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Properties of the Reed-Muller Spectrum of Symmetric
Functions

Claudio Moraga and Radomir S. Stankovt

Abstract: Different forms of symmetry based on cofactors of Booleancfions are

characterized in the Reed Muller spectral domain. Furtloeent is shown, that if the
arguments of the function are reordered, the permutatiahithneeded on the truth
vector applies also on the spectrum of the function.

Keywords: Boolean functions, Symmetric Boolean functions, Reediéfutans-
form.

1 Introduction and Motivation for Research

Symmetric Boolean functions are a relatively large clasBoblean functions
(there are 2! out of the total of 2" functions) which are very important in en-
gineering practice, since many computing, control, and reamications circuits
are described by symmetric functions [1]. In general, symniméunctions can
be compactly represented irrespectively to the data streicgelected, as for in-
stance, different functional expressions, cubes, detdi@grams, etc. This feature
reduces the memory required to store a function and is alsfulis software re-
alizations. In hardware realizations, symmetric functioequire fewer gates than
other functions [2]. For these reasons, symmetric Booleactions have been a
subject of study from the beginning of the development oftahimng theory and
logic design (see, for instance, [3]) and are intensivelestigated presently, the
research providing for a theoretical background of a verdtapplications.

For a brief illustration of present interest in symmetricdBzan functions, we
will point out few related concepts and the correspondirggagch results in this
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area. Besides classical applications, as circuit syrgteesi formal verification, (for
example, [4-7].), a high recent interest in study of symin@&polean functions is
related to their cryptographic features [8].

In particular, symmetric Boolean functions have been rdgersed in prevent-
ing algebraic attacks, an important tool in cryptanalysieasn and block chipper
systems, which recover the secrete key by solving overdifayetems of multi-
variate equations. Algebraic immunity of Boolean functios defined as the fea-
ture of Boolean functions to resist algebraic attacks. Tyelaaic immunity of an
n-variable Boolean function is upper bounded[By [9, 10].

A symmetric Boolean function of an odd number of variablethvimmaximum
algebraic immunity has been constructed in [11]. The exinausearch for all
balanced symmetric functions up to 128 variables preseintg¢di2] shows that,
for odd n, all balanced symmetric functions are trivial balancedegtdor n €
{13,29,31,33,35,41,47,61,63,73 97,103}. In [13] it is proven that for each odd
n, there is exactly one trivial balancesvariable symmetric Boolean function
achieving the algebraic immunity5]. It is also derived a necessary condition
for the algebraic normal form of an-variable symmetric Boolean function with
maximum algebraic immunity for any positive integer

Computational learning theory is another area with intiangsrecent results in
applications of symmetric Boolean functions [14, 15].

This continuous research interest in symmetric Boolearmtfons as well as
interesting recent applications pointed out above, pewdnotivation for the re-
search work presented in this paper.

2 Symmetries in Boolean Functions

Besides totally symmetric and partially symmetric Booldamctions, (defined as
the invariance of function values to all possible permotadiof variables, and pairs
of variables, respectively), there have been defined synesetith respect to pairs
or in general subsets of variables by imposing invarianceoefactors of Boolean

functions in terms of these variables [16]. The notion ofsgoametries is intro-

duced in the similar way by requiring equivalence of certedrfactors and logic

complements of other cofactors [17,18].

In this paper, we consider symmetries in Boolean functicefsdd in terms of
truth-vectors for functions and their co-factors as folfow

For a function o variablesf (xn_1,X,-2,Xn—3, - - -, X0) given by the truth-vector
F =[f(0),..., f(2"—1)]7, the cofactors with respect to the most significant argu-
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mentsx,_1 andx,_» are defined as

foo = f(0,0,ang, ..,Xo),
for = f(O,l,ang, ..,Xo),
fio = f(1,0,%-3,..-,%0),
fin = f(1,1,%-3,---,%),

and in matrix notation written as the corresponding veckggsFo1, F1o, F11.
The following concepts of symmetry have been earlier inicmt [16—-19]:

1. Equivalence symmetihased orx, 1,Xn_2 iff Foo=F11

2. Non-equivalence symmetoased o, 1,X%,_2 iff Fo1 = Fig

3. Partial symmetryof x,_1 with respect tax, o, iff Fo1 = F11, and vice-versa
|ff F]_O == F]_l

4. Partial symmetry ok,_; with respect t,_», iff Foo = F19 and ofx,_» with
respect tX, 1 iff Fopg= Fo1.

2.1 Characterization of symmetries

Symmetries of Boolean functions can be described (and @efeby decomposi-
tion charts [20] and related Boolean expressions, decdimgrams [21—-23], logic
differential operators, Gibbs derivatives on finite dyadioups, various spectral
transforms including Walsh transform [16], complex Hadamtansform [24],
arithmetic transform and the Reed-Muller transform [7, B]particular, efficient
procedures for detection of symmetries defined above hase pp@posed in terms
of Walsh spectral coefficients in [17, 26], see also [16, 98, 1

In this paper, we discuss characterization of the above el#ymmetries and
co-symmetries in terms of Reed-Muller coefficients.

3 Analysis

Let f(Xn-1,X-2,-.-,X1,%X) be am-place binary function and l€t.zyex, ,valugx, »)
denote a cofactor of with relation to its two most significant arguments. The
notation for the corresponding truth vectors will Beand Fqiugx, 1 )valuex, »)s €-

1 (1) ] denote the basic Reed Muller transform
matrix. The Reed Muller spectrum dfconsists of an ordered set of spectral co-
efficients denoted af,r1,...,rn}, whereN = 2" — 1. The vector representation

spectively. Furthermore, &=
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of the spectrum will be denoted ryand, in analogy to the functions the spectral
cofactors will be denoted a$qugx,_; valugx_»)-

The well known equation to calculate the Reed Muller spectnf a binary
n-place function is

r=R*".F. (1)

For the present paper, it will be considered that [Foo, Fo1, Fio, Fll]T. This is
indeed formally not correct, since at the left hand sidedli®a vector with 2scalar
elements, meanwhile at the right hand side there is a vedtbelements, which
are vectors of length (actually, "height")*2. Since however for most following
calculations block matrices and (sub)vectors of dimen&brt will be used, the
abuse of notation will not impair consistency. The follogriexpression will be
used to calculate the Reed Muller spectrum of a given fundtio

R"MF = (R2gR"2).F 2)
Ro(2) 0 0] (0] Foo roo
| rRm2 RE-2) g 0] For | | ro1

- R®(n-2) [0] R(h-2) [] ’ Fio - ro |’
Re(N-2) R2(n-2) Ra(-2) Re(-2) Fi1 r

where[0] represents a™2? by 2"-2 zero matrix. It is simple to see that

_ (n-2) " F(()O )
R®(n-2 -Foo® R® n-2 -Fo1
R@n _
F o= R®(n72) . FOO@ R®(n72) . FlO (3)

RO("-2) . Fodp RE(-2) . Fyy  RP(-2) . F y g RP(-2) . Fy

i RO("-2). Ry roo
_ RP("-2). (Foo @ Foa) | roa
B R(=2). (Foo @ Fao) | o
L RE(N-2), (Foo® Fo1® Fro® Fr1) M

After these considerations it is possible to formulate tiWwing theorem.

Theorem 1 (Characterization of symmetries)

1. Foo=Foy iff ro1®rio=rus,
2. o= Foy iff rio=roy,
3. Fr=Fy1 iff rig=rqy,
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4. Fo=Fyy iff rog=raa,
5. Foo:F]_o iff r10:0,
6. Foo=Fo1 iff roo=0.

Proof of (1)
—

Recall (3) thatr;; = R*("2) . (Foo & F10 Fo1 & Fr1) and that inGF(2)"2),
Foo = F11 implies thatFoo @ Fr1 = [0] = [00...0]" of length 22,

Thereforery; in this case reduces ®°("2). (F10® Fo1). This can however be
written as:

r1 = R2(Fo@ Foy® Foo® Foo)

= R("2). (Foo® Fio® Foo® Foa)
= RE"2) . (Fyod Fio) @ R®("2). (Foo® Foy) = r10P roy.

ro®ror = R 2. (Fooa Fio) @ R®("2). (Foo® Foq)
= R (FpaFy)

rio®ro1 = r11 implies that
R¥M2). (Fio@ For) = R*"™2 - (Foo @ Fro@® Fo1 ® Fa),
but this equality holds only iFyo® F11 = [0], from whereFy = F1.
Corollary 1 (From Theorem 1)

1. If both (1) and (2) of Theoremapply, then §; = 0.
2. If both (3) and (5) of Theorethapply, then §; = 0.
3. If both (4) and (6) of Theorethapply, then {1 = 0.

