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Inductive Learning of Quantum Behaviors

Martin Lukac and Marek Perkowski

Abstract: In this paper studied are new concepts of robotic behaviors -determin-
istic and quantum probabilistic. In contrast to classical circuits, the quantum circuit
can realize both of these behaviors. When applied to a robot,a quantum circuit con-
troller realizes what we callquantum robot behaviors. We use automated methods
to synthesize quantum behaviors (circuits) from the examples (examples are cares of
the quantum truth table). The don’t knows (minterms not given as examples) are then
converted not only to deterministic cares as in the classical learning, but also to output
values generated with various probabilities. The Occam Razor principle, fundamental
to inductive learning, is satisfied in this approach by seeking circuits of reduced com-
plexity. This is illustrated by the synthesis of single output quantum circuits, as we
extended the logic synthesis approach to Inductive MachineLearning for the case of
learning quantum circuits from behavioral examples.

Keywords: Quantum circuits, machine learning, logic synthesi, quantum robot be-
havior.

1 The Concept of Learning Quantum Behaviors From Examples.

It is well-known that logic synthesis methods applied to binary functions with many
don’t cares (don’t knows) are used as a base of various machine learning (ML) ap-
proaches [1, 2, 3]. The learning process creates circuit description and as a byprod-
uct converts don’t cares to cares trying to satisfy the OccamRazor Principle of the
circuit’s simplicity. While the method of logic synthesis based machine learning
was already applied to binary and multiple-valued circuits[1, 3], here it is applied
for the first time to quantum circuits [4, 5, 6].

It is well-known that an Einstein-Podolsky-Rosen (EPR) circuit [4, 7] com-
posed of a Hadamard gate and a Feynman gate realizes entanglement. In an ex-
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tended EPR circuit the Hadamard gate can be additionally controlled, which means
that when controlled with signal|0〉, the EPR circuit changes to a single Feynman
gate and the entanglement is removed, thus the circuit’s behavior becomes deter-
ministic. Similarly the controlled Hadamard and Controlled Square-Root-of-Not
(CV) gates can be used as sources of randomness when the stateof the circuit’s
output is measured [4]. This way we designed several interesting circuits and used
them to control the behaviors of various kinds of robots [8].

A robot controller is a mapping between inputs (sensors) andoutputs (actua-
tors). So the mapping is closely related to the behavior observed on the robot. If the
mapping is specified by a unitary matrix it is a controller of aquantum robot. These
behaviors combine quantum-probabilistic and deterministic - we call thesequan-
tum robotsand we say that they exhibitquantum behaviors, [8, 9]. From now on
we will not distinguish between the quantum-controlled robot, its quantum circuit
controller (unitary matrix) and its behavior.
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a = P

b = Q

ab⊕e= RV†

Fig. 1. Toffoli gate realized using 2×2 controlled quantum gates. When used
as a quantum robot controller, signals a,b and c can come fromtouch, sound or
other sensors and outputs P, Q and R through measurement units go to motors or
other actuators.

The well-known quantum realization of the reversible Toffoli gate (Fig. 1) us-
ing Controlled-NOT (CNOT), Controlled-V (CV) and Controlled-V† (CV†) gates
[10, 11, 4] is another source of inspiration because it showsthat a deterministic be-
havior of a permutative quantum (classical reversible) circuit is created using truly
quantum gates (such as Controlled-V) that operate in Hilbert Space and with in-
termediate signals that are superposed [4]. By truly quantum gates we understand
those that their unitary matrices are not permutative. If wewould thus measure
the data path signal in the lowest qubit in Fig. 1 in the middleof this circuit,
after two CV gates controlled by inputs a and b respectively,the behavior would
be deterministic for some input signals and probabilistic for other ones, leading to
very interesting behaviors of a Quantum Braitenberg Vehicle [8] controlled by this
circuit. Even more complicated binary quantum circuits (with permutative unitary
matrices) can be composed from gates that are the controlledPauli X rotations by
anglesπ/k where k is a power of two. This leads to gates such as NOT - 180◦

