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Reversible Hadamard Transforms

Hakob Sarukhanyan, Sos Agaian, Karen Egiazarian,
and Jaakko Astola

Abstract: A coding method which reconstruct an original digital imagewithout dis-
tortion is called ”reversible coding”. In case of the classical block transform coding
(Cosine, Hadamard, Haar and etc.) we have to make the number of levels of the trans-
form coefficient very large in order to reconstruct the inputsignal with no distortion.
In this paper we propose reversible Hadamard transform matrices. We give a recur-
sion methods for generation of various type of real and complex reversible Hadamard
transform matrices of higher order and corresponding fast transform algorithms.

Keywords: Hadamard transform, reversibile Hadanard transform matrices, image
reconstruction, fast transform algorithms.

1 Introduction

In the past decade fast orthogonal transforms have been widely used in many areas,
such as data compression, pattern recognition and image reconstruction, interpola-
tion, linear filtering, spectral analysis, watermarking, cryptography and communi-
cation systems. The computation of unitary transforms is a complicated and time
consuming task. However it would not be possible to use the orthogonal trans-
forms in signal and image processing applications without effective algorithms cal-
culating them. An important question in many applications is how to achieve the
highest computation efficiency of the discrete orthogonal transforms (DOT) [1].
Among DOTs a special role plays a class of Hadamard transforms based on the
Hadamard matrices ordered by Walsh and Paley, which can be obtained from the
Sylvester’s matrices by permutation of their rows [1]. These matrices are known
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as a non-sinusoidal orthogonal transform matrices and havefound applications in
digital signal processing and communication systems [1–9]as they do not require
any multiplication operation in their computation.

The problem of computing a transform has been extensively studied. Methods
to perform a discrete orthogonal transform with an essentially smaller number of
operations than direct matrix multiplication, i.e. so-called fast transforms may be
found in many publications.

In general, a fast transformTN f may be achieved by factoring the transform ma-
trix TN by the multiplication ofk sparse matrices. Typically,N = 2n, k= log2 N = n,
and

T2n = FnFn−1 · · ·F1,

whereFi are very sparse matrices so that the complexity of multiplying by Fi is
O(N), i = 1,2, . . . ,n.

A N = 2n−point inverse transform matrixT−1
N can be represented as:

T−1
2n = TT

2n = (FnFn−1 · · ·F1)
T = FT

1 FT
2 · · ·FT

n .

Thus, one can implement the transformTN f via the following consecutive com-
putations

f → F1 f → F2(F1 f ) → ··· → Fn(· · ·F2(F1 f ) · · · ).

Based on this factorization the computational complexity is reduced fromO(N)
to O(N logN). SinceFi contains only few nonzero terms per row, the transforma-
tion TN f can be efficiently accomplished be operating onf n times. For Fourier,
Hadamard, slant transforms,Fi contains only two nonzero terms in each row. So an
N−point one dimensional transform with above given decomposition can be im-
plemented inO(N logN) operations, which is far fewer thanN2 operations. Since
the Walsh-Hadamard transform functions assume only the value−1 and+1, their
computation require only additions and subtractions.

The increasing importance of processing large vectors in many scientific and
engineering applications requires new ideas for designinghighly efficient algo-
rithms for various transforms. The computation of unitary and invertible transforms
is in general a complicated and time consuming task and it would not be possible to
use these transforms in signal and image processing applications without effective
algorithms for calculating them.

A coding method which reconstruct an original digital imagewithout distortion
is called ”reversible coding”. Note that in case that we use classical block trans-
form coding (Cosine, Hadamard, Haar and etc.) we have to makethe number of
levels of the transform coefficient very large in order to reconstruct the input signal
with no distortion. In this section we propose reversible Hadamard transform for
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image coding. We give a recursion method for generation of reversible Hadamard
transform matrices of higher order and corresponding fast transform algorithms.

2 Reversible Walsh-Hadamard Transform

It is well known that the Hadamard transform, which is mostlyknown as the Walsh-
Hadamard transform, is one of the widely used transforms in signal and image pro-
cessing. Nevertheless, the Walsh-Hadamard transform is just a particular case of
general class of transforms based on Hadamard matrices [2].Recently, Hadamard
transforms and their variations have found a widely usage inaudio and video pro-
cessing [3–6, 10, 11]. Fast algorithms have been developed [1, 3–16] for efficient
computation of these transforms.

In this section we introduce the recursion formulas for generating the reversible
Walsh-Hadamard transform matrices of orderN = 2n.

The Hadamard matrix of order n is the(±1)−matrixHn of sizen×n satisfying
the orthogonality condition

HnH
T
n = HT

n Hn = nIn,

whereT is a transposition sign,In is an identity matrix of ordern.

One of the most known Hadamard matrices is the Sylvester matrix [12], which
is probably, the oldest Hadamard matrix of order 2k, and can be generated recur-
sively as follows [2,13]

H2k =

(

H2k−1 H2k−1

H2k−1 −H2k−1

)

, H1 = (1), k = 1,2, . . . . (1)

The forward Sylvester-Hadamard (or Walsh-Hadamard) transform of input column-
vectorx = (x0,x1, . . . ,xN−1) (N is the power of 2) is defined asy= HNx. For exam-
ple for N = 2 we have

(

y0

y1

)

=

(

1 1
1 -1

)(

x0

x1

)

=

(

x0 +x1

x0−x1

)

.

