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Most Complex Boolean Functions Detected by the
Specialized Normal Form

Bernd Steinbach

Abstract: It is well known that Exclusive Sum-Of-Products (ESOP) expressions for
Boolean functions require on average the smallest number ofcubes. Thus, a simple
complexity measure for a Boolean function is the number of cubes in its simplest
ESOP. It will be shown that this structure-oriented measureof the complexity can be
improved by a unique complexity measure which is based on thefunction. Thus, it is
suggested to detect all most complex Boolean functions moreprecisely by means of
the Specialized Normal Form (SNF). The SNF is a unique (canonical) ESOP repre-
sentation of a Boolean function. In this paper properties ofthe most complex Boolean
functions are studied. Adjacency graphs of the SNF will be used to calculate mini-
mal ESOPs as well as to detect special properties of most complex Boolean functions.
These properties affect the procedure of finding exact minimal ESOPs. A solution is
given that overcomes these observed problems. Using the SNF, the number of most
complex Boolean functions was found. A recursive algorithmwill be given that cal-
culates each most complex Boolean function for a given number of variables.

Keywords: Boolean function, complexity, specialized normal form, unique ESOP,
exact minimal ESOP, adjacency graph, hypercube corner compaction (HCCC).

1 Introduction

Knowledge about most complex Boolean functions can be helpful as upper bound
in minimization algorithms and may even control such algorithms. A very simple
measure of the complexity of Boolean functions is the numberof gates needed for
their realization in a circuit. Unfortunately the selection of gates strongly affects
this measure [1]. Alternatively the number of terms in a formula or the number
of nodes in a graph representation can be taken as a measure ofthe complexity
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of Boolean functions. Again, formulas or graphs of different size can express the
same Boolean function and complicate the definition of theircomplexity.

Taking this observation into account, a unique representation of Boolean func-
tions is an appropriate basis of a complexity measure of Boolean functions. Of
cause, the complexity measure must be consistent with the size of circuit realiza-
tions of the evaluated Boolean function. That means, a higher complexity of a
Boolean function leads basically to a larger size of the circuit.

A Binary Decision Diagram (BDD) [2], [3] is a unique representation of a
Boolean function, if the order of variables is fixed. Generally, the number of nodes
of a BDD can be a complexity measure of the represented Boolean function, but
this number depends on the chosen order of variables in the BDD. Hence, BDDs
are also not suitable as a basis for a complexity measure.

Further unique representations of Boolean functions are the classical normal
forms [4]:

• disjunctive normal form,

• conjunctive normal form,

• antivalence normal form,

• equivalence normal form.

The number of terms in these forms is also a candidate for a complexity measure for
the represented function. The largest number of disjunctions in a disjunctive normal
form or antivalence normal form occurs for the simple function f = 1 which is quite
a simple function. Similarly, the largest number of conjunctions in a conjunctive
normal form or equivalence normal form occurs for the simplefunction f = 0,
which is the simplest function at all. Hence, the classical normal forms are not
suitable as a basis for a complexity measure too.

The theory of Boolean normal forms was significantly extended in [5]. Es-
pecially normal forms based onExclusive Sum-Of-Products (ESOP) were studied.
One class of normal forms are polynomials with a fixed polarity (negated or not
negated) for each variable. Similar to BDDs, the number of disjunctions in a unique
polynom depends on the chosen polarity vector. Hence, this class of normal forms
is not suitable as the basis for a complexity measure too.

Ultimately, another ESOP-based unique normal form was included into the the-
ory of Boolean normal forms in [5]. ThisSpecialized Normal Form (SNF) was
suggested in [6]. The SNF is a specifically selected ESOP. Theresearch for ex-
act minimal ESOPs leads us to a new understanding of the most complex Boolean
functions. The history of research in exact ESOP minimization is much shorter
than the history of research in exact Sum-Of-Products (SOP)minimization. It is
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known from [7] that the ESOP representation of Boolean functions is typically
more compact than the SOP representation.

In [8] the problem of exact ESOP minimization was reduced to the finding
of a satisfying assignment of constraints. Unfortunately,this approach is strongly
limited, because the number of variables in the used Helliwell function is equal to
3k. This approach was generalized in [9] such that a function ofn variables can
be minimized if the exact minimum for all functions ofn− k (k ≥ 1) variables
is known. Based on this idea in [10] a practical solution for all functions of 6
variables was presented. A slightly modified approach was suggested in [11]. The
exact minimal ESOP should be found using the exact minimal ESOPs of three
subfunctions.

