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Properties of the Reed-Muller Spectrum of Symmetric
Functions

Claudio Moraga and Radomir S. Stankovíc

Abstract: Different forms of symmetry based on cofactors of Boolean functions are
characterized in the Reed Muller spectral domain. Furthermore it is shown, that if the
arguments of the function are reordered, the permutation that is needed on the truth
vector applies also on the spectrum of the function.
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1 Introduction and Motivation for Research

Symmetric Boolean functions are a relatively large class ofBoolean functions
(there are 2n+1 out of the total of 22

n
functions) which are very important in en-

gineering practice, since many computing, control, and communications circuits
are described by symmetric functions [1]. In general, symmetric functions can
be compactly represented irrespectively to the data structure selected, as for in-
stance, different functional expressions, cubes, decision diagrams, etc. This feature
reduces the memory required to store a function and is also useful in software re-
alizations. In hardware realizations, symmetric functions require fewer gates than
other functions [2]. For these reasons, symmetric Boolean functions have been a
subject of study from the beginning of the development of switching theory and
logic design (see, for instance, [3]) and are intensively investigated presently, the
research providing for a theoretical background of a variety of applications.

For a brief illustration of present interest in symmetric Boolean functions, we
will point out few related concepts and the corresponding research results in this
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area. Besides classical applications, as circuit synthesis and formal verification, (for
example, [4–7].), a high recent interest in study of symmetric Boolean functions is
related to their cryptographic features [8].

In particular, symmetric Boolean functions have been recently used in prevent-
ing algebraic attacks, an important tool in cryptanalysis stream and block chipper
systems, which recover the secrete key by solving overdefined systems of multi-
variate equations. Algebraic immunity of Boolean functions is defined as the fea-
ture of Boolean functions to resist algebraic attacks. The algebraic immunity of an
n-variable Boolean function is upper bounded by⌈n

2⌉ [9,10].

A symmetric Boolean function of an odd number of variables with maximum
algebraic immunity has been constructed in [11]. The exhaustive search for all
balanced symmetric functions up to 128 variables presentedin [12] shows that,
for odd n, all balanced symmetric functions are trivial balanced except for n ∈
{13,29,31,33,35,41,47,61,63,73,97,103}. In [13] it is proven that for each odd
n, there is exactly one trivial balancedn-variable symmetric Boolean function
achieving the algebraic immunity⌈n

2⌉. It is also derived a necessary condition
for the algebraic normal form of ann-variable symmetric Boolean function with
maximum algebraic immunity for any positive integern.

Computational learning theory is another area with interesting recent results in
applications of symmetric Boolean functions [14,15].

This continuous research interest in symmetric Boolean functions as well as
interesting recent applications pointed out above, provide a motivation for the re-
search work presented in this paper.

2 Symmetries in Boolean Functions

Besides totally symmetric and partially symmetric Booleanfunctions, (defined as
the invariance of function values to all possible permutations of variables, and pairs
of variables, respectively), there have been defined symmetries with respect to pairs
or in general subsets of variables by imposing invariance ofco-factors of Boolean
functions in terms of these variables [16]. The notion of co-symmetries is intro-
duced in the similar way by requiring equivalence of certainco-factors and logic
complements of other cofactors [17,18].

In this paper, we consider symmetries in Boolean functions defined in terms of
truth-vectors for functions and their co-factors as follows.

For a function ofn variablesf (xn−1,xn−2,xn−3, . . . ,x0) given by the truth-vector
F = [ f (0), . . . , f (2n−1)]T , the cofactors with respect to the most significant argu-
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mentsxn−1 andxn−2 are defined as

f00 = f (0,0,xn−3, . . . ,x0),

f01 = f (0,1,xn−3, . . . ,x0),

f10 = f (1,0,xn−3, . . . ,x0),

f11 = f (1,1,xn−3, . . . ,x0),

and in matrix notation written as the corresponding vectorsF00, F01, F10, F11.
The following concepts of symmetry have been earlier introduced [16–19]:

1. Equivalence symmetrybased onxn−1,xn−2 iff F00 = F11

2. Non-equivalence symmetrybased onxn−1,xn−2 iff F01 = F10

3. Partial symmetryof xn−1 with respect toxn−2, iff F01 = F11, and vice-versa
iff F10 = F11

4. Partial symmetry ofxn−1 with respect toxn−2, iff F00 = F10 and ofxn−2 with
respect toxn−1 iff F00 = F01.

2.1 Characterization of symmetries

Symmetries of Boolean functions can be described (and detected) by decomposi-
tion charts [20] and related Boolean expressions, decisiondiagrams [21–23], logic
differential operators, Gibbs derivatives on finite dyadicgroups, various spectral
transforms including Walsh transform [16], complex Hadamard transform [24],
arithmetic transform and the Reed-Muller transform [7, 25]. In particular, efficient
procedures for detection of symmetries defined above have been proposed in terms
of Walsh spectral coefficients in [17,26], see also [16,18,19].

In this paper, we discuss characterization of the above defined symmetries and
co-symmetries in terms of Reed-Muller coefficients.

3 Analysis

Let f (xn−1,xn−2, . . . ,x1,x0) be ann-place binary function and letfvalue(xn−1)value(xn−2)

denote a cofactor off with relation to its two most significant arguments. The
notation for the corresponding truth vectors will beF andFvalue(xn−1)value(xn−2), re-

spectively. Furthermore, letR=

[

1 0
1 1

]

denote the basic Reed Muller transform

matrix. The Reed Muller spectrum off consists of an ordered set of spectral co-
efficients denoted as{r0, r1, . . . , rN}, whereN = 2n−1. The vector representation
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of the spectrum will be denoted byr and, in analogy to the functions the spectral
cofactors will be denoted asrvalue(xn−1)value(xn−2).

The well known equation to calculate the Reed Muller spectrum of a binary
n-place function is

r = R⊗n ·F. (1)

For the present paper, it will be considered thatF = [F00,F01,F10,F11]
T . This is

indeed formally not correct, since at the left hand side there is a vector with 2n scalar
elements, meanwhile at the right hand side there is a vector with 4 elements, which
are vectors of length (actually, ”height”) 2n−2. Since however for most following
calculations block matrices and (sub)vectors of dimension2n−2 will be used, the
abuse of notation will not impair consistency. The following expression will be
used to calculate the Reed Muller spectrum of a given function f :

R⊗n ·F = (R⊗2⊗R⊗(n−2)) ·F (2)

=









R⊗(n−2) [0] [0] [0]

R⊗(n−2) R⊗(n−2) [0] [0]

R⊗(n−2) [0] R(n−2) [0]

R⊗(n−2) R⊗(n−2) R⊗(n−2) R⊗(n−2)









·









F00

F01

F10

F11









=









r00

r01

r10

r11









,

where[0] represents a 2n−2 by 2n−2 zero matrix. It is simple to see that

R⊗n ·F =









R⊗(n−2) ·F00

R⊗(n−2) ·F00⊕R⊗(n−2) ·F01

R⊗(n−2) ·F00⊕R⊗(n−2) ·F10

R⊕(n−2) ·F00⊕R⊕(n−2) ·F01⊕R⊕(n−2) ·F10⊕R⊕(n−2) ·F11









(3)

=









R⊕(n−2) ·F00

R⊕(n−2) · (F00⊕F01)

R⊕(n−2) · (F00⊕F10)

R⊕(n−2) · (F00⊕F01⊕F10⊕F11)









=









r00

r01

r10

r11









.

After these considerations it is possible to formulate the following theorem.

Theorem 1 (Characterization of symmetries)

1. F00 = F01 iff r01⊕ r10 = r11,

2. F10 = F01 iff r10 = r01,

3. F01 = F11 iff r10 = r11,
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4. F10 = F11 iff r01 = r11,

5. F00 = F10 iff r10 = 0,

6. F00 = F01 iff r01 = 0.

Proof of (1)
=⇒

Recall (3) thatr11 = R⊗(n−2) · (F00⊕F10⊕F01⊕F11) and that inGF(2)(n−2),
F00 = F11 implies thatF00⊕F11 = [0] = [00. . .0]T of length 2n−2.