In [17,18] there is paid attention to the fact thatx0−x1 is even (or odd), ifx0+x1

is even (or odd) and is showed that reconstruction without distortion is possible in
the following transform

(x0 +x1

2
x0−x1

)

,

where [c] is the largest integer which is not greater than c.
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By analogy with (1) we can define recursively reversible Walsh-Hadamard
transform matrices as

[RWH]2k+1 =

(

1
2[RWH]2k

1
2[RWH]2k

[RWH]2k −[RWH]2k

)

,

[RWH]−1
2k+1 =

(

[RWH]−1
2k

1
2[RWH]−1

2k

[RWH]−1
2k −1

2[RWH]−1
2k

)

,

(2)

where

[RWH]2 =

(

1/2 1/2
1 −1

)

, [RWH]−1
2 =

(

1 1/2
1 −1/2

)

.

Note that the conventional Walsh-Hadamard forward and inverse transform ma-
tricesHN andH−1

N of orderN = 2n can be factored by

HN = AnAn−1 · · ·A2A1,

H−1
N = 1

N A1A2 · · ·An−1An,
(3)

where
Ak = I2k−1 ⊗

(

H2⊗ I2n−k

)

, k = 1,2. . . ,n. (4)

Here and trough this paper⊗ is the sign of Kronecker product defined asA⊗
B = {(ai, j B)}.

It can be shown that the forward and inverse reversible Walsh-Hadamard trans-
form matrices[RW]N and[RW]−1

N (see (2)) can be factored as (N = 2n)

[RWH]N = BnBn−1 · · ·B2B1,

[RWH]−1
N = B−1

1 B−1
2 · · ·B−1

n−1B
−1
n ,

(5)

where
Bk = I2k−1 ⊗

(

Q⊗ I2n−k

)

, k = 1,2. . . ,n,

B−1
k = I2k−1 ⊗

(

Q−1⊗ I2n−k

)

, k = 1,2. . . ,n,

Q =

(

1/2 1/2
1 −1

)

, Q−1 =

(

1 1/2
1 −1/2

)

.

(6)

Below there are given forward and inverse reversible Walsh-Hadamard trans-
form matrices of order 4 and 8

[RWH]4 =





1/4 1/4 1/4 1/4
1/2 −1/2 1/2 −1/2
1/2 1/2 −1/2 −1/2

1 −1 −1 1



, [RWH]−1
4 =





1 1/2 1/2 1/4
1 −1/2 1/2 −1/4
1 1/2 −1/2 −1/4
1 −1/2 −1/2 1/4



.
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[RWH]8 =















1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
1/4 −1/4 1/4 −1/4 1/4 −1/4 1/4 −1/4
1/4 1/4 −1/4 −1/4 1/4 1/4 −1/4 −1/4
1/2 −1/2 −1/2 1/2 1/2 −1/2 −1/2 1/2
1/4 1/4 1/4 1/4 −1/4 −1/4 −1/4 −1/4
1/2 −1/2 1/2 −1/2 −1/2 1/2 −1/2 1/2
1/2 1/2 −1/2 −1/2 −1/2 −1/2 1/2 1/2

1 −1 −1 1 −1 1 1 −1















,

[RWH]−1
8 =















1 1/2 1/2 1/4 1/2 1/4 1/4 1/8
1 −1/2 1/2 −1/4 1/2 −1/4 1/4 −1/8
1 1/2 −1/2 −1/4 1/2 1/4 −1/4 −1/8
1 −1/2 −1/2 1/4 1/2 −1/4 −1/4 1/8
1 1/2 1/2 1/4 −1/2 −1/4 −1/4 −1/8
1 −1/2 1/2 −1/4 −1/2 1/4 −1/4 1/8
1 1/2 −1/2 −1/4 −1/2 −1/4 1/4 1/8
1 −1/2 −1/2 1/4 −1/2 1/4 1/4 −1/8















.

From (5) and (6) we can see thatN−point forward (and inverse) reversible
Walsh-Hadamard transform needNlog2N additions andN

2 log2N shifts operations,
in opposite to conventional Walsh-Hadamard transform, which need onlyNlog2N
additions.

Below we give detailed description of fast 8-point reversible Walsh-Hadamard
forward transform.