Theorem 2 Up to equivalence:

1. Foo=F11iffri3=ro1®rio@R®("2.[111.-- 11T =ro; 110 [100--- 00"
2. Fpo= E01 iff ro=ro1® [100. .. OO]T

3. Ry =Fu1iffrio=rpn®@R*2.[111...11)7 = ry;®[100...00]

4. Fo=F1iffrog =r; @R®*M2.[111... 19T =y, ©[100---00".

5. Foo=F1oiff rio=R?*"2.[111.--11T = [100---00]".

6. Foo=Foriff rop=R®("2.[111.--11)7 = [100---00".
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Proof of (1) =

F11 represents the complement of the truth ve&gr i.e., it is the vector con-
taining all elements of,; respectively complemented. Formally;; = Fi1 [1],
where[1] = [11...117, of length 22,

ri1 = R®("2) . (Foo @ F1o® Fo1 @ F11) which under the conditions dfl) of the
Theorem 2 becomes

ri = R (Fi1&Fio® For®Fi1)
= R¥"2 . (F;; 0 (1] @ Fio® For @ Fu1)
= R®(n_2) . ([1] ®Fo® FO]_)
= R (FoaFo) @ RP(M2). (1

= (R®"2) . (Fio® Fop) @ [10---00T).

Since from the proof of the former Theorem it is known tR&"2) . (Fio®
Fo1) = rio® roz the assertion follows.
<

ro®ro = R 2. (Foo®Fi) R 2. (Foo® Fo)
= RY"2. (Fyoa o).

r10é ro1 [10... OO]T = r1®ro ®R¥M2. [1]
- R®(M-2), (F10® Fo1) @ R2(N-2) . 1]
= (R 2. (FooFou1®[1])).

From the conditiony; = ro; ®r1o® [100...00]" follows

r1 = RPM2 . (Fyo@® Fro® Fo1® Fry)
RZ("-2) . (Fo@ For @ [1]),

i.e., (Foo® Fio® Fo1 ® Fi11) = (Fio® Fo1® [1]) from where (Foo @ F11) = [1] or,
equivalently,

Foo=F11, Foo=Fi1, Foo®Fu@[1] =0
Corollary 2 (From Theorem 2)

1. If both (1) and (2) of Theorem 2 apply, then £ 0.
2. If both (3) and (5) of Theorem 2 apply, then £ 0.
3. If both (4) and (6) of Theorem 2 apply, then £ 0.
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If another “context” instead ofX,_1, X,_2" would be needed, then a permuta-
tion matrix may be used to reorder the elements of the truthovef the function
corresponding to the exchange of the components of thet tzwgeext with those of
the above context. Then, the two theorems may be directlijeapio the modified
truth vector and its spectrum. It is however possible to @éothole transformation
in the spectral domain.

Let P be a 2 by 2" permutation matrix which reorders the elements of a truth
vectorF of a given function, to "move” the arguments andx; to the positions
of X,_1 andx,_», (and vice versa) respectively. LRtdenoteR®("2 and letF’ =
P-F. Then:

=R-F'=R-(P-F)=(R-P)-F.

The product of matrice$R - P) introduces a permutation of the columns of
R. However, notice that the matrix equatié P = Q- R has the solutiorQ =
R-P-R~landitis known thaR is its own inverse irGF (2), thereforeQ=R-P-R.
Then:

'=R-F'=R-(P-F)=(R-P)-F=(Q-RIF=Q-(R-F)=Q-r.

Notice that this Q-transformation” of the Reed Muller spectrum of a function
applies for any permutation of the elements of a truth veatat not only to that
induced by pairwise permutation of arguments of the fumctiBurthermore, this
transformation applies to any type of spectrum, as long egréimsform matrix is
not singular (which is a basic requirement in spectral tegles).

The next important question is: could it be tlat= P? If yes, under which
conditions?

If Q=P then:

P = R-P-R, 4
P-R = R-P, (5)
i.e., the permutation of the rows Bfhas to have the same effect as the permutation
of the columns oR.