Thereforer11 in this case reduces toR⊕(n−2) · (F10⊕F01). This can however be
written as:

r11 = R⊕(n−2) · (F10⊕F01⊕F00⊕F00)

= R⊗(n−2) · (F00⊕F10⊕F00⊕F01)

= R⊕(n−2) · (F00⊕F10)⊕R⊕(n−2) · (F00⊕F01) = r10⊕ r01.

⇐=

r10⊕ r01 = R⊗(n−2) · (F00⊕F10)⊕R⊗(n−2) · (F00⊕F01)

= R⊗(n−2) · (F10⊕F01)

r10⊕ r01 = r11 implies that

R⊗(n−2) · (F10⊕F01) = R⊗(n−2) · (F00⊕F10⊕F01⊕F11),

but this equality holds only ifF00⊕F11 = [0], from whereF00 = F11.

Corollary 1 (From Theorem 1)

1. If both (1) and (2) of Theorem1 apply, then r11 = 0.

2. If both (3) and (5) of Theorem1 apply, then r11 = 0.

3. If both (4) and (6) of Theorem1 apply, then r11 = 0.

Theorem 2 Up to equivalence:

1. F00 = F11 iff r11 = r01⊕ r10⊕R⊗(n−2) · [111· · ·11]T = r01⊕ r10⊕ [100· · ·00]T

2. F10 = F01 iff r10 = r01⊕ [100. . .00]T

3. F01 = F11 iff r10 = r11⊕R⊗(n−2) · [111. . .11]T = r11⊕ [100. . .00]T

4. F10 = F11 iff r01 = r11⊕R⊗(n−2) · [111· · ·11]T = r11⊕ [100· · ·00]T .

5. F00 = F10 iff r10 = R⊗(n−2) · [111· · ·11]T = [100· · ·00]T .

6. F00 = F01 iff r01 = R⊗(n−2) · [111· · ·11]T = [100· · ·00]T .
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Proof of (1) =⇒
F11 represents the complement of the truth vectorF11, i.e., it is the vector con-

taining all elements ofF11 respectively complemented. Formally,F11 = F11⊕ [1],
where[1] = [11. . .11]T , of length 2n−2.

r11 = R⊗(n−2) · (F00⊕F10⊕F01⊕F11) which under the conditions of(1) of the
Theorem 2 becomes

r11 = R⊗(n−2) · (F11⊕F10⊕F01⊕F11)

= R⊗(n−2) · (F11⊕ [1]⊕F10⊕F01⊕F11)

= R⊗(n−2) · ([1]⊕F10⊕F01)

= R⊗(n−2) · (F10⊕F01)⊕R⊗(n−2) · [1]

= (R⊗(n−2) · (F10⊕F01)⊕ [10· · ·00]T).

Since from the proof of the former Theorem it is known thatR⊗(n−2) · (F10⊕
F01) = r10⊕ r01 the assertion follows.
⇐=

r10⊕ r01 = R⊗(n−2) · (F00⊕F10)⊕R⊗(n−2) · (F00⊕F01)

= R⊗(n−2) · (F10⊕F01).

r10⊕ r01⊕ [10. . .00]T = r10⊕ r01⊕R⊗(n−2) · [1]

= R⊗(n−2) · (F10⊕F01)⊕R⊗(n−2) · [1]

= (R⊗(n−2) · (F10⊕F01⊕ [1])).

From the conditionr11 = r01⊕ r10⊕ [100. . .00]T follows

r11 = R⊗(n−2) · (F00⊕F10⊕F01⊕F11)

= R⊗(n−2) · (F10⊕F01⊕ [1]),

i.e., (F00⊕F10⊕F01⊕F11) = (F10⊕F01⊕ [1]) from where(F00⊕F11) = [1] or,
equivalently,

F00 = F11, F00 = F11, F00⊕F11⊕ [1] = [0].