Example 2.1 . 8-point reversible Walsh-Hadamard forward transform.
As follows from (5) 8-point reversible Walsh-Hadamard forward transform can

be calculated by
X = [RWH]8 f = B3B2B1x,

where x= (x0,x1, . . . ,x7) is the input integer-valued column-vector.
Therefore 8-point reversible Walsh-Hadamard fast forwardtransform algo-

rithm can be realized via the following 3 steps:
Step 1. Calculate B1x

B1x = (Q⊗ I4)















x0
x1
x2
x3
x4
x5
x6
x7















=















(x0 +x4)/2
(x1 +x5)/2
(x2 +x6)/2
(x3 +x7)/2

x0−x4
x1−x5
x2−x6
x3−x7















=















u0
u1
u2
u3
u4
u5
u6
u7















. (7)

Step 2. Calculate B2u

B2u = [I2 ⊗ (Q⊗ I2)]























u0
u1
u2
u3
u4
u5
u6
u7























=























(u0 +u2)/2
(u1 +u3)/2

u0−u2
u1−u3

(u4 +u6)/2
(u5 +u7)/2

u4−u6
u5−u7























=























v0
v1
v2
v3
v4
v5
v6
v7























(8)
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Step 3. Calculate B3v

B3v = (I4⊗Q)























v0
v1
v2
v3
v4
v5
v6
v7























=























(v0 +v1)/2
v0−v1

(v2 +v3)/2
v2−v3

(v4 +v5)/2
v4−v5

(v6 +v7)/2
v6−v7























=























X0
X1
X2
X3
X4
X5
X6
X7























. (9)

Fig. 1. Forward reversible Walsh-Hadamard transform of order 8.

It is easy to see that each of the forward and inverse reversible Walsh-Hadamard
transforms need only 24 integer addition and 12 shift operations. Flow graph of the
forward reversible Walsh-Hadamard transform is given in Fig. 1.

Let [RH]N and [RH]−1
N be the sequential ordered direct and inverse reversible

Walsh-Hadamard matrices, andAi is the i−th column andBi is the i−th reverse
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column of[RH]N. Then the following matrices

[RH]2N =
[

Q⊗A1,Q1⊗A2, . . . ,Q⊗AN−1,Q1⊗AN
]

,

[RH]−1
2N =















Q−1⊗BT
1

−Q−1
1 ⊗BT

2
...

Q−1⊗BT
N−1

−Q−1
1 ⊗BT

N















,

are direct and inverse sequential ordered reversible Walsh-Hadamard matrices of
order 2N, where

Q =
(

1/2 1/2
1 −1

)

, Q1 =
(

1/2 1/2
−1 1

)

, Q−1 =
(

1 1/2
1 −1/2

)

, Q−1
1 =

(

1 −1/2
1 1/2

)

.

The direct and inverse sequential ordered reversible Walsh-Hadamard matrices
of order 4 and 8 are given below

[RH]4 =





1/4 1/4 1/4 1/4
1/2 1/2 −1/2 −1/2
1/2 −1/2 −1/2 1/2

1 −1 1 −1



, (10a)

[RH]−1
4 =





1 1/2 1/2 1/4
1 1/2 −1/2 −1/4
1 −1/2 −1/2 1/4
1 −1/2 1/2 −1/4



. (10b)

[RH]8 =















1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
1/4 1/4 1/4 1/4 −1/4 −1/4 −1/4 −1/4
1/4 1/4 −1/4 −1/4 −1/4 −1/4 1/4 1/4
1/2 1/2 −1/2 −1/2 1/2 1/2 −1/2 −1/2
1/4 −1/4 −1/4 1/4 1/4 −1/4 −1/4 1/4
1/2 −1/2 −1/2 1/2 −1/2 1/2 1/2 −1/2
1/2 −1/2 1/2 −1/2 −1/2 1/2 −1/2 1/2

1 −1 1 −1 1 −1 1 −1















,

[RH]−1
8 =















1 1/2 1/2 1/4 1/2 1/4 1/4 1/8
1 1/2 1/2 1/4 −1/2 −1/4 −1/4 −1/8
1 1/2 −1/2 −1/4 −1/2 −1/4 1/4 1/8
1 1/2 −1/2 −1/4 1/2 1/4 −1/4 −1/8
1 −1/2 −1/2 1/4 1/2 −1/4 −1/4 1/8
1 −1/2 −1/2 1/4 −1/2 1/4 1/4 −1/8
1 −1/2 1/2 −1/4 −1/2 1/4 −1/4 1/8
1 −1/2 1/2 −1/4 1/2 −1/4 1/4 −1/8















.
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3 Reversible Walsh-Paley Transform

In this section we present factorizations of reversible Walsh-Paley transform ma-
trices. The conventional Walsh-Paley transform matrix andits factorization are
defined by

[WP]2n =

[

[WP]2n−1 ⊗
(

+ +
)

[WP]2n−1 ⊗
(

+ −
)

]

,

[WP]2n = W0W1 · · ·Wn−1,

(11)

where[WP]1 = (1), and

Wm = I2n−1−m⊗
[

I2m ⊗
(

+ +
)

I2m ⊗
(

+ −
)

]

, m= 0,1, . . . ,n−1. (12)

Similarly to equations (11) and (12) we define the reversibleWalsh-Paleytransform
matrix and its factoring version as

[RP]2n =

[

[RP]2n−1 ⊗
(

1/2 1/2
)

[RP]2n−1 ⊗
(

1 −1
)

]

,

[RP]−1
2n =

[

[RP]−1
2n−1 ⊗

(

1
1

)

, [RP]−1
2n−1 ⊗

(

1/2
−1/2

) ]

,

[RP]2n = P0P1 · · ·Pn−1, [RP]−1
2n = P−1

n−1P
−1
n−2 · · ·P−1

0 ,

where[RP]1 = (1), and

Pm = I2n−1−m⊗
[

I2m ⊗
(

1/2 1/2
)

I2m ⊗
(

1 −1
)

]

, m= 0,n−1,

P−1
m = I2n−1−m⊗

[

I2m ⊗
(

1
1

)

, I2m ⊗
(

1/2
−1/2

) ]

, m= 0,n−1.

