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Most Complex Boolean Functions Detected by the
Specialized Normal Form

Bernd Steinbach

Abstract: It is well known that Exclusive Sum-Of-Products (ESOP) egsions for

Boolean functions require on average the smallest numbeuloés. Thus, a simple
complexity measure for a Boolean function is the number dfesuin its simplest
ESOP. It will be shown that this structure-oriented measdithe complexity can be
improved by a unique complexity measure which is based ofutiigtion. Thus, it is

suggested to detect all most complex Boolean functions mm@esely by means of
the Specialized Normal Form (SNF). The SNF is a unique (caayrESOP repre-
sentation of a Boolean function. In this paper propertighefimost complex Boolean
functions are studied. Adjacency graphs of the SNF will bedu® calculate mini-

mal ESOPs as well as to detect special properties of mostlearBpolean functions.
These properties affect the procedure of finding exact mahlESOPs. A solution is
given that overcomes these observed problems. Using the tBBlRumber of most
complex Boolean functions was found. A recursive algoritlith be given that cal-

culates each most complex Boolean function for a given numibeariables.

Keywords: Boolean function, complexity, specialized normal formjque ESOP,
exact minimal ESOP, adjacency graph, hypercube corner aotiom (HCCC).

1 Introduction

Knowledge about most complex Boolean functions can be hiledysf upper bound
in minimization algorithms and may even control such aldponis. A very simple
measure of the complexity of Boolean functions is the nunabgrates needed for
their realization in a circuit. Unfortunately the selectiof gates strongly affects
this measure [1]. Alternatively the number of terms in a falanor the number
of nodes in a graph representation can be taken as a meastire cdmplexity
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of Boolean functions. Again, formulas or graphs of diffdreize can express the
same Boolean function and complicate the definition of tbemplexity.

Taking this observation into account, a unique represiematf Boolean func-
tions is an appropriate basis of a complexity measure of @oofunctions. Of
cause, the complexity measure must be consistent with feeo$icircuit realiza-
tions of the evaluated Boolean function. That means, a higbmplexity of a
Boolean function leads basically to a larger size of theudirc

A Binary Decision Diagram (BDD) [2], [3] is a unique represation of a
Boolean function, if the order of variables is fixed. Genlgrahe number of nodes
of a BDD can be a complexity measure of the represented Bodigection, but
this number depends on the chosen order of variables in thHe. Bignce, BDDs
are also not suitable as a basis for a complexity measure.

Further unique representations of Boolean functions agecthssical normal
forms [4]:

e disjunctive normal form,

e conjunctive normal form,
e antivalence normal form,
e equivalence normal form.

The number of terms in these forms is also a candidate for @ity measure for
the represented function. The largest number of disjunstio a disjunctive normal
form or antivalence normal form occurs for the simple fuotf = 1 which is quite
a simple function. Similarly, the largest number of conjumies in a conjunctive
normal form or equivalence normal form occurs for the simfection f = 0,
which is the simplest function at all. Hence, the classicatmal forms are not
suitable as a basis for a complexity measure too.

The theory of Boolean normal forms was significantly extehde[5]. Es-
pecially normal forms based dexclusive Sum-Of-Products (ESOP) were studied.
One class of normal forms are polynomials with a fixed pojafitegated or not
negated) for each variable. Similar to BDDs, the number sjidictions in a unigque
polynom depends on the chosen polarity vector. Hence, ldgs of normal forms
is not suitable as the basis for a complexity measure too.

Ultimately, another ESOP-based unique normal form wasided into the the-
ory of Boolean normal forms in [5]. ThiSpecialized Normal Form (SNF) was
suggested in [6]. The SNF is a specifically selected ESOP.r@$earch for ex-
act minimal ESOPs leads us to a new understanding of the raogilex Boolean
functions. The history of research in exact ESOP minimarais much shorter
than the history of research in exact Sum-Of-Products (S@iR)mization. It is
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known from [7] that the ESOP representation of Boolean fionst is typically
more compact than the SOP representation.

In [8] the problem of exact ESOP minimization was reducedhi® finding
of a satisfying assignment of constraints. Unfortunatélis approach is strongly
limited, because the number of variables in the used Hdllifiwection is equal to
3¢, This approach was generalized in [9] such that a function wériables can
be minimized if the exact minimum for all functions af—k (k > 1) variables
is known. Based on this idea in [10] a practical solution fibrfanctions of 6
variables was presented. A slightly modified approach wggested in [11]. The
exact minimal ESOP should be found using the exact minimaESof three
subfunctions.