Corollary 2 (From Theorem 2)

1. If both (1) and (2) of Theorem 2 apply, then r11 = 0.

2. If both (3) and (5) of Theorem 2 apply, then r11 = 0.

3. If both (4) and (6) of Theorem 2 apply, then r11 = 0.
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If another “context” instead of “xn−1, xn−2” would be needed, then a permuta-
tion matrix may be used to reorder the elements of the truth vector of the function
corresponding to the exchange of the components of the target context with those of
the above context. Then, the two theorems may be directly applied to the modified
truth vector and its spectrum. It is however possible to do the whole transformation
in the spectral domain.

Let P be a 2n by 2n permutation matrix which reorders the elements of a truth
vectorF of a given function, to ”move” the argumentsxi andx j to the positions
of xn−1 andxn−2, (and vice versa) respectively. LetR denoteR⊗(n−2) and letF ′ =
P·F. Then:

r ′ = R ·F ′ = R · (P·F) = (R ·P) ·F.

The product of matrices(R ·P) introduces a permutation of the columns of
R. However, notice that the matrix equationR ·P = Q ·R has the solutionQ =
R ·P·R−1 and it is known thatR is its own inverse inGF(2), thereforeQ= R ·P·R.
Then:

r ′ = R ·F ′ = R · (P·F) = (R ·P) ·F = (Q ·R)F = Q · (R ·F) = Q · r.

Notice that this “Q-transformation” of the Reed Muller spectrum of a function
applies for any permutation of the elements of a truth vectorand not only to that
induced by pairwise permutation of arguments of the function. Furthermore, this
transformation applies to any type of spectrum, as long as the transform matrix is
not singular (which is a basic requirement in spectral techniques).

The next important question is: could it be thatQ = P? If yes, under which
conditions?

If Q = P then:

P = R ·P·R, (4)

P ·R = R ·P, (5)

i.e., the permutation of the rows ofR has to have the same effect as the permutation
of the columns ofR.

Consider first the case off (x1,x0) and letP0,1 be the permutation to obtain the
truth vector of f (x0,x1) from the truth vector off (x1,x0). Then,

P01 =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
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Then,

P01 ·R =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









·









1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1









=









1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1









,

and

R ·P01 =









1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1









·









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









=









1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1









,

The above condition (4) is satisfied then forn = 2. Consider now the case of
n > 2 and the exchange of twoneighbourarguments. Letp j, j+1 denote a ”local”
permutation matrix, (with the same structure asP0,1 above), which modifies the
corresponding 22-”sub-truthvectors” whenx j andx j+1 are exchanged. Then,

Pj, j+1 = I(0)⊗ I(1)⊗·· ·⊗ I( j−1)⊗ p j, j+1⊗ I( j+2)⊗·· ·⊗ I(n−1)

= I⊗ j ⊗ p j, j+1⊗ I⊗(n− j−2)
,

whereI(i) denotes a 2 by 2 identity associated to thei-th (non exchanged) argument.
Then:

Pj, j+1 ·R
⊗n = (I⊗ j ⊗ p j, j+1⊗ I⊗(n− j−2)) · (R⊗ j ⊗R⊗2⊗R⊗(n− j−2))

= (I⊗ j ·R⊗ j)⊗ (p j, j+1 ·R
⊗2)⊗ (I⊗(n− j−2) ·R⊗(n− j−2))

= R⊗ j ⊗ (p j, j+1 ·R
⊗2)⊗R⊗(n− j−2)

and similarly

R⊗n ·Pj, j+1 = R⊗ j ⊗ (R⊗2 · p j, j+1)⊗R⊗(n− j−2)

but according to the case of a 2-place function analyzed above,

R⊗2 · p j, j+1 = p j, j+1 ·R
⊗2

.

Therefore,

R⊗n ·Pj, j+1 = Pj, j+1 ·R
⊗n

and the condition (4) is satisfied.
Finally recall that the exchange of any two symbols of a string may be obtained

as a chain of permutations of pairs of neighbour symbols. This concludes the proof
of the following
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Theorem 3 Let f(xn−1, . . . ,xi , . . . ,xk, . . . ,x0) = f ′(xn−1, . . . ,xk, . . . ,xi , . . . ,x0) and
let F and F′ denote their respective truth vectors. Furthermore let r and r′ denote
their respective Reed Muller spectra. Then

Pi,k ·F = F ′ ⇐⇒ Pi,k · r = r ′.

