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Remarks on Applications of Arithmetic Expressions for
Efficient Implementation of Elementary Functions

Radomir S. Stankovíc and Jaakko T. Astola

Abstract: It has been recently shown in [1], that elementary mathematical functions
(as trigonometric, logarithmic, square root, gaussian, sigmoid, etc.) are compactly
represented by the Arithmetic transform expressions and related Binary Moment Dia-
grams (BMDs). The complexity of the representations is estimated through the num-
ber of non-zero coefficients in arithmetic expressions and the number of nodes in
BMDs.

In this paper, we show that further optimization can be achieved when the method
in [1] is combined with Fixed-polarity Arithmetic expressions (FPRAs). In addition,
besides complexity measures used in [1], we also compared the number of bits and
1-bits required to represent arithmetic transform coefficients in zero polarity and op-
timal polarity arithmetic expressions. This is a complexity measure relevant for the
alternative implementations of elementary functions suggested in [1]. Experimental
results confirm that exploiting of FPARs may provide for considerable reduction in
terms of the complexity measures considered.

Keywords: Elementary functions, Arithmetic expressions, Fixed-polarity Arithmetic
expressions, decision diagrams,

1 Introduction

Implementation of elementary mathematical functions, as trigonometric, logarith-
mic, square root, sigmoid, gaussian, etc. in hardware, is animportant task in many
applications. It is usually accepted that for efficient realizations, compact repre-
sentations of such functions are required whatever the criteria of efficiency of the
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realizations. Depending on these criteria, various definitions of compactness of the
representations are assumed.

The representation of elementary functions was recently considered in [1],
where it has been shown that the arithmetic transform represents many elementary
functions compactly. The same applies to the sizes of BinaryMoment Diagrams
(BMDs), since they represent functions in terms of arithmetic expressions, when
compared to Multi-Terminal Binary Decision Diagrams (MTBDDs), representing
functions in terms of generalized Sum-of-Product forms [2].

It is conjectured in [1] that other decision diagrams which represent functions
in terms of arithmetic expressions, (see, for example, [2,3] and references therein)
can also be used to compactly represent certain important classes of elementary
functions. In particular, links between the arithmetic coefficients and weights at
the edges in Edge-valued Binary Decision Diagrams (EVBDDs)[4], shown in [5],
motivated exploiting of EVBDDs for design of numeric function generators [6].

This paper is a continuation of research in this area in the following directions.
The interesting results presented in [1] exploit a basic feature of spectral meth-

ods that a proper selection of a spectral transform may provide compact represen-
tation of a class of functions. We point out that besides this, further manipulation
with the basis functions used in the selected spectral transform, may provide addi-
tional improvement in the compactness of the representations. In particular, shift
and reordering of basis functions in the arithmetic transform, which can be alter-
natively interpreted as Fixed-polarity arithmetic expressions (FPARs) [7], can be
used to further reduce complexity of representations of elementary functions.

By following the method used in [1], the complexity of representation of ele-
mentary functions is first estimated in terms of the number ofcoefficients in zero-
polarity and optimal polarity arithmetic expressions. We also consider the number
of distinct function values and the coefficients.

However, it has been stated in [1]
Since BMDs represent elementary functions compactly, BMDsare promising

for verification of hardware for elementary functions, and for the alternative im-
plementation of embedded RAM on FPGA for the function tables.

For such applications, the number of bits and 1-bits required to represent func-
tion values or arithmetic coefficients is an appropriate complexity measure. There-
fore, we also compared the number of bits and 1-bits requiredto represent function
values and arithmetic coefficients.

Finally, we considered related decision diagrams. Insteadof BMDs that are dis-
cussed in [1], we compared the sizes of MTBDDs and ArithmeticSpectral Trans-
form Decision Diagrams (ACDDs) [8] for the following reasons.