A quite different approach was suggested in [6]. Using twy &mple trans-
formations, each ESOP of the Boolean functibecan be expressed by a unique
ESOP, called specialized normal form (SNF). Several héfpfuperties of the SNF
have been proved. The basic idea for finding an exact minirB&Eis to add the
smallest number of cubes to the SNF and apply the expansiosftirmation in the
reverse direction. The detection of the potential soluiabes was controlled by
weights derived from the SNF. In [12] the method for selagolution cubes was
improved.

Using the SNF approach based on weights, the exact minimaFa&as found
for nearly all functions. In some cases the weight method do¢indicate the right
direction. In [13] this gap was closed using a HCCC functiasdad on the adja-
cency graph of the SNF and an extended adjacency graph. HC&Gabbreviation
of hypercube corner compaction.

It is an interesting observation that by means of the gem¢@a C function the
exact minimal ESOPs were found for almost all Boolean fumsti The remaining
very small set of Boolean functions turns out to be the sehefrhost complex
functions. This offers a very simple complexity measure @daolean function
based on its SFN that will be given in this paper.

Detailed studies reveal special properties of the most ¢exnipoolean func-
tions. These properties indicate that a slightly change@€8®&inction is necessary
in order to find the exact minimal ESOPs of the most complextion, too. Both
the special properties of the most complex Boolean funstiamd their utilization
in the extended HCCC function will be shown in this paper.

Using the SNF, the number of most complex Boolean functianddcbe de-
termined. A recursive algorithm will be given that enumegsaall most complex
Boolean function for a given number of variables. This kremge about most
complex Boolean functions extends the theory of Booleagstid].

The rest of the paper is organized as follows. The SNF isdiuized in Sec-
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tion 2 in a compact manner as unique basic representatiooa@&Bn functions for
all further studies. Adjacency graphs in Section 3 revegldartant properties of the
detection of exact minimal ESOPs and the complexity of tipeagented Boolean
function. Peculiarities of most complex Boolean functi@me studied in detail in
Section 4. The extended HCCC function will be introducedhérrecursive algo-

rithm that allows to calculate any of the most complex Bool&actions is given

in Section 5. Experimental results are given in Sectionsdzarkinally, in Section

6 this paper will be summarized.

2 Specialized Normal Form - SNF

An algebraic property of the exclusive-or operation andBloelean variablex is
visible in the following formulas:

- %ol (1)
X = 1lox )
1 = X&X 3

These three formulas show that each element of théxsetl} has the same prop-
erties. For each variable in the support of the Boolean fanct, exactly one
left-hand side element of (1), (2) or (3) is included in eache of an ESOP of
function f. An application of these formulas from the left to the rigloulles the
number of cubes and is callexpansion The reverse application of these formu-
las from the right to the left halves the number of cubes amdlisdcompression
Using two laws of the Boolean ring: neutral element 0 (4), Eleinpotency (5), a
next important property of the exclusive-or operation f@@olean functionf and

a cubeC (6) can be concluded.

f = faoo 4)
0 = CaC (5)
f = foCoacC (6)

It follows from these formulas that two identical cubes carabded to or removed
from any ESOP without changing the represented function.

The SNF can be defined using two simple algorithms based oprtperties
mentioned above.

The expand() function in line 3 expands the culgg with respect to the
variableV; into the cube£,; andC,, based on the fitting formula (1), (2) or (3).
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Algorithm 1 Calculate Expf)
Require: any ESOP of a Boolean functidin
Ensure: complete expansion of the Boolean functibw.r.t. all variables of its
support
1: for all variablesv; of the support off do
2:  forall cubesC; of f do
3 (Cn1,Cr2) < expand(Cj,V;)
4: replaceC; by (Cn1,Cn2)
5
6:

end for
end for

Algorithm 2 Calculate R{)
Require: any ESOP of a Boolean functidghncontainingn cubes
Ensure: reduced ESOP of containing no cube more than once
1: fori<—0Oton—2do
2. for j«—i+1ton—1do

3: if G = Cj then
4: C—Cya
5: Cj —Choo
6: n«—n-2

7 j—i

8: end if

9: endfor

10: end for

Using the algorithms Exg@d( and R(f) it is possible to create a special ESOP
having a number of remarkable properties which have beetifiggband proven in

[6].

Definition 1 - SNF(f) - Take any ESOP of a Boolean function f. The resulting
ESOP of
SNF(f) = R(Exp(f)) (7)

is called Specialized Normal Form (SNF) of the Boolean function.