4 Examples

In this section, we will present some examples that illustrate the concepts discussed
above.
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Remark 1 Notice that f1(x3,x2,x1,x0) = f2(x3,x0,x1,x2).

P02 = I3⊗ p0,2 = I3⊗

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

Now:

R⊗4 ·P0,2 ·R
⊗4 = (R⊗R⊗3) · (I(3)⊗ p0,2) · (R⊗R⊗3)

= (R· I(1) ·R)⊗ (R⊗3 · p0,2 ·R
⊗3)

= I(1)⊗ (R⊗3 · p0,2 ·R
⊗3).

It becomes apparent that it is enough to check whether(R⊗3 · p0,2 ·R⊗3) = p0,2

to illustrate the validity of Theorem 3.

R⊗3 · p0,2 ·R⊗3 =

=

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

·

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

·

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

=

1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1

·

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

=

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

i.e.,(R⊗3 · p0,2 ·R⊗3) = p0,2.

The effect ofP0,2 on f1 and its RM-spectrum may be illustrated as:
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f1(x) x3x2

00 01 10 11

00 1 0 1 0

x1x0 01 0 1 1 1

10 1 1 1 1

11 1 0 0 0

«

RÄ2f1 x3x2

00 01 10 11

00 1 1 0 0

x1x0 01 1 0 1 1

10 0 1 0 0

11 1 1 0 0

leading to:

Remark 2 Notice that f3(x3,x2,x1,x0) = f2(x1,x0,x3,x2) and that this has as effect
”transposing the Karnaugh map” (considered as a matrix). The same effect may
be observed in the RM spectrum of f3.

Remark 3 Recall Theorem 1, (3):

F01 = F11 iff r10 = r11.

Notice that whichever the arguments may be that will occupy the positions
n−1 andn−2 and will therefore determine the cofactors, the RM-spectral element
rN will always be an element of the prevailingr11. It is easy to see that ifrN is
compared with the RM spectral elements in positions with a Hamming distance of
1, a rejecting criterion is obtained to identify whichF01 will not possibly be equal
to F11. Moreover, since the comparison is based onrN, then the same applies with
respect to Theorem 2, (3). This means that several candidates for partial symmetry
may be rejectedwith just one scalar comparison.

Consider, for instance,
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Since for the first time the explicit identification of which arguments are con-
sidered to be at the positions(n−1,n−2) is needed, the notation will be extended
to include this information as superindex. Therefore if thearguments are consid-
ered as reordered into(x2,x0,x3,x1), thenr(x) with x2 = 1, x0 = 0, x3 = x1 = 1,

will be written asr(0,2)
1011, meanwhiler(2,0)

10 will denote the cofactor whenx2 = 1 and

x0 = 0. Similarly forF(2,0)
10 .

The comparisons give the following results and implications:

1. r(3,2)
1011 = r(3,2)

1111,

2. r(3,2)
0111 = r(2,3)

1011 6= r(2,3)
1111⇐⇒ F(2,3)

01 6= F(2,3)
11 ; F(2,3)

01 6= F
(2,3)
11 ,

3. r(1,0)
1011 = r(1,0)

1111,

4. r(1,0)
0111 = r(0,1)

1011 6= r(0,1)
1111⇐⇒ F(0,1)

01 = (F(1,0)
10 ) 6= F(0,1)

11 ; F(0,1)
01 6= F

(0,1)
11 .

Notice that the first equality is satisfied, butF(3,2)
01 6= F(3,2)

11 ; meanwhile the third

is satisfied and this is consistent withF (1,0)
01 = F

(1,0)
11 . This shows that the conditions

are necessary and sufficient for a rejection, but only necessary for accomplishing
the properties presented in Theorems 1 and 2 (3).

5 Conclusions

It has been shown that some classes of partial symmetry of Boolean functions may
be characterized in the Reed Muller spectral domain, as earlier was done in the
Walsh domain. Particularly interesting is the preservation of permutations of type
Pi,k: when applied to a truth vector, they also apply to the corresponding Reed
Muller spectrum.
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