rotation, square-root-of-not - 90◦ rotation, fourth-order-root-of-not - 45◦ rotation,
etc. Gates that rotate byk∗ (2π/3) where k is an integer are used in ternary quan-
tum logic. These all rotation gates can be controlled by arbitrary quantum states
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[5]. When the resultant signal in the data path bit (the controlled qubit) is an eigen-
value of the unitary transformation(s), the behavior is deterministic. When it is not,
the behavior is probabilistic according to the rules of quantum measurement [4, 7].
This means that a system in a superposed state, when measured, collapses to one
of the possible observables given by the measurement operator. This way, a circuit
can be designed from a set of examples corresponding to the care minterms of a
truth table. For instance, value 0 may correspond to sensor conditions when we
want our robot to turn left, and value 1 to the true minterm of input variables ( a
positive example) when the robot should turn right. Based onhis design goals the
designer specifies examples of robot behaviors as input-output pairs. The software
induces behaviors for all other input states that are possible.

With the above background it is now possible to define the principles of induc-
tive learning used in this paper.

Definition 1.1 Inductive Learning in Logic Synthesis for completely Specified
functions
Let I be a set of vectors such thatI p

k = {i0, i1, . . . , in}, n = 2N is the k-th input
vector (of N qubit) of pattern P (or function specification) and f : I → O be a
reversible function, withOp

k = {o0,o1, . . . ,on} being the expected result vector for
the input patternI p

k and O is the set of all output vectors.. Let,ik ∈ {0,1} andok ∈
{0,1} be the elements of the input and output vectors respectivelyand∑2N

k=0 |α |2k =

∑2N

r=0 |α ′|2k = 1 specifying thel2−norm space. Let|ψ〉 be a 3-qubit quantum state
andG be the set of possible operators (quantum gates). Then thereexists a quantum
logic circuit U f such that for any pair of input and output patterns(I p

i ,Op
i ); I p

i ∈
I p, Op

i ∈Op where∀Op
i ∈O∃I p

i ∈ I such thatf (I p
i ) = Op

i is a one -to-one mapping.
For quantum learning this means that there is a unitary transform on a quantum
systemU f |ψ〉 → |ψ ′〉 for |ψ〉 ∈ I p, |ψ ′〉 ∈ Op. The learning of such a function
implies to find the minimal set of quantum gates implementingfunction f (and
realizing unitary matrixU f ).

Example 1.0.1 Completely specified reversible function realized in quantum
logic
The verification of the above definition is simple because thedefinition implies a
permutative function mapping to which directly corresponds a single unitary trans-
form (which is also permutative). Let f be a completely defined function repre-
sented by the Karnaugh Map in Table 1.

Then one of possible realizations of function f is shown in Figure 2. The eight
cells of the K-map from Table 1 correspond to eight input-output patterns. Thus
input patternabc= |110〉 is mapped for instance to the output patternPQR= |100〉,
etc. As we see this function is reversible as it is a one-to-one mapping (set of output
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Table 1. A K-map of a completely specified 3×3 reversible function
c 0 1

ab
00 000 001
01 011 010
11 100 101
10 110 111

(PQR)

patterns is a permutation of the set of input patterns). Using matrix multiplication
and Kronecker products of the elementary matrices of all 2×2 gates involved, one
can verify that mappings of all cells (shown by the permutation of the inputs in
Table 1) are satisfied [4, 12]. The circuit in Figure 2 is thus the result of learning
(synthesis) from the initial set of examples (Table 1). In this case there are many
circuits to satisfy all input-output pairs, but they all have the same unitary matrix.

V

a

b

c VV†

P

Q

R

Fig. 2. Example of a completely specified 3×3 reversible function realized as
a quantum circuit using quantum primitives Controlled-V (CV), Controlled-V†

CV† and Controlled-NOT (CNOT).

Although the Example 1.0.1 was given for completeness and toshow the link
between logic synthesis and learning, very rarely in real life the system learns (gen-
eralizes) from a complete specification(an exhaustive set of examples). In case of
robotics it is so only for very small number of sensors and their states.