BMDs take advantages of the reduction rules (generalized ZBDD reduction
rules) adopted to the underlying arithmetic transform thatis actually used in the
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definition of them. This advantage is a feature of BMDs derived indirectly from
the usage of the arithmetic transform viewed as the integer equivalent of the Reed-
Muller transform that is used in formulation of the ZBDD reduction rules. The term
generalized here is intended to point out that we are workingwith integers and real
numbers instead of logic values 0 and 1.

ACDDs do not exploit these reduction rules, but the generalized BDD reduction
rules, the same rules as in MTBDDs. The reduction rules are applied to elements
of the function vectors in the case of MTBDDs and vectors of zero-polarity and
optimal polarity arithmetic spectra for ACDDs. Since aftera change of labels at the
edges, ACDDs converts into MTBDDs of the arithmetic spectra, ACDDs illustrate
the effect of the application of the arithmetic spectra rather directly.

However, the price is that ACDDs do not always have a smaller size than MTB-
DDs for elementary functions. This follows from the property that FPARs reduce
the number of non-zero coefficients, which are related to thenumber of paths in
decision diagrams. It is known that reduction of the number of paths does not
necessarily imply the reduction of the number of nodes in a decision diagram [9].

2 Arithmetic Representations of Elementary Functions

By following classical principles, explained for example in detail in [1], we can
convertn-bit precision real valued functions inton-input m-output switching func-
tions.

The multiple-output functions can be converted into integer functions by con-
sideringm-bit binary vectors as integers.

In this paper, we discuss representations of elementary functions, converted into
integer functions by usingn-bit fixed-point representation for function values, by
arithmetic transform coefficients. We extend the considerations in [1] by exploiting
Fixed-polarity arithmetic (FPAR) expressions. That permits more compact repre-
sentations than arithmetic expressions restricted to zero-polarity and related deci-
sion diagrams [1]. We also use the number of bits and 1-bits torepresent arithmetic
coefficients as another complexity measure well suited for different realizations of
elementary functions.

2.1 Arithmetic transform

For ann-variable function defined by the function vectorF = [ f (0), . . . , f (2n−1)]T ,
the arithmetic spectrumSf = [Sf (0), . . . ,Sf (2n−1)]T is defined as

Sf = A(n)F,
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where the(2n×2n) transform matrixA(n) is defined as

A(n) =
n
⊗

i=1

A(1), A(1) =

[

1 0
−1 1

]

, (1)

and⊗ denotes the Kronecker product.

2.2 Arithmetic expressions

The arithmetic expression is the functional expression in terms of elementary prod-
ucts of binary-valued variables, whose coefficients are thearithmetic spectral coef-
ficients. In matrix notation, the arithmetic expression forann-variable function is
defined as

f (x1, . . . ,xn) =

(

n
⊗

i=1

[

1 xi
]

)(

n
⊗

i=1

A(1)

)

F. (2)

Example 1 Table 2 shows a two-oputput function f= ( f0, f1) of n= 3 variables.
The function vectorF with output considered as binary representations of integers,
and the arithmetic spectra for zero-polarityA0 and optimal polarityAopt arithmetic
expressions are

FFF = [0,1,2,2,2,1,2,1]T ,

AAA0 = [0,1,2,−2,2,−2,−2,2]T ,

AAAopt = [1,1,0,0,0,0,0,−2]T .

The optimal polarity is H= (1,1,1). The number of non-zero function values and
arithmetic coefficients is7, 7, and 3. The number of distinct non-zero function
values and arithmetic coefficients are2, 3, and2, respectively. The number of1-
bits/bits to represent these coefficients are7/11, 7/13, and3/5. The number of bits
is determined by counting bits starting from the most significant non-zero bit, and
1-bits are simply encountered. The sign bit is not taken into considerations.

