ ︸

f0

⊕1⊕x1⊕x1x3
︸ ︷︷ ︸

f1

= 1

f = f0⊕x2 f2 = x1⊕x1x3⊕x2

In terms of the functional decision diagram, the positive Davio expansion is
interpreted as follows:

Computing the coefficients using the positive Davio expansion

• The node that implements the positive Davio expansion, denoted bypD, has two
outgoing branches:

The left branch corresponds to the factor1 · f0 and
The right branch corresponds to the factorxi · f2

• Four possible combinations of the outputsf0 and f2 can be observed in computing:

{ f0, f2}= {0,0}: Outputs of the left and right branches are both zero, hence, the
input is f = 0;

{ f0, f2}= {0,1}: The output of the right branch is 1, hence, the input isf = xi ;
{ f0, f2}= {1,0}: Outputs of the left and right branches are both 1, hence, the

input is f = 1;
{ f0, f2}= {1,1}: The output of the left branch is 1, hence, the input isf = xi .

Figure 12 illustrates the computational aspects of the positive Davio expansion.

6.2 Algebraic form of negative Davio expansions

Given a Boolean functionf of n variablesx1,x2, . . . ,xi−1,xi ,xi+1, . . . ,xn, the nega-
tive Davioexpansion with respect to the variablexi is expressed by the equation:

f = f1⊕xi f2 (14)

By analogy with positive Davio expansion, negative Davio expansion is spec-
ified by the factors:f0, f1, f2, andxi f2. Negative Davio expansion (Equation 14)
with respect to the variablexi is defined by analogy with positive Davio expansion:

f = xi f0⊕xi f1 = xi f0⊕ (1⊕xi) f1
= xi f0⊕ f1⊕xi f1 = f1⊕xi( f0⊕ f1) = f1⊕xi f2
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pD 
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1 1 

f = 0 ⊕ xi ⋅ 0 = 0 
 f = 0 ⊕ xi ⋅ 1 = xi 
 f = 1 ⊕ xi ⋅ 1 = 1 
 f = 1 ⊕ xi ⋅ 0 = 1⊕ xi 
 

f = f0 ⊕⊕⊕⊕ xi  (fo ⊕⊕⊕⊕  f1) 

f2 

f0 f2 

(a) (b)

Fig. 12. Nodes in functional decision diagrams and trees which implement the positive Davio expan-
sion pD: function of the node (a) and computing of the terminal node values (b).

Example 24. (Negative Davio expansion.)(Continuation of Example 23.) Neg-
ative Davio expansion with respect to the variable x1 is defined as follows: f=
f1⊕x2 f2 = 1⊕x1⊕x1x3⊕x2

Figure 13 illustrates the computational aspects of negative Davio expansion.

Computing the coefficients using negative Davio expansion

• The node that implements the negative Davio expansion, denoted bynD, has two
outputs:

The left branch corresponds to the factor1 · f1 and
The right branch corresponds to the factorxi · f2

• Four possible combinations of the outputsf1 and f2 can be observed in computing:

{ f1, f2}= {0,0}: Outputs of the left and right branches are both zero, hence, the
input is f = 0;

{ f1, f2}= {0,1}: The output of the right branch is 1, hence, the input isf = xi ;
{ f1, f2}= {1,0}: Outputs of the left and right branches are both 1, hence, the

input is f = 1;
{ f1, f2}= {1,1}: The output of the left branch is 1, hence, the input isf = xi .

6.3 Gate level implementation of Shannon and Davio expansions

Consider the gate level implementation of Shannon and Davioexpansions for input
xi , and its complementxi , f0 and f1. The logic networks are given in Figure 14 in
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Fig. 13. Nodes in the functional decision diagrams and treeswhich implement the negative Davio
expansionnD: function of the node (a) and computing of the terminal node values (b).

comparison with a network for Shannon expansion.

OPERATIONAL DOMAIN
Shannon expansion

f = xi f0∨xi f1

 f0 f 

xi 

xi 

f1 

S 

FUNCTIONAL DOMAIN
Positive Davio expansion Negative Davio expansion

f = f0⊕xi f2 f = f1⊕xi f2

 

f0 f 

xi 

f1 

f2 

pD 
 

f0 f 

xi 

f1 

f2 

nD 

Fig. 14. Gate-level representation of the nodes of decisiontrees and diagrams using Shannon and
Davio expansion.

Example 25. (Implementation of Davio expansion.)Given the Boolean function
f = x1∨ x2, its positive (pD) and negative (nD) Davio expansions with respect to
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the variable x1 result in the polynomial expressions

pD: f = f0⊕x1( f0⊕ f1) = x2
⌣

f0

⊕x1(x2⊕1)
︸ ︷︷ ︸

f0⊕ f1

= x2⊕x1⊕x1x2

nD: f = f1⊕x1( f0⊕ f1) = x2
⌣

f1

⊕x1(x2⊕1)
︸ ︷︷ ︸

f0⊕ f1

= 1⊕x1⊕x1x2

The logic networks for Davio expansion given in Figure 14 canbe used for com-
puting by specification of the inputs; that is, f0 = x2 and f1 = 1.

Table 4 summarizes various forms of interpretation of the Davio expansions:
the functions of the nodes for positive Davio and negative Davio expansions, la-
beled aspD and nD respectively. For simplification, realization of the nodesis
given using a single EXOR gate. Also, the matrix notation of the nodes for positive
Davio and negative Davio expansions are given

Table 4. The nodes of the functional decision tree that implement Davio expansion at the gate-level
and their description in algebraic and matrix forms.