3 Adjacency Graphs of a SNF

The adjacency graph of an SNF emphasizes some implicit letmel about the
SNF. Edges of the graph describe structural relationshépsden the cubes of the
SNF which are used as labels of the vertices.
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Definition 2 - Adjacency Graph AGNF(T)(V.E) of the SNF(f) - TheverticesV of
the adjacency graph AGSNF()(V, E) correspond to the cubes of the SNF(f). Each
vertex carries the ternary vector of the associated cube as label. Two verticesV of
AGNF(1) (v E) are connected by an edge, if the associated labels have a distance
equal to one, i.e. they differ exactly in one position of the ternary vectors.

Figure 1 (a) shows the adjacency graph of a very simple fandtiat can be
expressed by a single cube. A more complex adjacency grabloven in Figure 2.

It was proven in [6] that the adjacency graph of a Booleantioncf : B — B
is ak-regular graph. Each vertex in &-regular graph has a degree lgfwhich
means that each vertex is connected by edgeskwther vertices.

The regularity of the adjacency graph offers a new basicar for calculat-
ing an exact minimal ESOP. A cube of the minimal ESOP can lmutzed based
on one vertex of the adjacency graph of the SNR(nd itsk neighbors. The ele-
ments of each pair of neighboring vertices of the adjacemaplydiffer in exactly
one variable of the two associated cubes. These valuespord to the right-hand
side of the formulas (1), (2), or (3) such that the cube forrfieimal ESOP can
be created from the left-hand side values. Kradjacent edges of the basic ver-
tex select alk variables of a cube. This property exists because of the enp
expansion in Algorithm 1.

Figure 1 illustrates the procedure how a cube of the minin®&DP. can be re-
constructed from a selected cube of the SNF and its neighdpegrtices in the ad-
jacency graptAGSNF(1)(V,E). The ternary notation uses the mapp{mg— 1,X —
0,1 — - ). As an example the culde 01) was selected in the SNF, indicated by
double circles in the adjacency graph of Figure 1 (a). Thedtadjacent edges of
the vertex( - 01) , indicated by double lines in Figure 1 (a), end on such vestic
having a different value in exactly one position. As can bense Figure 1, the
different values in the three adjacent pairs of verticesiponice in each position.
This property comes from the expansion algorithm Ejp{nd is used in the re-
verse direction for the reconstruction of a cube of the maliE@SOP. As shown in
Figure 1 (b), each adjacent pair of vertices covers two \&mbfehe sef0, 1, - }
in the position where they differ. The remaining third valfethis set is taken in
that position for the reconstructed cube. We call this paoice hypercube corner
compaction, or shortly HCCCAG, Vs).

As example for further studies we use the following Booleamction:
f(X1,X2,X3) = X1X3  X1X2X3 (8)

The reduction algorithm R( does not destroy the property that the adjacency
graph is ak-regular graph. Figure 2 shows both the effect of removingia @f
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Fig. 1. Reconstruction of the cubi(x1,x2,X3) = x1X3 of the minimal ESOP from its SNF: (a)
Adjacency graptAGNF(f) (V,E) of the functionf (xq, x2,X3) = X1X3 (vertices are labeled by ternary
values of(xq,x2,x3)) (b) Reconstruction of the culfel- 0) of the minimal ESOP using the selected
cube( - 01) of the SNF and its neighbors

cubes creating the SNF(and the application of the approach to find a minimal
ESOP introduced above.

The SNF in Figure 2 is created for the Boolean function (8)e Ekpanded
hypercubes are visible in Figure #,X3 in the bottom left area anghXox3 in the
top right area, respectively. Note, these cubes have adistef 3 so that 33 =1
pair of common cubes exist after the expansion. The pair ofraon cubes is
indicated by dotted circles in Figure 2.

Embedded in the procedure that creates the SNF, the algoRifi) removes
this pair of cubes. The adjacent edges indicated by dotted lare removed from
the adjacency graph too. Three new edges connect both hyesrcso that the
adjacency grapAGSNF(f)(V, E) remainsk-regular. One of the new edges and two
of the removed edges form a triangle where the adjacentcesrtliffer in exactly
one position and all three values of the §@t 1, - } appear.