Consider first the case df(x,Xp) and letP, ; be the permutation to obtain the
truth vector off (xp,x1) from the truth vector off (x;,x0). Then,

Po1=

O OO
o, OO
[oNeN Ne]
= O O G
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Then,
71 0007 100071 [100 0]
B R_|0 010 1100 |[1010
T =1lo 100 1010| |1100]
000 1] 1111 [111 1]

and
1 0007 120001 [1 00 0]
Rp._| 1100 0010| |1010
=11 010 0100 1100}/
1 111] |0oo0o0 1] [1 11 1]

The above condition (4) is satisfied then foe 2. Consider now the case of
n> 2 and the exchange of tweeighbourarguments. Lep; ;1 denote a "local”
permutation matrix, (with the same structure g above), which modifies the
corresponding 2”sub-truthvectors” wherx; andx;, 1 are exchanged. Then,

Pijrt = lo®@lg®- @)@ Ppjj11®](j12 @ @ln-1
= I®j®pj7j+1®l®(”‘j‘2),

wherel ;) denotes a 2 by 2 identity associated toititie (non exchanged) argument.
Then:

PR = (19@p1e1®M2) (R oRZoRMI2)
= (I®j-R®j)®(pj,j+l-R®2)®(I®(”_j_2)-R®(”_j_2))
= RY@(pjjs1-R?)@RMI2

and similarly
R P11 =R @ (R¥2. pjj1) @ RE(1-2)
but according to the case of a 2-place function analyzedegbov
R¥2.pj js1 = Pjj1- R
Therefore,
REM-Py 1 =Pjjea- R

and the condition (4) is satisfied.

Finally recall that the exchange of any two symbols of a gtrimay be obtained
as a chain of permutations of pairs of neighbour symbolss €bhcludes the proof
of the following
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Theorem 3 Let f(Xp_1,-- -, X5, Xk, ---,X0) = F'(Xn_1,-- X5+ -+, X%, - -, X0) and
let F and F denote their respective truth vectors. Furthermore let d &denote
their respective Reed Muller spectra. Then

P|7k-|: :F/<:> P.7k'r =r.
4 Examples

In this section, we will present some examples that illustthe concepts discussed
above.

Sl XsXq B, X5 Xg
oo 01 10 | 11 20 |01 | 10 | 11
0 1 1 1 | L 1 1 | 1
Kxg | 01 | 1 1 1 PR Xk | 101 1 | 1 1
10 1 1 1 1 11 1 1 | 1
11 1 1 | a 11 1 1 | 1

Fu'|=F'|'| L Fla=#n [Thenrem ],_lll::l

falx) XsKa 2% XsXg
a0 | 01 ] 11 o (a1 p 1o | 1l
I 1 1 1 1 1 1 1 1 1
Xx |0 1 1 1 1 —* X1Xn a1 1 1 f 1
11 1 1 1 0 10 1 1 { 1
11 1 1 1 0 11 1 1 1 1

Fao =g i Fra =[0] (Theoretm 1, w3

Alx} XsXa Rmfs XsXa
i | 0l | 11 o0 [ -E_ ___1_1_

{1 1 | 1 1 {1 1 IO (1 Ll

mxa |01 | O] L[ L1]@ swg (01| 1] 0 T L
w1 @a]|1]1 « w ol ofaolao
11 1 1 | | 11 1 1 1 a

Fo=F 3 Fo=F B0 (Theoram 2. i}
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f2(X37X07X17X2)'

Remark 1 Notice that f(xa, %2, X1,Xo)

0

1

1

0

0(0]O0

1

1

00|00

0j0|0|0|O

1

1

0j0|0|0|O0]O

0O(0j0j0|j0]|0]O0

0

1

1
0/{0|0|O

0/0|0|0|0]O

0

0yj0|0(0|0O

0/0|0

0j0|0|0O|0]|0]O

Po2=13® po2 = 13®

Now:

(RR™) - (I3 ® po2) - (R® R*®)

R4 . Py R

It becomes apparent that it is enough to check whefR&? - pg 2 - R®3) = po

to illustrate the validity of Theorem 3.

R®3- Poz - R®3

o000 |0 (O |
oo |o|o|d

ooclo|H|O|O|O|O
o0 |O ||

i
0000010100000 e
i
000011110 bl gl bl gl Bl g
i

00010001000000 ©

oodH|O|O|O|O|O
OO|[H|H|O|O ||

o000 |H|O|O|O
OH[O|H|O | (O]