(13)

Example 3.1 The reversible Walsh-Paley matrices of order 2, 4, and 8 are given
below

[RP]2 =
(

1/2 1/2
1 −1

)

, [RP]−1
2 =

(

1 1/2
1 −1/2

)

,

[RP]4 =









1/4 1/4 1/4 1/4
1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2

1 −1 −1 1









, [RP]−1
4 =









1 1/2 1/2 1/4
1 1/2 −1/2 −1/4
1 −1/2 1/2 −1/4
1 −1/2 −1/2 1/4









,
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[RP]8 =

























1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
1/4 1/4 1/4 1/4 −1/4 −1/4 −1/4 −1/4
1/4 1/4 −1/4 −1/4 1/4 1/4 −1/4 −1/4
1/2 1/2 −1/2 −1/2 −1/2 −1/2 1/2 1/2
1/4 −1/4 1/4 −1/4 1/4 −1/4 1/4 −1/4
1/2 −1/2 1/2 −1/2 −1/2 1/2 −1/2 1/2
1/2 −1/2 −1/2 1/2 1/2 −1/2 −1/2 1/2

1 −1 −1 1 −1 1 1 −1

























,

[RP]−1
8 =

























1 1/2 1/2 1/4 1/2 1/4 1/4 1/8
1 1/2 1/2 1/4 −1/2 −1/4 −1/4 −1/8
1 1/2 −1/2 −1/4 1/2 1/4 −1/4 −1/8
1 1/2 −1/2 −1/4 −1/2 −1/4 1/4 1/8
1 −1/2 1/2 −1/4 1/2 −1/4 1/4 −1/8
1 −1/2 1/2 −1/4 −1/2 1/4 −1/4 1/8
1 −1/2 −1/2 1/4 1/2 −1/4 −1/4 1/8
1 −1/2 −1/2 1/4 −1/2 1/4 1/4 −1/8

























.

4 Reversible Complex Hadamard Transform

In this section we present the factorization of complex Hadamard matrices. The
complex Hadamard matrixH of orderN is an unitary matrix with elements±1,± j,
where j =

√
−1, i.e.

HH∗ = H∗H = NIN,

whereH∗ represents the complex conjugate transpose of the matrixH.

It can be proved that ifH is a complex Hadamard matrix of orderN thenN is
even [13].

The matrix[CH]2 =
(

1 j
− j −1

)

is an example of a complex Hadamard matrix of

order 2. Complex Hadamard matrices of higher orders can be generated recursively
by using Kronecker product i.e.

[CH]2n = H2⊗ [CH]2n−1, n = 2,3, . . . . (14)

It can be shown, that the complex Hadamard matrix[CH]2n of order 2n (see
equation (14)) can be factored as

[CH]2n =

[n−1

∏
m=1

(

I2m−1 ⊗H2⊗ I2n−m

)

]

(

I2n−1 ⊗ [CH]2
)

. (15)
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Similarly to (15) we define the direct and inverse reversiblecomplex Hadamard
matrices by

[RC]2n =
[

n−1

∏
m=1

(

I2m−1 ⊗Q⊗ I2n−m

)](

I2n−1 ⊗ [CH]2
)

,

[RC]−1
2n =

(

I2n−1 ⊗ [CH]−1
2

)[

1

∏
m=n−1

(

I2m−1 ⊗Q−1⊗ I2n−m

)]

,

(16)

whereQ from (6), and

[CH]−1
2 =

(

1/2 j/2
− j/2 −1/2

)

.

Below there are given the direct and forward reversible complex Hadamard
matrices of orders 2, 4, and 8.

[RC]2 =

(

1 j
− j −1

)

,

[RC]−1
2 =

(

1/2 j/2
− j/2 −1/2

)

,

[RC]4 =









1/2 j/2 1/2 j/2
− j/2 −1/2 − j/2 −1/2

1 j −1 − j
− j −1 j 1









,

[RC]−1
4 =









1/2 j/2 1/4 j/4
− j/2 −1/2 − j/4 −1/4

1/2 j/2 −1/4 − j/4
− j/2 −1/2 j/4 1/4









,

[CS]8 =

























1/4 j/4 1/4 j/4 1/4 j/4 1/4 j/4
− j/4 −1/4 − j/4 −1/4 − j/4 −1/4 − j/4 −1/4

1/2 j/2 −1/2 − j/2 1/2 j/2 −1/2 − j/2
− j/2 −1/2 j/2 1/2 − j/2 −1/2 j/2 1/2

1/2 j/2 1/2 j/2 −1/2 − j/2 −1/2 − j/2
− j/2 −1/2 − j/2 −1/2 j/2 1/2 j/2 1/2

1 j −1 − j −1 − j 1 j
− j −1 j 1 j 1 − j −1

























,
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[CS]−1
8 =

























1/2 j/2 1/4 j/4 1/4 j/4 1/8 j/8
− j/2 −1/2 − j/4 −1/4 − j/4 −1/4 − j/8 −1/8

1/2 j/2 −1/4 − j/4 1/4 j/4 −1/8 − j/8
− j/2 −1/2 j/4 1/4 − j/4 −1/4 j/8 1/8

1/2 j/2 1/4 j/4 −1/4 − j/4 −1/8 − j/8
− j/2 −1/2 − j/4 −1/4 j/4 1/4 j/8 1/8

1/2 j/2 −1/4 − j/4 −1/4 − j/4 1/8 j/8
− j/2 −1/2 j/4 1/4 j/4 1/4 − j/8 −1/8

























.