The minimal ESOP can be calculated as described above. lrei@ the
vertices(- 01) and( 1- 0), indicated by double circles, were selected in the ad-
jacency graph of the SNF}J. The vertex(-01) and its neighbors lead to the
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Fig. 2. Reconstruction of the minimal ESAPxy, X2, X3) = X1X3 & X3 Xox3 from the adjacency graph
AGNF() (v E)

cube( 1- 0) that isx;X3. The function HCCCAG,( 1- 0)) creates the second
solution cubg( 001) that isX1Xox3. Based on this selection the minimal ESOP
f(Xl,Xz,Xg) = X1X3 D X1 XoX3 has been found.

The adjacency graph of the SNij({n Figure 2 consists of 14 vertices. Each of
these vertices is adjacent to three other vertices. Frosrpthint of view the vertices
of the adjacency graph cannot be distinguished. The gueatises, whether each
vertex of the adjacency graph of the SNJ(eads to a cube of the exact minimal
ESOP off. In order to answer this question, Table 1 enumerates atetdecubes
based on each selected cubeAa™F()(V,E) of Figure 2.

The created cubes and the associated conjunctions in th4 fiines and in the
last 4 lines of Table 1 show the cubes of the minimal ESOP rakether cubes
can be created as well. This example shows that in generaauwbt vertex of the
adjacency graph of the SNFY(can be used to reconstruct the exact minimal ESOP
of f. On the other hand 8 of 14 cubes lead by means of the suggegt&{_H
approach to the cubes of the exact minimal ESPO.



Most Complex Boolean Functions ... 267

Table 1. All reconstructed cubes of the adjacency grapheBtF() of Figure 2

selected| neighbor neighbor neighbdr created| associated
cube cube 1 cube 2 cube 3] cube | conjunction
001 -01 011 00- 1-0 X1X3
-01 001 -11 -0- 1-0 X1X3
011 -11 001 01- 1-0 X1X3
00- - 0- 01- 001 1-0 X1X3
01- 11- 00- 011 --0 X3
-0- 00- --- -01 110 X1X2X3
-11 011 -01 -10 1-- X1
-10 110 --0 -11 00- X1Xo
1-- - 0- --0 011 X1X2X3
11- 01- 1-- 110 -01 XoX3
--0 1-0 -10 --- 001 X1X2X3
110 -10 1-0 11- 001 X1X2X3
1-- --- 11- 1-0 001 X1X2X3
1-0 --0 110 1-- 001 X1X2X3

It seems that the regularity of the adjacency graph of the ($NiRhibits the
selection of suitable cubes for the reconstruction of thacexninimal ESOP of
f. Table 2 enumerates this uniform information for the adjagegraph of the
Boolean function (8).

Table 2. Degrees of the vertices of the adjacency graph dBite(f) of Figure 2

Vertex | Degree
001
-01
011
00-
01-
-0-
-11
-10

WWWWWWwWwWwwWwwwwww
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An approach was suggested in [13] that overcomes this cgsti Its idea is
derived from the basic method to create a minimal ESOP froimendSNF(f) that
consists of two steps:

1. add a minimal number of pairs of cubes to the SNF which filthgopartial
hypercubes covered by the SNF,

2. compress the hypercubes inversely to the expansionitigor

The pairs of cubes to be added are not part of the SNF. At leasé ©f the
cubes to be added have a distance one to some of the SNF cubes.clibe of
an ESOP has 2k cubes of a distance one, due to formulas (1), (2), or (3) aad th
numberk of variables in the function. The SNF covers exadtlpf these cubes.
The otherk cubes are located in a distance-one wrapper outside of the s
can be used to find suitable basic cubes for HCCC in the adjgagnaph of the
SNF(f).

Definition 3 - Distance-one wrapper cubes of the SNF(f) - Each cube from the
same Boolean spacelike f that does not belong to SNF(f), but has a distance of one
to at least one cube of the SNF(f) is a distance-one wrapper cube of the SNF(f).

Figure 3 shows all distance-one wrapper cubes of the $N&f(the function
(8) as nodes visualized in dotted circles around the adigcgraph depicted by
solid lines and circles.

Definition 4 - Extended adjacency graph of the SNF(f):

EAGNF(N(VE) - The extended adjacency graph of the SNF(f) consists of the
adjacency graph AGNF(T)(VE) of the SNF(f) as core extended by vertices of all
distance-one wrapper cubes of the SNF(f) and edges between these wrapper ver-
tices and the core vertices of the SNF cubes with a distance of one. There are no
edges between the wrapper vertices.

Figure 3 shows the extended adjacency graph B&E)(V,E) of the SNF()
of the function (8) as example. Notice: each node of the exhixddjacency graph
is connected with 6 nodes, 3 nodes of the embedded adjacesyaly gnd 3 nodes
of distance-one wrapper cubes, because the representetibfu(8) depends on
k = 3 variables.