Definition 1.2 Inductive Learning in Logic Synthesis for incompletely Speci-
fied functions
Let I be a set of input vectors defined as in def. 1.1 and let O be the set of output
vectors such as in def. 1.1 but withok ∈ [0,1,−]. The symbol ’-’ represents a don’t
care and corresponds to an unknown output. The set of examples is given as a set of
pairsP= {ik,ok}, k = 1, . . . ,n≤ 2N. The inductive learning for incompletely spec-
ified functions can be defined as: the process of explicitly finding such a mapping
or function satisfying each pair(I p

k ,Op
k) from the given set P such thatf (I p

k ) = Op
k .

The result of learning is thus a circuit that describes a complete mapping that agrees
with the set of input-output pars from the specification examples.

Example 1.0.2
Let f be a 3-qubit incompletely specified reversible function defined by the Table 2
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(it can be checked that the function can be completed to a reversible map since all
output care cells{000,001,100,101} are different). Table 2 represents thus the set
P of learning examples called also the problem specification.

Table 2. An incompletely specified reversible function f
c 0 1

ab
00 000 001
01 - -
11 100 101
10 - -

Then an arbitrary unitary transformation U that satisfies all the specified transi-
tions,

U |000〉 → |000〉
U |001〉 → |001〉
U |110〉 → |100〉
U |111〉 → |101〉

(1)

together with its corresponding circuit is a valid solutionto the learning problem
specified in Table 2. Thus the circuit from Figure 2 is a solution also to the
learning problem specified in Table 2. Let us observe that in this case there are not
only many circuits that solve this problem but also many unitary matrices. Because
of Occam Razor the circuit is reduced and as a byproduct its unitary matrix is
simplified as well.

To complete the definition of the Learning of an incompletelyspecified function
let us have a closer look at the don’t cares.

Lemma 1
Any quantum-permutative function being build according tothe above Inductive
Learning method and for arbitrary quantum basis state|I〉 in complex Hilbert space
H⊗N

from a set of single-qubit and two-qubit qubit operators (such as for example
G = {[I ], [Controlled-V], [Controlled-V†], [Controlled-NOT]}) will result in a com-
pletely specified function allocating the unknown elementsaccording to the unitary
evolution matrix defined such as

U |I〉 = |O〉, (2)

where |O〉 is the binary basis output state vector. For every other state I ′〉 there
exists a unique quantum stateU |I ′〉.
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To prove Lemma 1 is is sufficient to observe that we select suchgates that the
unitary matrix of their compositions (using Kronecker product for parallel connec-
tions of gates and matrix product in reverse order for serialconnections of gates) is
a standard unitary matrix (with no don’t cares). This matrixis created in such way
that for every vector|Ii〉 from the pair(Ii,Oi) we have thatU |Ii〉 = Oi . Applying
matrix U to an arbitrary other input vector|I ′〉, superposed or basis, produces cer-
tain output vector|O′〉 space (in general of complex numbers) so thatU |I ′〉 = |O′〉.
This vector|O′〉 is a completely specified quantum state in a sense that it is a quan-
tum state that is known and deterministic (expressed by a wave equation). On the
other hand, after the measurement, there may be very many classical states to which
this state|O′〉 will collapse.

We see thus here a difference between classical and quantum learning. In clas-
sical learning we learn a deterministic function. In quantum learning we learn a
quantum unitary mapping to a quantum state that is quantum-deterministic only
before a measurement, but the observer never knows to which classical state this
deterministic state will collapse as the result of the measurement. The designer of
the robot sets thus certain constraints for robot’s behavior but he can only proba-
bilistically predict how the robot will behave within theseconstraints.

Deterministic

Quantum−probabilistic
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Fig. 3. Two modes of learning based on the properties of quantum systems. On
the left the desired single-output function is representedusing cares and don’t
cares. The top Karnaugh Map represents the result of the mapping being the
deterministic learning. The bottom K-map represents the learned function using
the quantum probabilistic learning.