A quite different approach was suggested in [6]. Using two very simple trans-
formations, each ESOP of the Boolean functionf can be expressed by a unique
ESOP, called specialized normal form (SNF). Several helpful properties of the SNF
have been proved. The basic idea for finding an exact minimal ESOP is to add the
smallest number of cubes to the SNF and apply the expansion transformation in the
reverse direction. The detection of the potential solutioncubes was controlled by
weights derived from the SNF. In [12] the method for selecting solution cubes was
improved.

Using the SNF approach based on weights, the exact minimal ESOP was found
for nearly all functions. In some cases the weight method does not indicate the right
direction. In [13] this gap was closed using a HCCC function based on the adja-
cency graph of the SNF and an extended adjacency graph. HCCC is an abbreviation
of hypercube corner compaction.

It is an interesting observation that by means of the generalHCCC function the
exact minimal ESOPs were found for almost all Boolean functions. The remaining
very small set of Boolean functions turns out to be the set of the most complex
functions. This offers a very simple complexity measure of aBoolean function
based on its SFN that will be given in this paper.

Detailed studies reveal special properties of the most complex Boolean func-
tions. These properties indicate that a slightly changed HCCC function is necessary
in order to find the exact minimal ESOPs of the most complex function, too. Both
the special properties of the most complex Boolean functions and their utilization
in the extended HCCC function will be shown in this paper.

Using the SNF, the number of most complex Boolean functions could be de-
termined. A recursive algorithm will be given that enumerates all most complex
Boolean function for a given number of variables. This knowledge about most
complex Boolean functions extends the theory of Boolean rings [4].

The rest of the paper is organized as follows. The SNF is introduced in Sec-
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tion 2 in a compact manner as unique basic representation of Boolean functions for
all further studies. Adjacency graphs in Section 3 reveal important properties of the
detection of exact minimal ESOPs and the complexity of the represented Boolean
function. Peculiarities of most complex Boolean functionsare studied in detail in
Section 4. The extended HCCC function will be introduced here. A recursive algo-
rithm that allows to calculate any of the most complex Boolean functions is given
in Section 5. Experimental results are given in Sections 4 and 5. Finally, in Section
6 this paper will be summarized.

2 Specialized Normal Form - SNF

An algebraic property of the exclusive-or operation and theBoolean variablex is
visible in the following formulas:

x = x⊕1 (1)

x = 1⊕ x (2)

1 = x⊕ x. (3)

These three formulas show that each element of the set{x,x,1} has the same prop-
erties. For each variable in the support of the Boolean function f , exactly one
left-hand side element of (1), (2) or (3) is included in each cube of an ESOP of
function f . An application of these formulas from the left to the right doubles the
number of cubes and is calledexpansion. The reverse application of these formu-
las from the right to the left halves the number of cubes and iscalledcompression.
Using two laws of the Boolean ring: neutral element 0 (4), andidempotency (5), a
next important property of the exclusive-or operation for aBoolean functionf and
a cubeC (6) can be concluded.

f = f ⊕0 (4)

0 = C⊕C (5)

f = f ⊕C⊕C (6)

It follows from these formulas that two identical cubes can be added to or removed
from any ESOP without changing the represented function.

The SNF can be defined using two simple algorithms based on theproperties
mentioned above.

The expand() function in line 3 expands the cubeC j with respect to the
variableVi into the cubesCn1 andCn2 based on the fitting formula (1), (2) or (3).



Most Complex Boolean Functions ... 263

Algorithm 1 Calculate Exp(f )
Require: any ESOP of a Boolean functionf
Ensure: complete expansion of the Boolean functionf w.r.t. all variables of its

support
1: for all variablesVi of the support off do
2: for all cubesC j of f do
3: 〈Cn1,Cn2〉 ← expand(C j,Vi)
4: replaceC j by 〈Cn1,Cn2〉
5: end for
6: end for

Algorithm 2 Calculate R(f )
Require: any ESOP of a Boolean functionf containingn cubes
Ensure: reduced ESOP off containing no cube more than once

1: for i← 0 to n−2 do
2: for j← i+1 to n−1 do
3: if Ci = C j then
4: Ci←Cn−1

5: C j←Cn−2

6: n← n−2
7: j← i
8: end if
9: end for

10: end for

Using the algorithms Exp(f ) and R(f ) it is possible to create a special ESOP
having a number of remarkable properties which have been specified and proven in
[6].

Definition 1 - SNF( f ) - Take any ESOP of a Boolean function f . The resulting
ESOP of

SNF( f ) = R(Exp( f )) (7)

is called Specialized Normal Form (SNF) of the Boolean function.