There are different approaches to determine FPARs efficiently in terms of space
and time, see for example [10] and references therein. Thesealgorithms are ana-
logues to the corresponding algorithms for determination of Fixed-polarity Reed-
Muller expressions (FPRMs) [11], and in the case of elementary functions with
the precision of 16 bits, exact algorithms for the determination of optimal FPARs
can be easily applied even on simple hardware. Determination of FPARs by using
disjoint cubes to specify functions processed has been considered in [12].
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Table 1. Functionf in Example 2.

x1x2x3 f0, f1 f
000 00 0
001 01 1
010 10 2
011 10 2
100 10 2
101 01 1
110 10 2
111 01 1

The applications of arithmetic expressions in circuit description and design
date back to fifties [13–15], with a continuous interest in the subject, see for in-
stance, [16–19], up to the recent applications discussed ina number of papers
devoted exclusively to this subject the special issue of thejournal Avtomatika i
Telemekhanika, No. 6, 2004, see also related discussions in [20].

2.3 Fixed-polarity arithmetic expressions

The optimization of arithmetic expressions in the number ofnon-zero coefficients
count can be performed by selecting different polarities for variablesxi , i.e., the
usage of positive and negative literals, but not both for thesame variable. In this
way, Fixed-polarity arithmetic expressions (FPARs) are defined, see for example,
[7].

In matrix notation, FPARs are defined as

f (x1, . . . ,xn) =

(

n
⊗

i=1

[

1 xhi
i

]

)(

n
⊗

i=1

Ahi

)

F, (3)

where

xhi
i =

{

xi , hi = 0,
xi, hi = 1,

and

AAAhi (1) =























[

1 0
−1 1

]

, hi = 0

[

0 1
1 −1

]

, hi = 1,

The polarity vectorH = (h1, . . . ,hn) uniquely specifies each FPRA.
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Example 2 Table 2 shows a two-oputput function f= ( f0, f1) of n= 3 variables.
The function vectorF with output considered as binary representations of integers,
and the arithmetic spectra for zero-polarityA0 and optimal polarityAopt arithmetic
expressions are

FFF = [0,1,2,2,2,1,2,1]T ,

AAA0 = [0,1,2,−2,2,−2,−2,2]T ,

AAAopt = [1,1,0,0,0,0,0,−2]T .

The optimal polarity is H= (1,1,1). The number of non-zero function values and
arithmetic coefficients is7, 7, and 3. The number of distinct non-zero function
values and arithmetic coefficients are2, 3, and2, respectively. The number of1-
bits/bits to represent these coefficients are7/11, 7/13, and3/5. The number of bits
is determined by counting bits starting from the most significant non-zero bit, and
1-bits are simply encountered. The sign bit is not taken into considerations.

Table 2. Functionf in Example 2.

x1x2x3 f0, f1 f
000 00 0
001 01 1
010 10 2
011 10 2
100 10 2
101 01 1
110 10 2
111 01 1

There are different approaches to determine FPARs efficiently in terms of space
and time, see for example [10] and references therein. Thesealgorithms are ana-
logues to the corresponding algorithms for determination of Fixed-polarity Reed-
Muller expressions (FPRMs) [11], and in the case of elementary functions with
the precision of 16 bits, exact algorithms for the determination of optimal FPARs
can be easily applied even on simple hardware. Determination of FPARs by using
disjoint cubes to specify functions processed has been considered in [12].

2.4 Arithmetic transform decision diagrams

Multi Terminal Binary Decision Diagrams (MTBDDs) are a generalization of Bi-
nary Decision Diagrams (BDDs) derived by allowing integersas the values of con-
stant nodes, see for instance [21]. They can represent multi-output switching func-
tions whenm-bit output binary vectors are considered as binary representations of
integers.
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Fig. 1. MTBDD, ACDDs for the zero-polarity and optimal polarity expressions.