Taking into account the above introduced quantum phenomena, quantum logic
design and the inductive learning, the general mapping of the don’t cares to cares in
inductive learning can be separated into two categories. Figure 3 illustrates the two
learning methods for a single output Boolean function. The Boolean function to be
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learned is represented on the leftmost Karnaugh map (K-map)with cares (desired
output values from examples) and don’t cares (that correspond to cases not known).
To make this function reversible the input qubits are forwarded to outputs and a sin-
gle ancilla bit is added (which is typical for quantum oracles [13]. The first type of
learning is shown on the top of Figure 3 and it will be referredto as the Determin-
istic Learning (it corresponds to the classical learning ofBoolean functions). The
output of the deterministic learning process is a completely defined Boolean func-
tion or a complete reversible Boolean function, if required(Example 1.0.2). The
second type of learning called the Quantum-Probabilistic learning, is shown on the
bottom of the Figure 3 and has similar results as standard probabilistic learning,
with the difference that the probabilities are calculated from quantum states (com-
plex vectors)V0 andV1 (the valuesV0 andV1 will be explained later) according to
the measurement operation. This paper is focused on explaining the second type
of learning; the quantum probabilistic behavior learning for single output Boolean
reversible and quantum functions. This is because of its high interest in robotics
where we need to specify symbolically deterministic quantum states with expected
probabilities of their measured binary outcomes.

Quantum robot has been introduced by Benioff [14, 15, 16, 17]and is described
as a quantum system exploiting the superposition and the entanglement of the state
of the robot with the state of its environment. Recently in [18] presented are quan-
tum robots with respect to the quality and speed of decision making using the
Grover quantum search algorithm [13]. Unlike in these works, here the focus is
not on how the robot is implemented with respect to its environment, but rather on
the strategies for learning the robotic behaviors based on quantum circuit structures.
From the Machine Learning aspects, quantum computing has been already studied
in [19, 20, 21, 22, 23] and shows expected speedup of quantum learning with re-
spect to its classical counterpart problems. The machine learning introduced in this
paper is focusing on how the structure of the quantum system can be used to build
quantum circuits usable as behavioral controllers for socially interactive robots.

With respect to emotional social robotics, our previous research introduced the
emotional state machine [9], that is being investigated as acontroller of a robot. To
explain, Figure 4 recalls the basic concept of the EmotionalQuantum Finite State
Machine (eQFSM). Such machine can be described as mixed quantum-classical
machine with both classical and quantum state transition functions. In Figure 4 the
classical logic is labeled F and the quantum-unitary is U. The global state of the
eQFSM is unitary in order to be able to represent quantum operations carried by
the logic block U. The classical state of the machine is a state of smaller dimension
than the global state|φ〉 and is the only part of the machine that interacts with
the environment using the measurement. The quantum behaviors in this particular
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model represent only the quantum logic control that is not directly observable in
the environment or controllable from the environment.

In paper [9] behaviors with respect to social context and emotional expression
of a social robot built from eQFSM’s were analyzed and here only the methods of
inductive learning will be explained. In particular the interactions on the quantum
level are shown

|ψ〉

U

F M

Environment

Emotional states

Fig. 4. Emotional Quantum State Machine. The emotional component repre-
sented by the logic block U is connected in parallel with other robots emotional
components. The logical part represented by block F, interacts either with the
environment or with other functional elements. This logical block also performs
the measurement on the output states (block M). From the point of view of real-
ization technology both F and U are quantum, but F is described as a permutative
unitary matrix, like an oracle in Grover Algorithm, while U is an arbitrary unitary
matrix.

with respect to incompletely specified functions that represent input-output be-
havioral patterns. As already mentioned, the learning process is implemented as
inducing the combinational quantum circuit which specifiesthe whole function and
thus maps the ’don’t cares’ to output values. This circuit isnext inserted as U into
the eQFSM. In particular, circuits with up to four qubits were analyzed by us in
terms of learning. In short, we can say that the classical logic (rational) behavior
F of the robot is controlled by emotional behavior U thus being responsible for
probabilistic behaviors of the robot. With an appropriate learning approach these
behaviors should be still somehow rational and explainable. For instance, a ”hys-
teric” robot will bump more often into obstacles than a ”cool” robot would, but it
should still follow the light, if so specified by the expectedlogic behavior. It is
similar to a behavior of a person under influence of emotionalstress that behaves
differently in an observable way but still within certain logic of the situation.