The degree of a vertex is the number of edges ending at thixveln con-
trast to the degree of the adjacency graphPAG" (V,E) the degree of the wrapper
vertices of the extended adjacency graph BAG" (V,E) is not unique. Table 3
enumerates the degrees of the wrapper vertices of BA® (V,E) of the Boolean
function (8).
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101

Fig. 3. Extended adjacency grapsNF () (V. E) of f(x1,Xp,X3) = X1X3 & X1XoX3

Weights of the core vertices can be calculated using theedsgof the wrap-
per vertices of EAGYF(T)(V,E) as described in the algorithm 3. THegr ee()
function in line 2 counts the number of edges ending at thergixertex.

The weights of the wrapper vertices of the Boolean funct@®nafe shown in
the second column of Table 3. The weights of the core vericesenumerated
in Table 4. The minimal weights of core vertices in the EXG ") (V,E) indicate

cubes to be selected for the reconstruction procedure afxbet minimal ESOP
introduced above.

The minimal weight in Table 4 is 6 for the SNF vertices labedyd001) and
(1- 0), respectively. In Table 1 the associated cul@s andX;Xox3 of the minimal
ESOP of the functiorf (x1,X2,X3) = X1X3 & X1 XoX3 are given.
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Table 3. Degree of the wrapper vertices of the extended ed{@cgraph of the
SNF(f) of Figure 2. In the third column the adjacent vertices ofwhapper vertices
in AGNF(H)(VE) are enumerated.

Vertex | Degree| Adjacent Vertices of Wrapper Vertices
101 2 001 -01

0-1 2 001 011

000 2 001 00-

--1 4 -01 -11 --0 ~---

-00 4 -01 -0- -10 --0

0- - 4 01- --- 1-- 00-

-1- 6 0o1- -0- -112 112- -10 ~---
010 4 011 01- 110 -10

111 4 011 -11 11- 110

10- 4 -0- 11- 1-- O00-

0-0 2 1-0 --0

100 2 1-0 11-

1-1 2 1-0 1--

Algorithm 3 Calculate Weights for the vertices of the extended adjacgnaph
EAGNF(H(V,E)

Require: extended adjacency graph EA% (1)(V,E) of a Boolean functiorf
Ensure: weights of all vertices of EAG'F(1)(V,E)

1: for all wrapper vertice¥,,[i] of EAGSNF()(V,E) do

20 weight(Vw[i]) < degr ee(Vyli])

3: end for

4: for all core verticed/[j] of EAGNF()(VE) do

5. weight(Ve[j]) < O

6: for all adjacent wrapper verticeg,|i] of the extended adjacency graph
EAGNF(N(VE) do

T weight (Ve[j]) < weight(Ve[]]) + weight (Mw[i])

8. end for

9: end for

4 Peculiarities of Most Complex Boolean Functions

There are &' Boolean function of variables. These functions can be expressed
by ESOPs. The number of different cubes in an ESOP is giverhéynterval
[0,3"]. Thus, the number of cubes of an ESOP is a simple complexigsuore. We
restrict to ESOPs that do not include any cube twice. Thex&3Brsuch ESOPs of

n variables.



Most Complex Boolean Functions ... 271

Table 4. Weights (right column) of the core vertices (lefturon) of the
extended adjacency graph of the SKF¢f Figure 2

Vertex | Weight
001 6
-01 10
011 10
00- 10
01- 14
- 0- 14
-11 14
-10 14
--- 14
11- 14
--0 10
110 10
1-- 10
1-0 6

Using the SNF, it was shown in [6] that there are, for each Bawlfunction,
exactly 2" /22" different ESOPs that do not include any cube more than once.
more precise measure of the complexity of a Boolean fundsicimerefore the num-
ber of cubes in its shortest ESOP. The problem with this nreasuhe difficulty
of finding the shortest ESOP, and several shortest ESOPsg ghtine function can
exist.