Node Realization Algebraic Matrix

1 xi 

f 

Positive  
 Davio node 

 

pD 
 

 

f0 

xi f2 

f 

f = f0⊕xi f2
f0 = f |xi=0
f2 = f |xi=1⊕ f |xi=0

f = [ 1 xi ]

[
1 0
1 1

][
f0
f1

]

=

1⊕xi

1 xi 

f 

Negative  
Davio  node 

 
nD 

 
 

f1 

xi f2 

f 

f = f1⊕x1 f2
f1 = f |xi=1
f2 = f |xi=0⊕ f |xi=1

f = [ 1 xi ]

[
0 1
1 1

][
f1
f2

]

=

1⊕xi

7 Techniques for Functional Decision Tree Construction

Techniques for functional decision tree construction consist of:

• Reduction of functional decision trees;

• Matrix-based design;

• Manipulation ofpD andnD nodes for conversion between polarities.
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7.1 The structure of functional decision trees

The most important structural properties of the functionaldecision tree with posi-
tive Davio nodes are as follows:

Structural properties of functional decision trees

• A Boolean function ofn variables is represented by ann-level functional decision
tree. Thei-th level of the functional decision tree,i = 1, . . . ,n, includes 2i−1 nodes.

• Nodes at then-th level are connected to 2n terminal nodes, which take values
0 or 1. The nodes, corresponding to thei-th variable, form thei-th level in the
functional decision tree.

• In every path from the root node to a terminal node, the variables appear in a fixed
order; the tree is thus sa id to be ordered.

• The constant nodes are assigned with the values of the coefficients of the polyno-
mial expression for the Boolean function represented.

7.2 Design example: manipulation ofpD and nD nodes

This design example introduces techniques for the design offunctional decision
diagrams for computing polynomial expressions of various polarities. This com-
puting ability is provided by the distribution ofpD andnD nodes in the levels of
a decision tree. There are 2n various combinations of thepD and nD nodes in
the levels of a decision tree. Each combination correspondsto one polarity of a
polynomial. There are two trivial cases in these 2n combinations:

(a) The tree consisting of onlypD nodes; it computes only the positive polarity
polynomial (all variables are non-complemented), and

(b) The tree consisting of onlynD nodes; it computes only the negative polarity
polynomial (all variables are complemented).

Example 26. (Manipulation of pD and nD nodes). Design functional decision
trees for computing of all positive fixed polarity polynomial expressions of Boolean
functions of two variables. Figure 15 shows all four possible decision trees.

Example 27. (Tree design in terms of truth-vectors.)A Boolean function is given
by the truth-vectorF = [ 0 1 1 0]T , construction of its functional decision diagram
for the positive polynomial form is shown in Figure 16.

7.3 Elimination rule

If the outgoing edge of a node labeled withxi andxi points to the constant zero,
then delete the node and connect the edge to the other subgraph directly. The formal
basis of this rule is as follows (Figure 17):ϕ = ϕ0⊕xiϕ2. If ϕ2 = 0 thenϕ = ϕ0.
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Fig. 15. Functional decision trees for computing polynomial expressions in positive, negative, and
fixed polarity Boolean functions of two variables (Example 26).
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Step 1: Root pD node with input
F = [0110]T. Positive Davio ex-
pansion results in:

Left branch:
Fx1=0 = [0 1]T and
Right branch:
Fx1=0⊕ Fx1=1 = [0 1]T ⊕ [1 0]T =
[ 1 1 ]T

Both outputs results in
functions and require
further application of Davio
expansion.

Step 2: Left node, left branch:
Fx1=0

x2=0
= [ 0 ]

Left node,right branch:
Fx1=0

x2=0
⊕Fx1=0

x2=1
= [ 0 ]⊕ [ 1 ] = [ 1 ]

Step 3: Right node,
left branch:
Fx1=1

x2=0
= [ 1 ]

Right node, left branch:
Fx1=1

x2=0
⊕Fx1=1

x2=1
= [ 1 ]⊕ [ 1 ] = [ 0 ]

Fig. 16. Functional decision tree design with positive Davio expansion in the nodes using the truth-
vector of the Boolean functionf = x1x2∨x2x2 (Example 27).
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7.4 Merging rule

Share equivalent subgraphs. In a tree, edges longer than one; i.e., connecting nodes
at non-successive levels, can appear. For example, the length of an edge connecting
a node at the(i−1)-th level with a node at the(i +1)-th level is two.
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Fig. 17. Reduction rules for functional decision diagram construction.

Example 28. (Reduction rules.) Application of reduction rules to the three-
variable NAND function is demonstrated in Figure 18.

8 Conclusion

Although classical in content, our approach is different from other approaches and
textbooks on introduction to logic design in emphasizing topics, such as data struc-
tures, design and technological requirements. Our approach aims at incorporating
the Reed-Muller techniques into the classical textbooks and is characterized as fol-
lows:
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Fig. 18. Functional decision diagram design usingpD nodes for the three-variable NAND function
(Example 28).

• The new notations such as “polarized literals and minterms”, and “opera-
tional and functional domains” are introduced,

• The material is build around the notation of thedata structure, which allows
introducing SOP and polynomial expressions as alternativeand interchange-
able forms of Boolean functions. The relationships betweenvarious data
structures and their manipulation through design represent the most impor-
tant aspect of contemporary logic design.

• Similar to the SOP-based techniques, the local transformations, factorization,
and observability for logic networks with EXOR gates are considered.

Moreover, the SOP and Reed-Muller techniques are illustrated using decision di-
agrams. Reed-Muller techniques are supported by about 200 examples, practice
problems with solutions, and problems. The advanced techniques such as spectral
approach and related techniques [5,8] are placed in the “Further study” section.

At the same time, we believe that the new techniques must be introduced bear-
ing in mind that the material for this introductory courses assume no specific pre-
requisites nor any knowledge of electrical circuits or electronics, in order to satisfy
the requirements of interdisciplinary interest in logic design.
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