3 Adjacency Graphs of a SNF

The adjacency graph of an SNF emphasizes some implicit knowledge about the
SNF. Edges of the graph describe structural relationships between the cubes of the
SNF which are used as labels of the vertices.
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Definition 2 - Adjacency Graph AGSNF( f )(V,E) of the SNF( f ) - The vertices V of
the adjacency graph AGSNF( f )(V,E) correspond to the cubes of the SNF( f ). Each
vertex carries the ternary vector of the associated cube as label. Two vertices V of
AGSNF( f )(V,E) are connected by an edge, if the associated labels have a distance
equal to one, i.e. they differ exactly in one position of the ternary vectors.

Figure 1 (a) shows the adjacency graph of a very simple function that can be
expressed by a single cube. A more complex adjacency graph isshown in Figure 2.

It was proven in [6] that the adjacency graph of a Boolean function f : Bk→ B
is a k-regular graph. Each vertex in ak-regular graph has a degree ofk, which
means that each vertex is connected by edges withk other vertices.

The regularity of the adjacency graph offers a new basic approach for calculat-
ing an exact minimal ESOP. A cube of the minimal ESOP can be calculated based
on one vertex of the adjacency graph of the SNF(f ) and itsk neighbors. The ele-
ments of each pair of neighboring vertices of the adjacency graph differ in exactly
one variable of the two associated cubes. These values correspond to the right-hand
side of the formulas (1), (2), or (3) such that the cube for theminimal ESOP can
be created from the left-hand side values. Thek adjacent edges of the basic ver-
tex select allk variables of a cube. This property exists because of the complete
expansion in Algorithm 1.

Figure 1 illustrates the procedure how a cube of the minimal ESOP can be re-
constructed from a selected cube of the SNF and its neighboring vertices in the ad-
jacency graphAGSNF( f )(V,E). The ternary notation uses the mapping(x→ 1,x→
0,1→ -). As an example the cube(-01) was selected in the SNF, indicated by
double circles in the adjacency graph of Figure 1 (a). The three adjacent edges of
the vertex(-01), indicated by double lines in Figure 1 (a), end on such vertices
having a different value in exactly one position. As can be seen in Figure 1, the
different values in the three adjacent pairs of vertices occur once in each position.
This property comes from the expansion algorithm Exp(f ) and is used in the re-
verse direction for the reconstruction of a cube of the minimal ESOP. As shown in
Figure 1 (b), each adjacent pair of vertices covers two values of the set{0,1,-}
in the position where they differ. The remaining third valueof this set is taken in
that position for the reconstructed cube. We call this procedurehypercube corner
compaction, or shortly HCCC(AG,Vs).

As example for further studies we use the following Boolean function:

f (x1,x2,x3) = x1x3⊕ x1x2x3 (8)

The reduction algorithm R(f ) does not destroy the property that the adjacency
graph is ak-regular graph. Figure 2 shows both the effect of removing a pair of
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Fig. 1. Reconstruction of the cubef (x1,x2,x3) = x1x3 of the minimal ESOP from its SNF: (a)
Adjacency graphAGSNF( f )(V,E) of the functionf (x1,x2,x3) = x1x3 (vertices are labeled by ternary
values of(x1,x2,x3)) (b) Reconstruction of the cube(1-0) of the minimal ESOP using the selected
cube(-01) of the SNF and its neighbors

cubes creating the SNF(f ) and the application of the approach to find a minimal
ESOP introduced above.

The SNF in Figure 2 is created for the Boolean function (8). The expanded
hypercubes are visible in Figure 2,x1x3 in the bottom left area andx1x2x3 in the
top right area, respectively. Note, these cubes have a distance of 3 so that 2(3−3) = 1
pair of common cubes exist after the expansion. The pair of common cubes is
indicated by dotted circles in Figure 2.

Embedded in the procedure that creates the SNF, the algorithm R(f ) removes
this pair of cubes. The adjacent edges indicated by dotted lines are removed from
the adjacency graph too. Three new edges connect both hypercubes so that the
adjacency graphAGSNF( f )(V,E) remainsk-regular. One of the new edges and two
of the removed edges form a triangle where the adjacent vertices differ in exactly
one position and all three values of the set{0,1,-} appear.

The minimal ESOP can be calculated as described above. In Figure 2 the
vertices(-01) and(1-0), indicated by double circles, were selected in the ad-
jacency graph of the SNF(f ). The vertex(-01) and its neighbors lead to the
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Fig. 2. Reconstruction of the minimal ESOPf (x1,x2,x3) = x1x3⊕ x1x2x3 from the adjacency graph
AGSNF( f )(V,E)

cube(1-0) that is x1x3. The function HCCC(AG,(1-0)) creates the second
solution cube(001) that isx1x2x3. Based on this selection the minimal ESOP
f (x1,x2,x3) = x1x3⊕ x1x2x3 has been found.