A unique ESOP of each Boolean function is defined by its SNRisTlthe
number of cubes in the SNF is a next candidate for a complerigsure of a
Boolean function. It is known from [6], [12], and [13] that &8oolean functions
with the largest SNF belong to the set of Boolean functiord tleed the largest
number of cubes in their shortest ESOP. This statement did®fd for the reverse
direction. Evidently, in the set of such Boolean functiohattrequire the largest
number of cubes in their shortest ESOP, there is a subsenofifims that belong
to the set of functions with the largest number of cubes IS K-

See for example Table 8. There are 66 functions of threeblasahat require
three cubes in their shortest ESOP. 54 of these functiors H&eubes in their SNF,
and the remaining 12 functions have 18 cubes in their SNFidgDbly, the number
of cubes in a minimal ESOP conceals the complexity of a Baoleaction which
can be detected by the SNF. This leads to the following difimit

Definition 5 - Most complex Boolean functions f - The set of Boolean functions
of n variables that needs the largest number of cubes in their unique SNF(f) is
called the set of most complex Boolean functions.
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There are peculiarities of most complex Boolean functiat #ifect the HCCC
function mentioned above. These peculiarities will be uised in the following.
Initially it is amazing that the same peculiarities occurdertain classes of simpler
functions of a Boolean space. The reason for that obsenvaiilbbe explained too.

The HCCC function evaluates the weight of the extended adac graph
EAGNF(N(V,E) calculated by algorithm 3. In the simple case where fthe-
tion can be expressed by a single cube, all SNF cubes carrgathe weight. It
is irrelevant which cube of the SNF is selected for the HCC&fiwn. Based on
each of them the HCCC function creates the same correci@olcibe. This case
can be detected by formula (9). Such an adjacency graph ceallbd completely
cornvex, because it describes an hypercube, and the HCCC functids the same
solution for each SNF cube.

ISNF(f(Xq,...,%)| = 2" 9)

Generally, if more than one cube is required to express aifumby a minimal
ESOP, the smallest weights calculated by algorithm 3 inditlze basic cubes re-
quired for the HCCC function. The adjacency graph does radtidie any complete
hypercube in this case. The smallest weights indicate mnghypercube cube
corners of cubes belonging to the minimal ESOP. For thabreasch adjacency
graphs are callegartially convex.

An interesting observation is that the larger the numbeubks in the SNF the
smaller is the difference between the values of the weighltautated by algorithm
3. One exception of this rule is the simple case of a completyex adjacency
graph mentioned above. The second more important pedul@iturs in the case
of a most complex function.

All weights calculated by algorithm 3 have the same valuerii@st complex
function is evaluated. However, there is not any remainiyygeincube cube corner
of cubes belonging to the minimal ESOP. Such an adjacenghgsatherefore
calledcompletely concave. This peculiarity in the associated adjacency graph of a
most complex function requires a modification in the HCCGction.

Each cube in the adjacency graph of a most complex functionbeataken
to create its minimal ESOP. Due to the completely concavecedicy graph all
pseudo-hypercube cube corners point in the inverse directror that reason this
direction must change by changing exactly one value in thdisn cube. The last
column in Table 5 enumerates the values that must be takdmnsispecial case.
A precondition is that for a chosen variable all three pdesitalues appear in the
SNF.

In a first experiment the exact minimal ESOPs of all Booleartfions of a few
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Table 5. Assignment of values in the HCCC function

value ofx; value ofXx; default value | peculiar value
in the selected in the adjacent of x; in the of x; in the

basic cube SNF cube | solution cube| solution cube

0 1 — 1

0 — 1 —

1 0 - 0

1 — 0 —

— 0 1 0

- 1 0 1

Boolean variables were calculated. For that purpose eacteBo functionf of a
fixed number of variables was first created, in a second stesfiormed into the
SFN(f), and in a third step minimized by the algorithm describedvab Finally,
each function was associated to the class characterizeuebyumber of cubes of
the SNF in combination with the number of cubes of the exacimal ESOP of
f. The cubes of all exact minimal ESOPs were selected by thefieddHCCC
function.

The Tables 6, 7, 8, and 9 show protocols of the calculationallafxact
minimal ESOPs off : B€ — B,k = 1,...,4 using the modified HCCC function
explained above. In these Tables the following symbols haen used:

# ALLBF the number of all Boolean
functions in the Boolean space,

# SNF the number of cubes of the SNF,

# EM N  the number of cubes of the exact
minimal ESOP, and

# BF the number of Boolean functions,
specified by# SNF and# EM N.

Generally the Tables 6, 7, 8, and 9 show both the dependentysif com-
plex functions on the associated Boolean space and a atasisifi of all Boolean
function by the number of cubes in the SNF and in the exactmahESOP. These
Tables confirm that the maximal number of cubes in an exadmmallESOP occur
in most complex functions. However, Table 8 shows that tlesist some func-
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Table 6. Complexity classes of all exact minimal ESOPs ofriatse
# ALLBF = 4
# SNF = 0 # EM N
# SNF = 2 # EM N