The robotic behavioral framework also requires a certain adaptation of the robot
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with respect to the environment. Some of its actions might berequired not to be
performed exactly as ordered or even that the robot should inductively learn some-
thing from its environment. Thus when learning robotic behaviors it is possible to
allow a certain percentage of wrong outputs. As will be seen below in the quantum
behavior-learning problem it is acceptable that some smallpercent of cares in the
solution is not in agreement with the symbolic cares of the initial specification.

The inductive learning process presented here learns the entire description in
one run (in contrast to incremental learning). Thus machinelearning is the same
as logic synthesis. The synthesis process preserves the cares but replaces all don’t
cares (don’t knows) with deterministic, probabilistic or entangled states. The mea-
sured probabilities of outputs result from the circuit’s structure and the types of
controlled 2×2 gates used by the synthesis algorithm (here, we use gates that are
controlled roots of unity with various angles).

Definition 1.3 Quantum Logic synthesis
The synthesis problem is to find the simplest circuit for a truth table with (usually
few) given cares (examples) and (usually many) don’t cares.Let G be a set of
single-qubit and two-qubit unitary operators on complexHN, then the process of
synthesis can be expressed as a minimization of the given function with respect to
the width of the circuit and the amount of elementary operators used. Thus it can
be written

SHN(n,G)
min−−→V(n,G) (3)

whereV(n,G) is the cost of the circuit constructed of gates from set G.

The minimization of the cost of the circuit with respect to the logic function
can be studied using a genetic algorithm (or exhaustive search for small number
of variables). The automatically synthesized controllers(i.e. learned from exam-
ples) produce very interesting and often unexpected but correct robot behaviors
[8, 9]. Moreover, the method presented here uses truly quantum gates; unlike in
other papers on quantum logic synthesis here only single-qubit and two-qubit gates
are used. Thus, the circuits learned by this method are directly implementable in
quantum hardware and they satisfy Occam Razor with respect to the real hardware
costs. Then, we can say that these behaviors are more naturalto quantum world
than behaviors learned with many-input Toffoli gates that would push the solutions
towards less probabilistic behaviors or to no probabilistic behaviors at all. This
is again more similar to human learning that includes alwayssome probabilistic
component (at least as related to body motions and to speech).
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2 Symbolic Quantum Synthesis

Assume a single output function defined by a Karnaugh map specifying the desired
outputs as would result by observing values 0 and 1 on the quantum output in some
special cases of the state of the environment as shown in Table 3.

Table 3. Single output Boolean functions R to be synthesized(learned)
c 0 1

ab
00 - -
01 0 -
11 1 0
10 - 1

c 0 1
ab
00 - -
01 V0 V1
11 - -
10 - -

R R

As already specified, the quantum circuits may generate outputs with certain
probability p. The Table 3a has half don’t cares and half cares, and assuming there
is a method to synthesize the cares, the problem that remainsto be solved is in
what manner it is possible to specify the values of don’t cares. The unitary opera-
tors used in this work are mainly [W] (Wire/Identity), [NOT], [V], [V †], [CNOT],
[CV] and [CV†] and thus it should be specified how the don’t cares are filled with
respect to inductive learning. For this, letSo = {0,1,V0,V1} be the set of all possi-
ble (symbolic) outputs of the given single output function (qubit R in Fig 5). Then,
0 and 1 represent 100% probability of obtaining 0 and 1 respectively after observ-
ing (i.e. measuring) the system’s output.V0 = V|0〉 andV1 =V|1〉 are symbols that
represent quantum states (vectors of complex numbers) thatcorresponds to mea-
suring/observing the system in stateM(V0) andM(V1) with M being the quantum
projective-measurement operator. The symbol ’-’ is a don’tknow or can also be
seen as a non-observation/measurement of the system and exists only in the initial
problem specification. An example of an obtained result using automated synthesis
is shown in Figure 5 and as will be discussed later, its behavior is deterministic for
the desired qubit R, while the global state might be in a superposition of states. Let
us note that when all controls of gates are binary the possible quantum states are
only 0,1,V0 andV1 (this was proven in [11]).