The adjacency graph of the SNF(f ) in Figure 2 consists of 14 vertices. Each of
these vertices is adjacent to three other vertices. From this point of view the vertices
of the adjacency graph cannot be distinguished. The question arises, whether each
vertex of the adjacency graph of the SNF(f ) leads to a cube of the exact minimal
ESOP off . In order to answer this question, Table 1 enumerates all created cubes
based on each selected cube ofAGSNF( f )(V,E) of Figure 2.

The created cubes and the associated conjunctions in the first 4 lines and in the
last 4 lines of Table 1 show the cubes of the minimal ESOP; several other cubes
can be created as well. This example shows that in general noteach vertex of the
adjacency graph of the SNF(f ) can be used to reconstruct the exact minimal ESOP
of f . On the other hand 8 of 14 cubes lead by means of the suggested HCCC
approach to the cubes of the exact minimal ESPO.
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Table 1. All reconstructed cubes of the adjacency graph of the SNF(f ) of Figure 2

selected neighbor neighbor neighbor created associated
cube cube 1 cube 2 cube 3 cube conjunction
001 -01 011 00- 1-0 x1x3

-01 001 -11 -0- 1-0 x1x3

011 -11 001 01- 1-0 x1x3

00- -0- 01- 001 1-0 x1x3

01- 11- 00- 011 --0 x3

-0- 00- --- -01 110 x1x2x3

-11 011 -01 -10 1-- x1

-10 110 --0 -11 00- x1x2

--- 1-- -0- --0 011 x1x2x3

11- 01- 1-- 110 -01 x2x3

--0 1-0 -10 --- 001 x1x2x3

110 -10 1-0 11- 001 x1x2x3

1-- --- 11- 1-0 001 x1x2x3

1-0 --0 110 1-- 001 x1x2x3

It seems that the regularity of the adjacency graph of the SNF( f ) inhibits the
selection of suitable cubes for the reconstruction of the exact minimal ESOP of
f . Table 2 enumerates this uniform information for the adjacency graph of the
Boolean function (8).

Table 2. Degrees of the vertices of the adjacency graph of theSNF(f ) of Figure 2

Vertex Degree
001 3
-01 3
011 3
00- 3
01- 3
-0- 3
-11 3
-10 3
--- 3
11- 3
--0 3
110 3
1-- 3
1-0 3
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An approach was suggested in [13] that overcomes this restriction. Its idea is
derived from the basic method to create a minimal ESOP from a given SNF(f ) that
consists of two steps:

1. add a minimal number of pairs of cubes to the SNF which fill upthe partial
hypercubes covered by the SNF,

2. compress the hypercubes inversely to the expansion algorithm.

The pairs of cubes to be added are not part of the SNF. At least some of the
cubes to be added have a distance one to some of the SNF cubes. Each cube of
an ESOP has 2∗ k cubes of a distance one, due to formulas (1), (2), or (3) and the
numberk of variables in the function. The SNF covers exactlyk of these cubes.
The otherk cubes are located in a distance-one wrapper outside of the SNF and
can be used to find suitable basic cubes for HCCC in the adjacency graph of the
SNF(f ).

Definition 3 - Distance-one wrapper cubes of the SNF( f ) - Each cube from the
same Boolean space like f that does not belong to SNF( f ), but has a distance of one
to at least one cube of the SNF( f ) is a distance-one wrapper cube of the SNF( f ).

Figure 3 shows all distance-one wrapper cubes of the SNF(f ) of the function
(8) as nodes visualized in dotted circles around the adjacency graph depicted by
solid lines and circles.

Definition 4 - Extended adjacency graph of the SNF( f ):
EAGSNF( f )(V,E) - The extended adjacency graph of the SNF( f ) consists of the
adjacency graph AGSNF( f )(V,E) of the SNF( f ) as core extended by vertices of all
distance-one wrapper cubes of the SNF( f ) and edges between these wrapper ver-
tices and the core vertices of the SNF cubes with a distance of one. There are no
edges between the wrapper vertices.

Figure 3 shows the extended adjacency graph EAGSNF( f )(V,E) of the SNF(f )
of the function (8) as example. Notice: each node of the embedded adjacency graph
is connected with 6 nodes, 3 nodes of the embedded adjacency graph and 3 nodes
of distance-one wrapper cubes, because the represented function (8) depends on
k = 3 variables.