Arithmetic Transform Decision Diagrams (ACDDs) are another generalization
where instead of functions values the constant nodes represent arithmetic coeffi-
cients [8]. Correspondingly, labels at the edges are modified to correspond to the
arithmetic analogues of positive Davio expansion rulef = 1 · f0 + xi(− f0 + f1),
where f0 and f1 are co-factors off for xi = 0 and 1, respectively. Thus, ACDDs are
graphical representations of positive polarity arithmetic expressions [8]. The inte-
ger counterpart of the negative Davio expansion rule is defined asf = 1· f1 +(1−
x)( f0 − f1). When constant nodes in ACDDs represent coefficients in FPARs, the
labels at the edges are the integer counterparts of either positive or negative Davio
expansion rules. As noticed above, the difference between BMDs and ACDDs is
in the reduction rules [8].

Example 3 Fig. 1 shows the MTBDD, ACDD for the zero-polarity and optimal
polarity arithmetic expressions for the function f in the Example 2. The numbers
of non-zero constant nodes in these diagrams are4, 6, and4. The numbers of pats
from the root node to the non-zero constant nodes are4, 7, and2.

3 Complexity Measures and Experimental Results

When considering representations by functional (spectralor other) expressions, the
usually accepted complexity measure is the number of non-zero coefficients and
the number of distinct coefficients (which is equal to the number of constant nodes
in decision diagrams).

In this respect, FPARs which have a reduced number of non-zero coefficients
may be useful to further reduce complexity of the arithmeticexpressions (zero-
polarity expressions), which proved useful in representation of elementary mathe-
matical functions [1].
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However, in circuit realizations, it is important to consider also the number
of bits and 1-bits to represent function values and spectralcoefficients. It may
happen that for some functions, smaller number of non-zero coefficients, but of
larger values, may require greater number of bits, thus, it has larger complexity than
other functional expressions although possibly with a larger number of coefficients.

In the representation of functions by decision diagrams, relevant complexity
measures are parameters of the diagrams, as the number of non-terminal nodes,
constant nodes, number of paths, etc.

In this section, we discuss some experimental results in estimation of complex-
ity of representations of elementary functions converted into 8-bit input 8-bit output
switching functions by using the method presented in [1]. Inthese tablespoly−c1
and poly− c2 are examples of two randomly generated polynomials of order four
and the functions Entropy, Sigmoid and Gaussian are specified below.

Entropy −xlog2 x− (1−x) log2(1−x),
Sigmoid 1

1+e−4x ,

Gaussian 1√
2π e−

x2
2 .

3.1 Number of arithmetic coefficients

Table 3 compares the number of non-zero coefficients in zero-polarity and optimal
polarity arithmetic expressions for elementary functions. We can see that FPARs
always produce smaller number of coefficients, compared to the number of func-
tion values and coefficients in zero-polarity arithmetic expressions. There are few
expressions with the same minimum number of non-zero coefficients. In this ta-
ble, we show the last determined minimum polarityH in an exhaustive search for
optimal polarity.

Table 4 shows the number of distinct values in the function vectors and vectors
of zero-polarity and optimal polarity arithmetic expressions. There are examples
were the number of distinct coefficients is smaller for the zero-polarity than for the
optimal polarity FPAR, but certainly not the total number ofcoefficients.

3.2 Number of bits and1-bits

The number of bits to represent a coefficient is determined asthe number of bits
counting from the most significant non-zero bit to the last significant bit. The num-
ber of 1-bits is the number of non-zero bits out of the total ofbits.

Table 5 shows the number of bits and 1-bits required to represent coefficients in
zero-polarity and optimal polarity arithmetic expressions for elementary functions.
The shown values are for the same polarities as in Table 3.
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We see, that optimal polarity FPARs require quite fewer bitsand also 1-bits to
represent the coefficients.