0O #BF1
1 # BF 3

Table 7. Complexity classes of all exact minimal ESOPs ofriaties

# ALLBF = 16

# SNF = 0 # EMN=0 # BF 1
# SNF = 4 # EMN=1 # BF 9
# SNF = 6 # EMN =2 # BF 6

Table 8. Complexity classes of all exact minimal ESOPs ofriates

# ALLBF = 256

# SNF = 0 # EMN=0 # BF 1

# SNF = 8 # EMN =1 # BF 27
# SNF = 12 # EMN = 2 # BF 54
# SNF = 14 # EMN = 2 # BF 108
# SNF = 16 # EMN =3 # BF 54
# SNF = 18 # EMN =3 # BF 12

tions not belonging to the most complex functions, but hgwtiite same number of
cubes in their minimal ESOPs.

From these complete enumerations further information aboast complex
functions can be discovered. Firsth" (k) is the number of cubes of the most
complex SNF{) of k variables

Mo (k) = 2% 31, (10)
and secondpBE, (k) is the number of the most complex SN of k variables
nBE (k) = 3% 21, (12)

Both formulas (10), and (11) generalize information for kagt lines of Tables 6,
7, 8,and 9.

The set of all Boolean functions &f variables,k > 1, includes all Boolean
functions that can be expressed lby 1 variables. This property influences the
HCCC function such that completely concave adjacency graphur not only for
the most complex functions df variables, but also for SNF classes that include
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Table 9. Complexity classes of all exact minimal ESOPs ofriatates

# ALLBF = 65536

# SNF = 0 # EMN=0 # BF 1
# SNF = 16 # EMN =1 # BF 81
# SNF = 24 # EMN = 2 # BF 324
# SNF = 28 # EMN = 2 # BF 1296
# SNF = 30 # EMN = 2 # BF 648
# SNF = 32 # EMN = 3 # BF 648
# SNF = 34 # EMN = 3 # BF 3888
# SNF = 36 # EMN = 3 # BF 6624
# SNF = 36 # EMN = 4 # BF 108
# SNF = 38 # EMN =3 # BF 7776
# SNF = 40 # EMN = 3 # BF 2592
# SNF = 40 # EMN = 4 # BF 6642
# SNF = 42 # EMN = 3 # BF 216
# SNF = 42 # EMN = 4 # BF 14256
# SNF = 44 # EMN = 4 # BF 12636
# SNF = 46 # EMN = 4 # BF 3888
# SNF = 46 # EMN =5 # BF 1296
# SNF = 48 # EMN =5 # BF 1944
# SNF = 50 # EMN =5 # BF 648
# SNF = 54 # EMN =6 # BF 24

the most complex functions of smaller Boolean spaces. Tablenumerates such
classes of SNF by its cube numbers, in which the minimal aadtaximal weights
calculated by algorithm 3 are equal. These classes can tdatald for eaclk by
(12).

(ki) =26 x3 k> 1i=1,... k-1 (12)

5 Calculation of Most Complex Boolean Functions

Table 10. Classes of SNFs, wheveight, = welghtyax
number of variables #SNF, wheraveightpin = weightinax
k i=1 i=2 i=3
2 21x31=6
3 22431=12 21x32=18
4 22431=24 2x3%=36 2x3*=54
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Algorithm 4 Calculate most complex function MCk s)
Require: k: number of variables in the functiok,> 1
s. selection index of the most complex function<® < 3« 2k-1
Ensure: function vectomcfs of the most complex function, defined kyands
1: if k=1then

mcfs«—s+1
else

remainder < smod 3

selection «+ s/3

direction < selection mod 2

base — (selection/2) 3

len2 — 21

if direction = 0 then
10: mcfs < [MCF (k— 1, base+ ((remainder + 1) mod 3))] » 2/

+MCF (k— 1,base+ ((remainder +2) mod 3)

N

11: else

12: mcfs « [MCF (k— 1, base+ ((remainder +3— 1) mod 3))] x 2'e"
+MCF (k— 1,base+ ((remainder + 3 —2) mod 3))

13:  endif

14: end if

A detailed evaluation of all most complex function showedttthese func-
tions can be calculated by a recursive algorithm. The reguase cases are given
by the most complex functions of one variable. The last limdable 6 shows
that there are three most complex function of one variablees€& functions can
be enumerated by their function vectors: (01), (10), and.(Ihese base cases
are implemented in line 2 of algorithm 4. The algorithm 4 o#dtes each most
complex function recursively.