The degree of a vertex is the number of edges ending at that vertex. In con-
trast to the degree of the adjacency graph AGSNF( f )(V,E) the degree of the wrapper
vertices of the extended adjacency graph EAGSNF( f )(V,E) is not unique. Table 3
enumerates the degrees of the wrapper vertices of EAGSNF( f )(V,E) of the Boolean
function (8).
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Fig. 3. Extended adjacency graphAGSNF( f )(V,E) of f (x1,x2,x3) = x1x3⊕x1x2x3

Weights of the core vertices can be calculated using the degrees of the wrap-
per vertices of EAGSNF( f )(V,E) as described in the algorithm 3. Thedegree()
function in line 2 counts the number of edges ending at the given vertex.

The weights of the wrapper vertices of the Boolean function (8) are shown in
the second column of Table 3. The weights of the core verticesare enumerated
in Table 4. The minimal weights of core vertices in the EAGSNF( f )(V,E) indicate
cubes to be selected for the reconstruction procedure of theexact minimal ESOP
introduced above.

The minimal weight in Table 4 is 6 for the SNF vertices labeledby (001) and
(1-0), respectively. In Table 1 the associated cubesx1x3 andx1x2x3 of the minimal
ESOP of the functionf (x1,x2,x3) = x1x3⊕ x1x2x3 are given.
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Table 3. Degree of the wrapper vertices of the extended adjacency graph of the
SNF(f ) of Figure 2. In the third column the adjacent vertices of thewrapper vertices
in AGSNF( f )(V,E) are enumerated.

Vertex Degree Adjacent Vertices of Wrapper Vertices
101 2 001 -01
0-1 2 001 011
000 2 001 00-
--1 4 -01 -11 --0 ---
-00 4 -01 -0- -10 --0
0-- 4 01- --- 1-- 00-
-1- 6 01- -0- -11 11- -10 ---
010 4 011 01- 110 -10
111 4 011 -11 11- 110
10- 4 -0- 11- 1-- 00-
0-0 2 1-0 --0
100 2 1-0 11-
1-1 2 1-0 1--

Algorithm 3 Calculate Weights for the vertices of the extended adjacency graph
EAGSNF( f )(V,E)

Require: extended adjacency graph EAGSNF( f )(V,E) of a Boolean functionf
Ensure: weights of all vertices of EAGSNF( f )(V,E)

1: for all wrapper verticesVw[i] of EAGSNF( f )(V,E) do
2: weight(Vw[i])← degree(Vw[i])
3: end for
4: for all core verticesVc[ j] of EAGSNF( f )(V,E) do
5: weight(Vc[ j])← 0
6: for all adjacent wrapper verticesVw[i] of the extended adjacency graph

EAGSNF( f )(V,E) do
7: weight(Vc[ j])← weight(Vc[ j])+weight(Vw[i])
8: end for
9: end for

4 Peculiarities of Most Complex Boolean Functions

There are 22
n

Boolean function ofn variables. These functions can be expressed
by ESOPs. The number of different cubes in an ESOP is given by the interval
[0,3n]. Thus, the number of cubes of an ESOP is a simple complexity measure. We
restrict to ESOPs that do not include any cube twice. There are 23n

such ESOPs of
n variables.
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Table 4. Weights (right column) of the core vertices (left column) of the
extended adjacency graph of the SNF(f ) of Figure 2

Vertex Weight
001 6
-01 10
011 10
00- 10
01- 14
-0- 14
-11 14
-10 14
--- 14
11- 14
--0 10
110 10
1-- 10
1-0 6

Using the SNF, it was shown in [6] that there are, for each Boolean function,
exactly 23

n
/22n

different ESOPs that do not include any cube more than once. A
more precise measure of the complexity of a Boolean functionis therefore the num-
ber of cubes in its shortest ESOP. The problem with this measure is the difficulty
of finding the shortest ESOP, and several shortest ESOPs of the same function can
exist.

A unique ESOP of each Boolean function is defined by its SNF. Thus, the
number of cubes in the SNF is a next candidate for a complexitymeasure of a
Boolean function. It is known from [6], [12], and [13] that all Boolean functions
with the largest SNF belong to the set of Boolean functions that need the largest
number of cubes in their shortest ESOP. This statement does not hold for the reverse
direction. Evidently, in the set of such Boolean functions that require the largest
number of cubes in their shortest ESOP, there is a subset of functions that belong
to the set of functions with the largest number of cubes in itsSNF.