Below we give detailed description of fast 8-point reversible complex Hadamard
forward transform.

Example 4.1 . 8-point reversible complex Hadamard forward transform.
As follows from (16) 8-point reversible complex Hadamard forward transform

can be calculated by

X = [RC]8x = (Q⊗ I4)(I2⊗Q⊗ I2)(I4⊗ [RC]2)x,

where x= (x0,x1, . . . ,x7)
T

is the input integer-valued vector.
Therefore 8-point reversible complex Hadamard fast forward transform algo-

rithm can be realized via the following 3 steps:
Step 1. (This step no need any arithmetical operations).

(I4⊗ [RC]2)x = z1 + jz2 =















x0
−x1

x2
−x3

x4
−x5

x6
−x7















+ j















x1
−x0

x3
−x2

x5
−x4

x7
−x6















.

Step 2. Compute(I2⊗Q⊗ I2)(z1 + jz2) = v+ jw, where

v =















(x0 +x2)/2
−(x1 +x3)/2

(x0−x2)
−(x1−x3)
(x4 +x6)/2
−(x5 +x7)/2

(x4−x6)
−(x5−x7)















, w =















−v1
−v0
−v3
−v2
−v5
−v4
−v7
−v6















.

Step 3. Compute(Q⊗ I4)(v+ jw) = X + jY, where

X =















(v0 +v4)/2
(v1 +v5)/2
(v2 +v6)/2
(v3 +v7)/2
(v0−v4)
(v1−v5)
(v2−v6)
(v3−v7)















, Y =















X5/2
X4/2
−X3
−X2
2X1
2X0
−X7
−X6















.
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From (16) it follows that 1DN−point reversible complex Hadamard transform
needN log2N−N addition andN shift operations.

5 Reversible Williamson-Hadamard Matrices

At first we briefly describe the Williamson’s approach [19] tothe Hadamard matri-
ces construction.

The following matrix we callparametric Williamson array

W(a,b,c,d) =









a b c d
−b a −d c
−c d a −b
−d −c b a









, a,b,d,c∈ {1,−1}. (17)

Theorem 5.1 (Williamson [13, 19, 20]). Suppose there exist four(±1)−matrices
A, B, C, D of order n satisfying

PQT = QPT , P,Q∈ {A,B,C,D},

AAT +BBT +CCT +DDT = 4nIn.
(18)

then W(A,B,C,D) is Hadamard matrix of order4n.

The matricesA, B, C, D with properties (18) are calledWilliamson matrices.
The matrixW(A,B,C,D) is called theWilliamson-Hadamard matrix.

Let A,B,C,D be cyclic symmetric Williamson matrices of order n with first
rows (ai)),(bi),(ci),(di), respectively. Note thatan−i = ai , bn−i = bi , cn−i = ci ,
dn−i = di , i = 1,2, . . . ,n−1. Now Williamson-Hadamard matrixW(A,B,C,D) of
order 4n can be represented as block cyclic block symmetric matrix by

W4n =
n−1

∑
i=0

U i ⊗Qi, where Qi =









ai bi ci di

−bi ai −di ci

−ci di ai −bi

−di −ci bi ai









, (19)

whereU is the cyclic matrix of ordern with first row (0,1,0, . . . ,0).

From (19) we can see thatQn−i = Qi, and all the blocks of matrixW4n are
Williamson-Hadamard matrices of order 4. In [21] it was proved that cyclic sym-
metric Williamson-Hadamard block matrices can be constructed using only 5 dif-
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ferent blocks such as

Q0 =





+ + + +
− + − +
− + + −
− − + +



, Q1 =





+ + + −
− + + +
− − + −
+ − + +



, Q2 =





+ + − +
− + − −
+ + + −
− + + +



,

Q3 =





+ − + +
+ + − +
− + + +
− − − +



, Q4 =





+ − − −
+ + + −
+ − + +
+ + − +



.

(20)
For example, Williamson-Hadamard matrix of order 12 is given by

H12 = I3⊗Q0+U ⊗Q4+U2⊗Q4.