Table 3. Number of non-zero values and coefficients
Function function Arithmetic expressions

values zero optimal H
1/
√

(x) 254 249 104 11111111
1/x 256 80 43 11011100
2x−1 254 210 142 01100010
cos(πx) 256 163 153 11100011
entropy 256 255 192 11000000
gaussian 256 211 184 10100000
ln(x) 255 207 129 11111100
poly−c1 255 222 217 00001000
poly−c2 255 252 232 00101110
x2 240 135 102 00000111
x3 215 174 138 00000011
x4 193 135 122 00000111
sigmoid 256 187 169 01101110
sin(πx) 256 143 141 00000100
√

− ln(x) 256 256 155 01101101√
x 256 252 145 11110111

tan(πx) 256 236 195 10010000
tan2(πx)+1 216 107 97 10001000
av. 246 193 147

3.3 Number of nodes

Coefficients in a functional expression correspond to pathsin the related decision
diagrams viewed as graphic representations of these expressions. In general, the
reduced number of paths do not necessarily imply the reducednumber of nodes
[9]. However, the experiments performed show that in ACDDs for elementary
functions defined with respect to optimal polarity expressions, the number of nodes
is also always reduced compared to MTBDDs except for the square root. In six
examples, ACDDs corresponding to the zero-polarity arithmetic expressions have
fewest nodes.

Table 7 shows in detail parameters of MTBDDs and ACDDs for thezero-
polarity and optimal polarity expressions. There, the number of non-terminal nodes
(ntn), constant nodes (cn), number of paths from the root node to the zero valued
constant node (0-paths), and non-zero paths (c-paths), as well as the width of the
diagram defined as the maximum number of nodes per level (w) are shown.

FPARs reduce the number ofc-paths and therefore related decision diagrams
can be even more efficient in applications requiring traversing diagrams than di-
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Table 4. Number of distinct function values and coefficients
Function function Arithmetic expressions

value zero optimal
1/
√

(x) 59 108 19
1/x 41 102 30
2x−1 212 30 21
cos(πx) 230 33 35
entropy 106 57 42
gaussian 121 40 40
ln(x) 256 29 21
poly−c1 155 98 100
poly−c2 161 128 126
x2 192 11 11
x3 157 21 19
x4 135 23 20
sigmoid 180 25 32
sin(πx) 115 33 32
√

− ln(x) 169 90 36√
x 175 198 198

tan(πx) 255 58 41
tan2(πx)+1 76 88 57
av. 155 65 48

Table 5. Number of bits and 1-bits
Function function Arithmetic expressions

value zero optimal
1/
√

(x) 945/2009 717/1237 125/189
2x−1 938/1658 305/420 173/252
1/x 451/753 942/1690 131/188
cos(πx) 1180/1880 222/337 215/324
entropy 1234/1956 468/769 305/457
gaussian 1152/1898 315/457 267/417
ln(x) 933/1696 275/399 151/227
poly−c1 1001/1741 644/1319 630/1230
poly−c2 1006/1765 1242/1898 732/1535
x2 834/1466 50/102 50/102
x3 692/1215 222/319 171/231
x4 596/1029 161/240 153/ 213
sigmoid 1024/1702 284/350 229/336
sin(πx) 1180/1880 201/290 198/286
√

− ln(x) 956/1730 517/876 221/364√
x 1148/1963 517/876 178/245

tan(πx) 896/1618 370/559 264/391
tan2(πx)+1 916/1584 490/825 355/550
av. 949/1641 441/720 252/418
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Table 6. Number of nodes in MTBDD and ACDDs
Function MTBDD ACDD

zero optimal
1/
√

(x) 165 339 143
1/x 111 312 134
2x−1 441 203 180
cos(πx) 456 206 206
entropy 339 270 237
gaussian 368 236 237
ln(x) 511 214 164
poly−c1 410 340 343
poly−c2 416 378 378
x2 393 92 92
x3 337 162 156
x4 287 144 151
sigmoid 399 206 215
sin(πx) 350 199 196
√

− ln(x) 379 320 214√
x 411 284 178

tan(πx) 510 278 233
tan2(πx)+1 261 333 268
av. 363 251 206

agrams based on zero-polarity arithmetic expressions. Application of ZBDD re-
duction rules to various diagrams that are graphical representations of FPARs will
further reduce the number of nodes. For instance, it is clearthat BMDs based on
FPARs might further reduce complexity of the representations compared to BMDs
using zero-polarity expressions.