See for example Table 8. There are 66 functions of three variables that require
three cubes in their shortest ESOP. 54 of these functions have 16 cubes in their SNF,
and the remaining 12 functions have 18 cubes in their SNF. Obviously, the number
of cubes in a minimal ESOP conceals the complexity of a Boolean function which
can be detected by the SNF. This leads to the following definition.

Definition 5 - Most complex Boolean functions f - The set of Boolean functions
of n variables that needs the largest number of cubes in their unique SNF( f ) is
called the set of most complex Boolean functions.
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There are peculiarities of most complex Boolean function that affect the HCCC
function mentioned above. These peculiarities will be discussed in the following.
Initially it is amazing that the same peculiarities occur for certain classes of simpler
functions of a Boolean space. The reason for that observation will be explained too.

The HCCC function evaluates the weight of the extended adjacency graph
EAGSNF( f )(V,E) calculated by algorithm 3. In the simple case where thefunc-
tion can be expressed by a single cube, all SNF cubes carry thesame weight. It
is irrelevant which cube of the SNF is selected for the HCCC function. Based on
each of them the HCCC function creates the same correct solution cube. This case
can be detected by formula (9). Such an adjacency graph can becalledcompletely
convex, because it describes an hypercube, and the HCCC function finds the same
solution for each SNF cube.

|SNF( f (x1, . . . ,xn)|= 2n. (9)

Generally, if more than one cube is required to express a function by a minimal
ESOP, the smallest weights calculated by algorithm 3 indicate the basic cubes re-
quired for the HCCC function. The adjacency graph does not include any complete
hypercube in this case. The smallest weights indicate remaining hypercube cube
corners of cubes belonging to the minimal ESOP. For that reason such adjacency
graphs are calledpartially convex.

An interesting observation is that the larger the number of cubes in the SNF the
smaller is the difference between the values of the weights calculated by algorithm
3. One exception of this rule is the simple case of a complete convex adjacency
graph mentioned above. The second more important peculiarity occurs in the case
of a most complex function.

All weights calculated by algorithm 3 have the same value if amost complex
function is evaluated. However, there is not any remaining hypercube cube corner
of cubes belonging to the minimal ESOP. Such an adjacency graph is therefore
calledcompletely concave. This peculiarity in the associated adjacency graph of a
most complex function requires a modification in the HCCC function.

Each cube in the adjacency graph of a most complex function can be taken
to create its minimal ESOP. Due to the completely concave adjacency graph all
pseudo-hypercube cube corners point in the inverse direction. For that reason this
direction must change by changing exactly one value in the solution cube. The last
column in Table 5 enumerates the values that must be taken in this special case.
A precondition is that for a chosen variable all three possible values appear in the
SNF.

In a first experiment the exact minimal ESOPs of all Boolean functions of a few
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Table 5. Assignment of values in the HCCC function

value ofx j value ofx j default value peculiar value
in the selected in the adjacent of x j in the of x j in the

basic cube SNF cube solution cube solution cube
0 1 − 1
0 − 1 −

1 0 − 0
1 − 0 −

− 0 1 0
− 1 0 1

Boolean variables were calculated. For that purpose each Boolean functionf of a
fixed number of variables was first created, in a second step transformed into the
SFN(f ), and in a third step minimized by the algorithm described above. Finally,
each function was associated to the class characterized by the number of cubes of
the SNF in combination with the number of cubes of the exact minimal ESOP of
f . The cubes of all exact minimal ESOPs were selected by the modified HCCC
function.

The Tables 6, 7, 8, and 9 show protocols of the calculations ofall exact
minimal ESOPs off : Bk → B,k = 1, . . . ,4 using the modified HCCC function
explained above. In these Tables the following symbols havebeen used:

# ALLBF the number of all Boolean
functions in the Boolean space,

# SNF the number of cubes of the SNF,
# EMIN the number of cubes of the exact

minimal ESOP, and
# BF the number of Boolean functions,

specified by# SNF and# EMIN.