—A OO0 |O|O|O|O
e e [ [ [ [

. Il
OO0 |H||IO|O|O|0O|C|O O |-
OO0 ||IC|C|O|0O|0C|O ||
o000 |dlO|0O||ICO|lC|0O|O|O | |[O|d
OO0 lO|[OC|0|0|O | |||
o000 0O(dH|O||IO|CO|O|H|O|O|O|d
OO(HOIO|IO0|0||C|O || |0 |0 ||
OO0 |HO0|I0||IO|H|O|H|O|H|(O|d
—A OO0 |0 |I0|O ||| ||| |||
OO0 |H||IOC|O|O|0O|C|O O |-
OO0 O[dH|H||IO|O|O|H|O|O|O|H
OO0 |H[O|H||IO|O|O|O|O|H|[O|d
Co0OIO|HA|dA|ldH|H||O|H|O|H|O|H|[O|d
OO0 |HO|IOO|H||IO|OCO|IO|O0|0|O ||
OO[H|HOCO|IO|[dHd|H||O|O || |O|O ||
OHO|HO|dO|H||O|0 |0 O | |||
Ll e N e R AR L N B R R N L R R |

i.e., (R3 po2-R*3) = poo.

The effect ofRy > on f; and its RM-spectrum may be illustrated as:
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Jix) X3X2 R®, -
00 o1 [10 | 11 o Tor To Tt
00 | 1 [0 | 1 |50 o [ 1 1 [0 g0
x1xo | 01 0 1 I 1 xixo | 01 1 0 lg 1
10 |1 [o1 |1 Jgl 0T o T=T T o 5o
mjrjpojoqo | 17 1] 0] 0
leading to:
£ x) X377 R®*f X33
00 [or [10 11 00 [or 10 [11
0| 1o 1]1 0| 1 [ 1]o]1
xxo [OL ] O] 1 [0 1 oxx [T olo]1
ol 1|1 [1]o w]o[ 1o o
nltrflofl1]o nl1[ 1ol o

Remark 2 Notice that §(x3,X2,X1,%0) = f2(X1,Xo, X3, X2) and that this has as effect
"transposing the Karnaugh map” (considered as a matrix).eTdame effect may
be observed in the RM spectrum ef f

Remark 3 Recall Theorem 1, (3):
For=Fu1 iff rio=ra.

Notice that whichever the arguments may be that will occupy positions
n—1 andn— 2 and will therefore determine the cofactors, the RM-sp¢eiement
rn will always be an element of the prevailing;. It is easy to see that ify is
compared with the RM spectral elements in positions with enkieng distance of
1, a rejecting criterion is obtained to identify whi€g; will not possibly be equal
to F11. Moreover, since the comparison is based gnthen the same applies with
respect to Theorem 2, (3). This means that several candiflatpartial symmetry
may be rejecteavith just one scalar comparison

Consider, for instance,

L) X3X2 R®*f X3X
00 | 01 10 | 11 00 | 01 [ 10 | 11
00| 1|0 1 1 00 | 1 1] 0|1
axo ool 1T lo0]1 o o [OL [T [0 01
10 1 1 1 0 10 0 1 0 0 9
11 1 0 1 0 11 1 1 0 0
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Since for the first time the explicit identification of whichgaments are con-
sidered to be at the positiofis — 1,n— 2) is needed, the notation will be extended
to include this information as superindex. Therefore if #nguments are consid-
ered as reordered intOq, Xo, X3, X1), thenr(x) with xo =1, %9 =0, x3 =x; = 1,

will be written asr&%’f)l, meanwhiler%o) will denote the cofactor whex, = 1 and

Xp = 0. Similarly for Fl(g’o).

The comparisons give the following results and implicagion

(32) _ (32
1. rio11 =111

32 23 23 23 23 23 , =23
2. r(()11)1: r501)1 # r§.113.<:> I:0(1 ) # I:1(1 ) Fo(l ) £F3Y,

(10) _ (1,0
3. rio11="ri1110

1,0 01 01 01 10 01). ~(01) , =(01)
4. r<()11)1: r501)17‘é r§11)1<:> Fo(l ) = (Fl(o )) # F1(1 ); Fo(l ) #Fqi .

Notice that the first equality is satisfied, tﬁﬁz) # Fl(f’z); meanwhile the third

is satisfied and this is consistent Wﬁéﬁl’o) = f(lll’o). This shows that the conditions

are necessary and sufficient for a rejection, but only necgdsr accomplishing
the properties presented in Theorems 1 and 2 (3).

5 Conclusions

It has been shown that some classes of partial symmetry deBodunctions may
be characterized in the Reed Muller spectral domain, aseeavhs done in the
Walsh domain. Particularly interesting is the preservatib permutations of type
R k. when applied to a truth vector, they also apply to the cpwesing Reed
Muller spectrum.
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