4 Closing Remarks

In spectral techniques, given functions are represented aslinear combinations of
some predefined basis functions and there are three natural levels for the optimiza-
tion of these representations. When ordered hierarchically by the level of freedom,
these optimization possibilities are

1. Selection of the underlying algebraic structure, and then choosing a suitable
basis within the structure selected.

2. When the algebraic structure is fixed, we still can select among many differ-
ent sets of basis functions.

3. In the basis, i.e., in a selected transform, we can performthe optimization by
some reordering of basis functions, or other similar manipulations with basis
functions, like shift or permutation of their elements.
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Table 7. Number of nodes in MTBDD and ACDDs for zero-polarityand optimal polarity expres-
sions.

Function MTBDD ACDD-zero ACDD-optimal
ntn cn 0 c w ntn cn 0 c w ntn cn 0 c w

1/
√

(x) 106 59 1 106 3231 108 6 248 105124 19 77 99 35
1/x 70 41 0 71 20 210 102 0 256 89104 30 59 77 30
2x−1 229 212 1 229 102173 30 35 210 58159 21 77 137 55
cos(πx) 235 230 0 236 110173 33 71 148 58171 35 77 150 56
entropy 233 106 0 234 112213 57 1 255 8195 42 46 188 73
gaussian 247 121 0 248 120196 40 42 206 73197 40 61 177 71
ln(x) 255 256 1 255 128185 29 41 198 63143 21 85 127 46
poly−c1 255 155 1 255 128242 98 32 222 115243 100 36 216 116
poly−c2 255 161 2 254 128250 128 4 251 123252 126 24 231 125
x2 201 192 1 201 86 81 11 73 49 23 81 11 73 49 23
x3 180 157 3 178 75141 21 36 172 46137 19 67 136 47
x4 152 135 1 152 63124 20 43 133 38128 23 62 118 40
sigmoid 219 180 0 220 94181 25 61 182 62183 32 69 167 62
sin(πx) 235 115 0 236 110166 33 89 141 56164 32 88 140 55
√

− ln(x) 210 169 0 211 83230 90 0 256 103178 36 68 154 61√
x 219 192 0 220 92223 61 4 252 96157 21 81 138 54

tan(πx) 255 255 2 254 128220 58 37 211 93192 4 71 167 66
tan2(πx)+1 255 255 2 254 128220 58 37 211 93192 41 71 167 66
av. 211 166 114 211 95192 55 34 200 72166 36 66 146 60

The second option has been exploited in [1], where it is shownthat for represen-
tation of elementary mathematical functions, selection ofthe arithmetic transform
provides compact representations. As measures of the complexity, there have been
used the number of nodes in MTBDDs and BMDs, number of non-zero arithmetic
coefficients, and number of distinct function values and arithmetic coefficients.

In this paper, we examine the third option by suggesting the usage of Fixed-
polarity arithmetic expressions (FPARs) as a modification the basis functions in
the arithmetic transform by peculiar shifting and reordering of them. In addition,
besides the complexity measures mentioned, we also considered the number of
bits and 1-bits required to represent zero-polarity and optimal polarity arithmetic
coefficients. This complexity measure is especially important in circuit realizations,
since relates to the number and complexity of interconnections.

Experimental results shows that FPARs and related decisiondiagrams can pro-
vide for further reductions of the representations compared to these already pro-
vided by the arithmetic transform (zero-polarity arithmetic expressions) of elemen-
tary mathematical functions.
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[8] R. Stanković, T. Sasao, and C. Moraga, “Spectral transform decision diagrams,” in
Representations of Discrete Functions, T. Sasao and M. Fujita, Eds. Kluwer Aca-
demic Publishers, 1996, pp. 55–92.

[9] E. Dubrova and D. Miller, “On disjunctive covers and robdd size,” inProc. Pacific
Rim Conference on Communication, Computers and Signal Processing, Victoria,
B.C., Canada, Aug. 23–25, 1999, pp. 162–164.
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