Generally the Tables 6, 7, 8, and 9 show both the dependency ofmost com-
plex functions on the associated Boolean space and a classification of all Boolean
function by the number of cubes in the SNF and in the exact minimal ESOP. These
Tables confirm that the maximal number of cubes in an exact minimal ESOP occur
in most complex functions. However, Table 8 shows that thereexist some func-
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Table 6. Complexity classes of all exact minimal ESOPs of 1 variable

# ALLBF = 4
# SNF = 0 # EMIN = 0 # BF 1
# SNF = 2 # EMIN = 1 # BF 3

Table 7. Complexity classes of all exact minimal ESOPs of 2 variables

# ALLBF = 16
# SNF = 0 # EMIN = 0 # BF 1
# SNF = 4 # EMIN = 1 # BF 9
# SNF = 6 # EMIN = 2 # BF 6

Table 8. Complexity classes of all exact minimal ESOPs of 3 variables

# ALLBF = 256
# SNF = 0 # EMIN = 0 # BF 1
# SNF = 8 # EMIN = 1 # BF 27
# SNF = 12 # EMIN = 2 # BF 54
# SNF = 14 # EMIN = 2 # BF 108
# SNF = 16 # EMIN = 3 # BF 54
# SNF = 18 # EMIN = 3 # BF 12

tions not belonging to the most complex functions, but having the same number of
cubes in their minimal ESOPs.

From these complete enumerations further information about most complex
functions can be discovered. First,nSNF

max (k) is the number of cubes of the most
complex SNF(f ) of k variables

nSNF
max (k) = 2∗3k−1, (10)

and second,nBF
max(k) is the number of the most complex SNF(f ) of k variables

nBF
max(k) = 3∗2k−1. (11)

Both formulas (10), and (11) generalize information for thelast lines of Tables 6,
7, 8, and 9.

The set of all Boolean functions ofk variables,k > 1, includes all Boolean
functions that can be expressed byk− 1 variables. This property influences the
HCCC function such that completely concave adjacency graphs occur not only for
the most complex functions ofk variables, but also for SNF classes that include
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Table 9. Complexity classes of all exact minimal ESOPs of 4 variables

# ALLBF = 65536
# SNF = 0 # EMIN = 0 # BF 1
# SNF = 16 # EMIN = 1 # BF 81
# SNF = 24 # EMIN = 2 # BF 324
# SNF = 28 # EMIN = 2 # BF 1296
# SNF = 30 # EMIN = 2 # BF 648
# SNF = 32 # EMIN = 3 # BF 648
# SNF = 34 # EMIN = 3 # BF 3888
# SNF = 36 # EMIN = 3 # BF 6624
# SNF = 36 # EMIN = 4 # BF 108
# SNF = 38 # EMIN = 3 # BF 7776
# SNF = 40 # EMIN = 3 # BF 2592
# SNF = 40 # EMIN = 4 # BF 6642
# SNF = 42 # EMIN = 3 # BF 216
# SNF = 42 # EMIN = 4 # BF 14256
# SNF = 44 # EMIN = 4 # BF 12636
# SNF = 46 # EMIN = 4 # BF 3888
# SNF = 46 # EMIN = 5 # BF 1296
# SNF = 48 # EMIN = 5 # BF 1944
# SNF = 50 # EMIN = 5 # BF 648
# SNF = 54 # EMIN = 6 # BF 24

the most complex functions of smaller Boolean spaces. Table10 enumerates such
classes of SNF by its cube numbers, in which the minimal and the maximal weights
calculated by algorithm 3 are equal. These classes can be calculated for eachk by
(12).

nSNF
wmin=wmax

(k, i) = 2(k−i) ∗3i |k > 1, i = 1, . . . ,k−1 (12)

5 Calculation of Most Complex Boolean Functions

Table 10. Classes of SNFs, whereweightmin = weightmax

number of variables #SNF, whereweightmin = weightmax

k i = 1 i = 2 i = 3
2 21 ∗31 = 6
3 22 ∗31 = 12 21 ∗32 = 18
4 23 ∗31 = 24 22 ∗32 = 36 21 ∗33 = 54
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Algorithm 4 Calculate most complex function MCF(k,s)
Require: k: number of variables in the function,k ≥ 1

s: selection index of the most complex function, 0≤ s≤ 3∗2k−1

Ensure: function vectormc fs of the most complex function, defined byk ands
1: if k = 1 then
2: mc fs← s+1
3: else
4: remainder← s mod 3
5: selection← s/3
6: direction← selection mod 2
7: base← (selection/2)∗3
8: len2← 2k−1

9: if direction = 0 then
10: mc fs← [MCF(k−1,base+((remainder +1) mod 3))]∗2len2

+MCF(k−1,base+((remainder +2) mod 3))
11: else
12: mc fs← [MCF(k−1,base+((remainder +3−1) mod 3))] ∗2len2

+MCF(k−1,base+((remainder +3−2) mod 3))
13: end if
14: end if

A detailed evaluation of all most complex function showed that these func-
tions can be calculated by a recursive algorithm. The required base cases are given
by the most complex functions of one variable. The last line in Table 6 shows
that there are three most complex function of one variable. These functions can
be enumerated by their function vectors: (01), (10), and (11). These base cases
are implemented in line 2 of algorithm 4. The algorithm 4 calculates each most
complex function recursively.