a

b

c

a = P

b = Q

V† V† V

V

M e= R

Fig. 5. Example of a solution to the learning problem for the incomplete function
from Table 3. Although the circuit as a whole is not deterministic, its behavior
observed on qubit R is deterministic.
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It is possible to synthesize any single-output Boolean function using the above
set of gates with the expected value of the outcome specified by So. Proof for this
has been already shown in other works [24, 11] however the important point is
the methodology. A systematic application of the above gates to the correct qubits
will realize this function. Proofs of this methodology for quantum-permutative
multi-output functions were given in [24, 11] where the SAT-based search method
was presented for exact minimum solutions. In the new paper the above function
was realized using a Genetic Algorithm presented in [25, 26], and the learned the
circuit from Fig. 5 with output function for a single output variable R takes the
following form R(a,b,c) = [0,1,0,1,0,1,1,0] replacing all don’t cares of the initial
specification (Table 3a) with either 0 or 1. In this case, although we did not restrict
the synthesis to deterministic circuits the deterministicbehavior was found.

One could however desire to restrict the specification of a gate or a circuit
by quantum related symbolic values. Using the above set of gates and control-
ling the gates only with binary signals it can be seen that alloutput symbols from
the initial specifications should be converted to quantum cares as shown in Table
4. This means that if one would replace the Controlled-V operators by Controlled-
Hadamard, the expected input-output mapping will be changed accordingly, despite
the fact that after measurement the output values might be the same. For instance,
for an input combination 010 (Table 3b) the user specifies quantum stateV0 which
after the measurement will produce 0 or 1 each with1

2 probability of being ob-
served. For input 011 the symbolic state isV1. This would produce the same output
after direct measurement as stateV0, but has a different phase, which can be used if
the value of the output qubit is used in some other circuit.

Table 4. Possible mapping between input specifications and their symbolic representation as a result
of learning (learned circuit); each well defined input value(0, 1) is to remain as it is. The don’t care
input specifications can be mapped up to four different symbols: 0, 1,V0, V1. The ”-”s will be thus
replaced with 0,1,V0 or V1.

0
1
V0
V1
-

→
→
→
→

0
1
V0
V1

0,1,V0,V1

For example the incompletely specified function (defined in Table 3a) could be
learned to the completely quantum-defined functionf = [V0,V1,0,V1,V0,1,1,0] as
a result of the synthesis process and as such would still preserve the requirements
as well as its probabilistic behavior for certain inputs.

Thus the probabilities of the output states directly dependon the logic elements
(quantum gates) selected by the synthesis algorithm. If forexample we would
extend the set of gates to include also the gates [

√
v], [

√
v†], [ 4

√
v] and [ 4

√
v†], the
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output state values would be appropriately changed and other probabilities than1
2

would be possible.

It is even more interesting that with respect to the specification from Table 3a
the circuit from Figure 5 has a single deterministic output under measurement
(as required), but its global three-qubit state is in superposition. For example for

state|110〉 transition is:|110〉 U−→ 1−i
2 |101〉+ 1+i

2 |111〉, but the first and last qubits
are unaffected by the measurement. Now assume deterministic learning in which
the circuit from Figure 6 was found. Observe that it also satisfies the incomplete
function from Table 3a for single qubit R.

c

b

a

VV†V†

P

Q

RM

Fig. 6. Example of a deterministic quantum circuit being thesolution to the
learning problem with the set of examples specified by the incomplete function
specification from Table 3a

A more detailed view on the implementation from Figure 6 allows to make a
transparent analysis based on symbolsV,V† and their algebra (VV = NOT, V†V† =
NOT, VV† = V†V = I ). This is done in Table 5.