Now we introduce the following parametric matrix of order 4 which we call
reversible Williamson (RW) array

[RW](a,b,c,d) =











a/4 b/4 c/4 d/4

−b/2 a/2 −d/2 c/2

−c/2 d/2 a/2 −b/2

−d −c b a











. (21)

The inverse reversible Williamson array is given by

[RW]−1(a,b,c,d) =











a −b/2 −c/2 −d/4

b a/2 d/2 −c/4

c −d/2 a/2 b/4

d c/2 −b/2 a/4











. (22)

Now, the Theorem 5.1 for reversible Williamson-Hadamard matrices can be
formulated as

Theorem 5.2 (Generalized Williamson Theorem). Let A, B,C, and D be Williamson
matrices of order n. Then the matrices[RW]4n and [RW]−1

4n are the direct and in-
verse reversible Williamson-Hadamard matrices of order4n, respectively

[RW]4n =















1
4A 1

4B 1
4C 1

4D

−1
2B 1

2A −1
2D 1

2C

−1
2C 1

2D 1
2A −1

2B

−D −C B A















. (23)
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[RW]−1
4n =

1
n















A −1
2B −1

2C −1
4D

B 1
2A 1

2D −1
4C

C −1
2D 1

2A 1
4B

D 1
2C −1

2B 1
4A















. (24)

Similar to (19) we can define block cyclic reversible matrices by following

[RW]4n =
n−1

∑
i=0

U i ⊗Ri,

[RW]−1
4n = 1

n

n−1

∑
i=0

Un−i ⊗R−1
i ,

(25)

where

Ri =











ai/4 bi/4 ci/4 di/4

−bi/2 ai/2 −di/2 ci/2

−ci/2 di/2 ai/2 −bi/2

−di −ci bi ai











. (26)

R−1
i =











ai −bi/2 −ci/2 −di/4

bi ai/2 di/2 −ci/4

ci −di/2 ai/2 bi/4

di ci/2 −bi/2 ai/4











. (27)

Below there are given direct and inverse reversible block cyclic Williamson-
Hadamard matrices of order 12
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[RW]12 =





























































1
4

1
4

1
4

1
4

1
4 −1

4 −1
4 −1

4
1
4 −1

4 −1
4 −1

4

−1
2

1
2 −1

2
1
2

1
2

1
2

1
2 −1

2
1
2

1
2

1
2 −1

2

−1
2

1
2

1
2 −1

2
1
2 −1

2
1
2

1
2

1
2 −1

2
1
2

1
2

−1 −1 1 1 1 1 −1 1 1 1 −1 1
1
4 −1

4 −1
4 −1

4
1
4

1
4

1
4

1
4

1
4 −1

4 −1
4 −1

4

1
2

1
2

1
2 −1

2 −1
2

1
2 −1

2
1
2

1
2

1
2

1
2 −1

2

1
2 −1

2
1
2

1
2 −1

2
1
2

1
2 −1

2
1
2 −1

2
1
2

1
2

1 1 −1 1 −1 −1 1 1 1 1 −1 1
1
4 −1

4 −1
4 −1

4
1
4 −1

4 −1
4 −1

4
1
4

1
4

1
4

1
4

1
2

1
2

1
2 −1

2
1
2

1
2

1
2 −1

2 −1
2

1
2 −1

2
1
2

1
2 −1

2
1
2

1
2

1
2 −1

2
1
2

1
2 −1

2
1
2

1
2 −1

2

1 1 −1 1 −1 −1 1 1 −1 −1 1 1





























































.

[RW]−1
12 =

1
3





























































1 −1
2 −1

2 −1
4 1 1

2
1
2

1
4 1 1

2
1
2

1
4

1 1
2

1
2 −1

4 −1 1
2 −1

2
1
4 −1 1

2 −1
2

1
4

1 −1
2

1
2

1
4 −1 1

2
1
2 −1

4 −1 1
2

1
2 −1

4

1 1
2 −1

2
1
4 −1 −1

2
1
2

1
4 −1 −1

2
1
2

1
4

1 1
2

1
2

1
4 1 −1

2 −1
2 −1

4 1 1
2

1
2

1
4

−1 1
2 −1

2
1
4 1 1

2
1
2 −1

4 −1 1
2 −1

2
1
4

−1 1
2

1
2 −1

4 1 −1
2

1
2

1
4 −1 1

2
1
2 −1

4

−1 −1
2

1
2

1
4 1 1

2 −1
2

1
4 −1 −1

2
1
2

1
4

1 1
2

1
2

1
4 1 1

2
1
2

1
4 1 −1

2 −1
2 −1

4

−1 1
2 −1

2
1
4 −1 1

2 −1
2

1
4 1 1

2
1
2 −1

4

−1 1
2

1
2 −1

4 −1 1
2

1
2 −1

4 1 −1
2

1
2

1
4

−1 −1
2

1
2

1
4 −1 −1

2
1
2

1
4 1 1

2 −1
2

1
4





























































.

As in conventional case block cyclic reversible Williamson-Hadamard matrices
can be constructed using only 5 different blocks which givenin a table below
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Table 1.