The lines 4 to 8 of algorithm 4 prepare the recursion. The Boolean value
direction decides about the direction in which basic functions from a lower level
of recursion have to be combined. The multiplication by 2len2 in lines 10 and 12
move the associated function vector by its size bits so that the most outer additions
in these lines combines the basic functions.

Of cause, the simple operations 3−1 and 3−2 in line 12 of the algorithm can
be substituted by the values 2 and 1, respectively. The used style emphasizes the
inverse direction in comparison to line 10 of algorithm 4. Two recursive calls of
the function MFC(k,s) either in line 10 or in line 12 generate the required basic
function.
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Table 11 enumerates all most complex Boolean functions depending onk =
1, . . . ,4 variables. The content of this Table was calculated using the algorithm 4.
It can be seen in Table 11 that the root of all most complex functions are the trivial
functions f1(x) = x, f2(x) = x, and f3(x) = 1. Using the recursive algorithm 4 any
most complex Boolean function can be calculated very quickly.

Table 11. Enumeration of most complex Boolean functions by hexadecimal function vectors

k = 1 k = 2 k = 3 k = 4
3 MCF of 6 MCF of 12 MCF of 24 MCF of
1 variable 2 variables 3 variables 4 variables
mcf[ 0] = 1 mcf[ 0] = b mcf[ 0] = d6 mcf[ 0] = 6bbd
mcf[ 1] = 2 mcf[ 1] = d mcf[ 1] = 6b mcf[ 1] = bdd6
mcf[ 2] = 3 mcf[ 2] = 6 mcf[ 2] = bd mcf[ 2] = d66b

mcf[ 3] = e mcf[ 3] = 6d mcf[ 3] = bd6b
mcf[ 4] = 7 mcf[ 4] = b6 mcf[ 4] = d6bd
mcf[ 5] = 9 mcf[ 5] = db mcf[ 5] = 6bd6

mcf[ 6] = 79 mcf[ 6] = b6db
mcf[ 7] = 9e mcf[ 7] = db6d
mcf[ 8] = e7 mcf[ 8] = 6db6
mcf[ 9] = 97 mcf[ 9] = dbb6
mcf[10] = e9 mcf[10] = 6ddb
mcf[11] = 7e mcf[11] = b66d

mcf[12] = 9ee7
mcf[13] = e779
mcf[14] = 799e
mcf[15] = e79e
mcf[16] = 79e7
mcf[17] = 9e79
mcf[18] = e97e
mcf[19] = 7e97
mcf[20] = 97e9
mcf[21] = 7ee9
mcf[22] = 977e
mcf[23] = e997

6 Conclusion

This paper investigates most complex Boolean functions. The complexity was mea-
sured by the number of cubes in an ESOP. Among several possibilities in order to
specify most complex Boolean functions precisely, a definition of most complex
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Boolean functions has been given. This definition has been based on the SNF
which was introduced briefly.

In the context of most complex functions a peculiarity of adjacency graphs was
detected. While the adjacency graphs of all other Boolean functions are at least
partially convex, all most complex Boolean functions lead to concave adjacency
graphs. This affects the selection of cubes belonging to theexact minimal ESOP
and requires a modification of the HCCC function. This modification was explained
in detail.

The most complex functions of a given Boolean space are members of the set of
all function of any larger Boolean space. Although such a function does not belong
to the class of most complex functions in the larger Boolean space, all of its weights
calculated by algorithm 3 have the same value. This indicates that the property of
a concave adjacency graphs is strongly connected to the function which belongs in
any Boolean space to the set of the most complex functions. The modified HCCC
function selects also in this case a right column for the particular association of the
value based on Table 5.

The experimental results confirm that the modified HCCC function creates ex-
act minimal ESOPs. Using these results, formulas for both the number of cubes
in the SNF for most complex Boolean functions and the number of most complex
Boolean functions were explored. Based on these quantitiesan recursive algorithm
was found that generates any most complex Boolean function depending on the
number of variables and an order number of the most complex function. This algo-
rithm generates very quickly any most complex Boolean function. For the Boolean
spacesBk,k = 1, . . . ,4, all most complex function was calculated and enumerated
in Table 11.

The classification of Boolean functions based on both the number of cubes in
their SNFs and the number of cubes in their exact minimal ESOPs extends the
knowledge about Boolean functions and may be a root for further theoretical re-
sults. The knowledge about peculiarities of most complex Boolean functions sup-
ports these research.
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