Table 5. Example of analysis of the signal R in the circuit from Figure 6
ab c 0 1
00 I I
01 VV† VV†

11 V†V† V†V†

10 V†V V†V

→

ab c 0 1
00 I I
01 I I
11 NOT NOT
10 I I

→

ab c 0 1
00 0 1
01 0 1
11 1 0
10 0 1

For functions with multiple outputs, the above methodologyapplies as well but
the analysis is more complicated. The circuit from Figure 5 does generate deter-
ministic output for the single measured qubit however has probabilistic behavior
from a multiple qubit measurement. For example the transition for the input state
|100〉 can be analyzed as follows:
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|100〉 U−→
apply the Leftmost gates W (wire) and Controlled-V†

W⊗CV†

−−−−→ |100〉
apply the gates Controlled-V† spanning the

the whole width of the circuit (jumping over the middle qubit)

CV†

−−→ |10〉1− i√
2

(|0〉+ |1〉)

apply the gates Controlled-NOT and W

CNOT⊗W−−−−−−→ |11〉1− i√
2

(|0〉+ |1〉)

apply the gates W,Controlled-V
W⊗CV−−−−→ |110〉

apply the gates Controlled-V,W

CV⊗W−−−−→ |1〉1+ i√
2

(|0〉+ |1〉)|0〉

→ |1〉1+ i√
2

(|0〉+ |1〉)|0〉

→ 1+ i√
2

(|100〉+ |110〉)

(4)

Thus the original three-to-one incompletely specified function from Table 3a
is mapped to the reversible quantum three-by-three circuitfrom Figure 5 to which
corresponds the fully specified and deterministic (but probabilistic after measure-
ment) quantum function that is represented in the Karnaugh map from Table 6.

The Table 6 can be formally minimized (allowing the Toffoli function) using
the following conditional notation that allows to express the logical and causal
dependence between the control and data qubits. For example, to denote a CNOT
gate one could writeCNOT→ (|1〉aNOT)|b〉. To explain, the CNOT gate described
shows two qubits: the|b〉 is the output qubit and the control qubit activates the
unitary transform on|b〉 only when equal to 1. Thus(|1〉aNOT) means the when
the control bit is is in state|1〉 the NOT operation is applied to target qubit. Thus
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Table 6. Function mapped by the circuit from Figure 5. For each qubit in the register the unitary
evolution is sub-scripted by a, b and c for each qubit respectively.

ab c 0 1
00 Ia, Ib, Ic Ia, Ib, Ic
01 Ia, Ib,(VV†)c Ia, Ib,(VV†)c

11 Ia,Vb,(V†V†)c Ia,Vb,(V†V†)c

10 Ia,Vb,(V†V†)c Ia,Vb,(V†V†)c

→

ab c 0 1
00 Ia, Ib, Ic Ia, Ib, Ic
01 Ia, Ib, Ic Ia, Ib, Ic
11 Ia,Vb,NOTc Ia,Vb,NOTc

10 Ia,Vb, Ic Ia,Vb, Ic

→

ab c 0 1
00 |000〉 |001〉
01 |010〉 |011〉
11 |1〉 1+i√

2
(|0〉+ |1〉)b|1〉c |1〉a

1+i√
2
(|0〉+ |1〉)b|0〉c

10 |1〉 1+i√
2
(|0〉+ |1〉)b|0〉c |1〉a

1+i√
2
(|0〉+ |1〉)b|1〉c

the above function can be rewritten to:

|a〉 U−→I |a〉, −Identity

|b〉 U−→(|1〉a(V ×NOT))|b〉
|c〉 U−→(|11〉abNOT)|c〉

(5)

and the minimized circuit is shown in Figure 7.