i [RW]i [RW]−i
i

0









1/4 1/4 1/4 1/4
−1/2 1/2 −1/2 1/2
−1/2 1/2 1/2 −1/2
−1 −1 1 1

















1 −1/2 −1/2 −1/4
1 1/2 1/2 −1/4
1 −1/2 1/2 1/4
1 1/2 −1/2 1/4









1









1/4 1/4 1/4 −1/4
−1/2 1/2 1/2 1/2
−1/2 −1/2 1/2 −1/2

1 −1 1 1

















1 −1/2 −1/2 1/4
1 1/2 −1/2 −1/4
1 1/2 1/2 1/4

−1 1/2 −1/2 1/4









2









1/4 1/4 −1/4 1/4
−1/2 1/2 −1/2 −1/2

1/2 1/2 1/2 −1/2
−1 1 1 1

















1 −1/2 1/2 −1/4
1 1/2 1/2 1/4

−1 −1/2 1/2 1/4
1 −1/2 −1/2 1/4









3









1/4 −1/4 1/4 1/4
1/2 1/2 −1/2 1/2

−1/2 1/2 1/2 1/2
−1 −1 −1 1

















1 1/2 −1/2 −1/4
−1 1/2 1/2 −1/4

1 −1/2 1/2 −1/4
1 1/2 1/2 1/4









4









1/4 −1/4 −1/4 −1/4
1/2 1/2 1/2 −1/2
1/2 −1/2 1/2 1/2

1 1 −1 1

















1 1/2 1/2 1/4
−1 1/2 −1/2 1/4
−1 1/2 1/2 −1/4
−1 −1/2 1/2 1/4









Note that all of matrices from the Table 1 can be represented only by sequential
ordered reversible Walsh-Hadamard matrix of order 4[RH]4 from (10) as

[RW]0 =





+ 0 0 0
0 - 0 0
0 0 - 0
0 0 0 -



[RH]4





+ 0 0 0
0 0 + 0
0 + 0 0
0 0 0 +



,

[RW]1 =





+ 0 0 0
0 0 - 0
0 - 0 0
0 0 0 +



[RH]4





+ 0 0 0
0 + 0 0
0 0 + 0
0 0 0 -



,

[RW]2 =





+ 0 0 0
0 0 - 0
0 + 0 0
0 0 0 -



[RH]4





+ 0 0 0
0 + 0 0
0 0 - 0
0 0 0 +



,
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[RW]3 =





+ 0 0 0
0 + 0 0
0 0 - 0
0 0 0 -



[RH]4





+ 0 0 0
0 0 0 +
0 0 + 0
0 - 0 0



,

[RW]4 =





+ 0 0 0
0 0 + 0
0 + 0 0
0 0 0 +



[RH]4





+ 0 0 0
0 - 0 0
0 0 - 0
0 0 0 -



.

Note that the Kronecker product of two reversible Hadamard matrices of orders
m and n is the reversible Hadamard matrix of ordermn. Below we present one
design method which allows as construct the reversible Hadamard matrix of order
mn
2 .

Let H4n,H
−1
4n andH4m,H−1

4m two pairs of reversible Hadamard matrices. Repre-
sent it as follows

H4n =

(

P1

P2

)

, H−1
4n =

(

Q1 Q2
)

, H4m =

(

A1

A2

)

, H−1
4m =

(

B1 B2
)

.

We can check that

P1Q1 = P2Q2 = I2n, Q1P1+Q2P2 = I2n, P1Q2 = P2Q1 = 0,

A1B1 = A2B2 = I2m, B1A1+B2A2 = I2m, A1B2 = B2A1 = 0.
(28)

Introduce the following matrices

R1 =
2P1+P2

2
, R2 = 2P1−P2

2 , Φ1 = Q1+2Q2
2 , Φ2 =

Q1−2Q2

2
. (29)

Now we can show that the following matrices are reversible Hadamard matrices
of order 8mn

Γ = R1⊗B1+R2⊗B2, Γ−1 = Φ1⊗A1+ Φ2⊗A2. (30)

Therefore we can formulate the multiplicative theorem [7, 20] for reversible
Hadamard matrices.

Theorem 5.3 (Multiplicative theorem). If there exist reversible Hadamard matri-
ces of order m and n, then there exists the reversible Hadamard matrix of order
mn
2 .

Give an example. As initial reversible Hadamard matrices weuse the reversible
Walsh-Hadamard and Williamson-Hadamard matrices of order4 from equation
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(10) and Table 1, respectively. Using above given notationsfrom (29) we obtain

R1 =

(

1
2 0 0 1

2

1 0 0 −1

)

, R2 =

(

0 1
2

1
2 0

0 1 −1 0

)

,

Φ1 =









1 1
2

0 0
0 0
1 −1

2









, Φ2 =









0 0
1 1

2

1 −1
2

0 0









.

(31)

Therefore, according to multiplicative theorem, we obtainreversible Hadamard
matrix of order 8 given below

Γ =

(

1
2 0 0 1

2

1 0 0 −1

)

⊗











1 −1
2

1 1
2

1 −1
2

1 −1
2











+

(

0 1
2

1
2 0

0 1 −1 0

)

⊗











−1
2 −1

4
1
2 −1

4
1
2

1
4

−1
2

1
4











,

Γ−1 =











1 1
2

0 0

0 0

1 −1
2











⊗
(

1
4

1
4

1
4

1
4

−1
2

1
2 −1

2
1
2

)

+











0 0

1 1
2

1 −1
2

0 0











⊗
(

−1
2

1
2

1
2 −1

2

−1 −1 1 1

)

.