The lines 4 to 8 of algorithm 4 prepare the recursion. The Bawolvalue
direction decides about the direction in which basic functions fronovadr level
of recursion have to be combined. The multiplication B§2in lines 10 and 12
move the associated function vector by its size bits so teatrtost outer additions
in these lines combines the basic functions.

Of cause, the simple operations-3 and 3— 2 in line 12 of the algorithm can
be substituted by the values 2 and 1, respectively. The ugkrlesnphasizes the
inverse direction in comparison to line 10 of algorithm 4. dlvecursive calls of
the function MFCk,s) either in line 10 or in line 12 generate the required basic
function.
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Table 11 enumerates all most complex Boolean functionsrdiépg onk =
1,...,4 variables. The content of this Table was calculated ugiegatgorithm 4.
It can be seen in Table 11 that the root of all most complextfans are the trivial
functions f1(x) =X, f2(X) = x, and f3(x) = 1. Using the recursive algorithm 4 any
most complex Boolean function can be calculated very quickl

Table 11. Enumeration of most complex Boolean functionsdxatecimal function vectors

k=1 k=2 k=3 k=4

3MCFof | 6 MCFof | 12 MCF of | 24 MCF of
1variable | 2 variables| 3 variables | 4 variables
mcf[0]=1 | mcf[0]=b | mcf[ 0] =d6 | mcf[ 0] = 6bbd
mcf[1]=2 | mcf[ 1] =d | mcf[ 1] =6b | mcf[ 1] = bdd6
mcf[2] =3 | mcf[ 2] =6 | mcf[ 2] =bd | mcf[ 2] = d66b
mcf[ 3]=e | mcf[ 3]=6d | mcf[ 3] = bd6b
mcf[ 4] =7 | mcf[ 4] =b6 | mcf[ 4] = d6bd
mcf[ 5] =9 | mcf[ 5] =db | mcf[ 5] = 6bd6
mcf[ 6] =79 | mcf[ 6] = b6db
mcf[ 7]=9e | mcf[ 7] = db6d
mcf[ 8] = e7 | mcf[ 8] = 6db6
mcf[ 9] =97 | mcf[ 9] = dbb6
mcf[10] = e9 | mcf[10] = 6ddb
mcf[11] = 7e | mcf[11] = b66d
mcf[12] = 9ee7
mcf[13] = e779
mcf[14] = 799e
mcf[15] = e79e
mcf[16] = 79e7
mcf[17] =9e79
mcf[18] = e97e
mcf[19] = 7e97
mcf[20] = 97e9
mcf[21] = 7ee9
mcf[22] =977e
mcf[23] = e997

]:
]:

6 Conclusion

This paper investigates most complex Boolean functiong.cimplexity was mea-
sured by the number of cubes in an ESOP. Among several pltgssbin order to
specify most complex Boolean functions precisely, a dédimibf most complex
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Boolean functions has been given. This definition has besedan the SNF
which was introduced briefly.

In the context of most complex functions a peculiarity ofeadjncy graphs was
detected. While the adjacency graphs of all other Booleaotions are at least
partially convex, all most complex Boolean functions leaccbncave adjacency
graphs. This affects the selection of cubes belonging tekaet minimal ESOP
and requires a modification of the HCCC function. This modiimn was explained
in detail.

The most complex functions of a given Boolean space are merobthe set of
all function of any larger Boolean space. Although such &fiam does not belong
to the class of most complex functions in the larger Boolgets, all of its weights
calculated by algorithm 3 have the same value. This indictitat the property of
a concave adjacency graphs is strongly connected to thédanghich belongs in
any Boolean space to the set of the most complex functions.nTadified HCCC
function selects also in this case a right column for theipaler association of the
value based on Table 5.

The experimental results confirm that the modified HCCC fionctreates ex-
act minimal ESOPs. Using these results, formulas for bothnilhmber of cubes
in the SNF for most complex Boolean functions and the numbernast complex
Boolean functions were explored. Based on these quargitiescursive algorithm
was found that generates any most complex Boolean funcéperdling on the
number of variables and an order number of the most complestifon. This algo-
rithm generates very quickly any most complex Boolean fionctFor the Boolean
spacesBX k= 1,...,4, all most complex function was calculated and enumerated
in Table 11.

The classification of Boolean functions based on both thelbmurof cubes in
their SNFs and the number of cubes in their exact minimal ES®®ends the
knowledge about Boolean functions and may be a root for éurtheoretical re-
sults. The knowledge about peculiarities of most complegl&an functions sup-
ports these research.
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