6 Golay Sequences and Reversible Transform Matrices

Give some definitions. The cyclic(0,±1)−matricesX1, X2, X3, X4 are called
T−matrices of order kif the following conditions are satisfied

Xi ⊙Xj = 0, i 6= j, i, j = 1,2,3,4,

X1+X2+X3+X4 is (±1)−matrix,

X1XT
1 +X2XT

2 +X3XT
3 +X4XT

4 = kIk,

where⊙ is a Hadamard (pointwise) product.
Let A =

{

{ai}N−1
i=0 be sequence of lengthN such thata∈{−1,+1}. The follow-

ing function is calledaperiodic auto-correlation functionof sequenceA [7,22]

PA(k) =
N−k−1

∑
i=0

aiai+k, 0≤ k≤ N−1.
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Two (±1)−sequencesA = {ai} andB = {bi} with lengthN are calledGolay
complementary sequences[22] if

PA(k)+PB(k) = 0, k = 1,2, . . . ,N−1.

Note that there exist Golay sequences of length 2a10b26c, wherea, b, c are nonzero
positive integers [23]. Golay sequences of lengths 2, 10, and 26 are given below

n = 2 : ++
+−;

n = 10 : +−−+−+−−−+
+−−−−−−++−;

n = 26 : +++−−+++−+−−−−−+−++−−+−−−−
−−−++−−−+−++−+−+−++−−+−−−− .

Let now A1 = {ai}k
i=1, B1 = {bi}k

i=1 be Golay sequences of lengthk. We can
check that the sequencesA = {0,A1} and B = {0,B1} are complementary se-
quences of lengthk+ 1, and cyclic matrices with first rowsA and B satisfy the
condition

AB= BA, ARBT = BRAT,

AAT +BBT = 2kIk+1

whereR is a back identity matrix of order k.
It is possible to prove that matrices

X1 = Ik+1, X2 =
A+B

2
, X3 =

A−B
2

(32)

are cyclicT−matrices of orderk+1.
Let v1,v2,v3,v4 andw1,w2,w2,w4 are four length vectors representing the rows

and columns of sequential ordered direct and inverse reversible Hadamard matrices
[RH]4 and[RH]−1

4 , respectively. Consider the following matrices

P = v1⊗X1+v2⊗X2+v3⊗X3,

P−1 = w1⊗XT
1 +w2⊗XT

2 +w3⊗XT
3 ,

(33)

whereXi from (32), and

v1 = (1
4, 1

4, 1
4, 1

4), v2 = (1
2, 1

2,−1
2,−1

2), v3 = (1
2,−1

2,−1
2, 1

2),

wT
1 = (1,1,1,1), wT

2 = (1
2, 1

2,−1
2,−1

2), wT
3 = (1

2,−1
2,−1

2, 1
2).

(34)
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Now using (33) and (34) we form the following matrices of order k+1 (k length
of Golay sequences)

P1 = 1
4X1− 1

2X2− 1
2X3, P2 = 1

4X1+ 1
2X2+ 1

2X3,

P3 = 1
4X1− 1

2X2+ 1
2X3, P4 = 1

4X1+ 1
2X2− 1

2X3.
(35)

It can be shown that

P1P
T
1 +P2P

T
2 +P3P

T
3 +P4P

T
4 =

4k+1
4

Ik+1.

Using the matrices from (35) we obtain some interesting matrices.
(i) The following matrix

G =
2√

4k+1

















P1 P2R P3R P4R

−P2R P1 −PT
4 R PT

3 R

−P3R PT
4 R P1 −PT

2 R

−P4R −PT
3 R PT

2 R P1

















is the orthonormal integer transform matrix of Geothals-Seidel type of order 4k+1
with elements{±1/4,±1/2}.

(ii) The following matricesA and B of size 3× 12 and 12× 3, respectively,
satisfy the condition:AB= I3, AAT = 9

4I3, BTB = 2
3I3

A =







1
4

1
4

1
4

1
4

1
2

1
2 −1

2 −1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2 −1
2

1
2

1
4

1
4

1
4

1
4

1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2 −1
2

1
2 −1

2 −1
2

1
2

1
4

1
4

1
4

1
4






,

BT =







1 1 1 1 1
2

1
2 −1

2 −1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2 −1
2

1
2 1 1 1 1 1

2
1
2 −1

2 −1
2

1
2

1
2 −1

2 −1
2

1
2 −1

2 −1
2

1
2 1 1 1 1






.

(iii) The following four cyclic matricesA1 = (1/4,1/2,1/2), A2 = (1/4,1/2,−1/2),
A3 = (1/4,−1/2,−1/2), A4 = (1/4,−1/2,1/2) satisfy the condition:

A1AT
1 +A2A

T
2 +A3A

T
3 +A4A

T
4 =

9
4
.
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(iv) Using the matrices from (35) we find

G4(k+1) =









1
4P1

1
4P2R 1

4P3R 1
4P4R

−1
2P3R 1

2PT
4 R 1

2P1 −1
2PT

2 R

−P4R −PT
3 R PT

2 R P1









,

G−1
4(k+1) =















PT
1 −1

2RPT
2 −1

2RPT
3 −1

4RPT
4

RPT
2

1
2PT

1
1
2RP4 −1

4RP3

RPT
3 −1

2RP4
1
2PT

1
1
4RP2

RPT
4

1
2RP3 −1

2RP2
1
4PT

1















.
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