V

a= P

b= Q

c = Rc

b

a

Fig. 7. The final circuit minimized by using the symbolic reduction method to
function specification from Table 3

3 Learning Quantum Behaviors

In this section we illustrate few examples of formulating quantum behavior learning
problems as quantum circuit synthesis problems according to the Inductive Learn-
ing from Section 2. The synthesis of quantum circuits is shown applying a compo-
sition method with a restricted set of gates used. This approach is based

on the structured exhaustive and GA-based generator from Fig. 8. Functions
fi are arbitrary Boolean functionsand functionsgi are arbitrary quantum rotations.
It can be proven that each gate composed of a control functionfi and a data
path(target) gategi below is a quantum operator specified by a unitary matrix. It
is a reversible(permutative) gate whengi is a binary logic operator (i.e. NOT op-
erator). In the exhaustive approach all control functionsfi from certain class are
systematically investigated as well as all data functionsgi from some other class.
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.

.

.

.

a
b
c
d

e

f1 f2 fn

gng1g1

Fig. 8. The general concept of controlled rotation gates forthe exhaustive and
genetic search-algorithms.

The gates from this class are substituted in all possible ways for fi andgi in Fig.
8 and the quantum state is symbolically simulated. The number n of segments is
the synthesis parameter and we start from small values to satisfy the Occam Razor.
In the GA approach vectors of these functionsfi andgi are chromosomes. Each
chromosome represents a circuit and is built from unitary gates that are available to
the GA. The GA minimizes the circuits with respect to the number of gates in each
chromosome as well as with respect to the correctness of the implemented circuit.

Example 3.0.3
Let us first look at the well-known Peres gate circuit from Fig. 9.

V V

a

a⊕b

a

b

e ab⊕eV†

Fig. 9. The Peres gate discovered by the exhaustive and GA algorithms. Its cost
is four 2-qubit gates

Many similar circuits were generated automatically using various software ap-
proaches in papers [11, 25] but none of them was yet specifically studied and used
in behavioral robotics. They use only 1-qubit gates - inverters and 2-qubit gates -
controlled-V, Controlled-V† and Controlled-NOT. Observing these circuits one can
appreciate that all controls are linear or affine Boolean functions since only two-
qubit permutative gates are allowed (in contrast to the general schema from Figure
8). Thus in our first variant of the general schema for quantumcircuits generation
all controls fi were assumed to be affine functions. In case of binary logic, affine
functions are linear functions and their negations. Linearfunctions are constant 0
and XOR’s of subsets of the set of input variables. We do not care at this point
how the upper part of the circuit, the controlfi , is realized as a minimal reversible
circuit - we have developed elsewhere efficient methods for synthesis of such affine
functions without ancilla bits. To be precise, single output functionFi is a Boolean
irreversible function, in general, arbitrary. It is made reversible by taking into ac-
count inputs/outputs a, b, c, d, etc. The controlled functions in the lowest (target)
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c
b
a

f1 = a

g1 = V

f2 = b

g2 = V

f3 = a⊕b

g3 = V†e ab⊕e

Fig. 10. Applying general schema from Figure 8 to discover the classical Peres
structure from Figure 9. Correct substitution values forfi andgi (found by the
Genetic Algorithm) are shown in boxes. In the solution the input wire c is not
used. Note also that the function appears in an output qubit initialized to e.

qubit are inverters, V andV† gates. This way the 3-qubit Peres gate from Fig. 9
was found from its complete truth table. Figure 10 illustrates how Peres gate can
be obtained by applying the scheme from Figure 8 restricted to the length of 3 seg-
ments. This was an example of deterministic behavior synthesis from a complete
specification of behavior, i.e. (a truth table with all care values). Using this method
with limited number of segments some useful new gates have been invented that
will be presented in our next papers. Again, Occam Razor leads to the invention of
useful new concepts, powerful and inexpensive quantum gates in this case.

Example 3.0.4
Given is a set of examples in the form of a standard incompletetruth table repre-
sented by the standard K-map from Table 7. The learning problem is defined as

Table 7. A set of positive (1) and negative (0) examples in a form of standard Karnaugh map of a
single output Boolean function.

cd 00 01 11 10
ab
00 - - 1 0
01 0 1 0 1
11 0 0 - -
10 0 1 0 1

learning the function, i.e. to design a deterministic circuit using only gates CV,
CV† and CNOT and not more than 4 segments. The genetic algorithm was used
for the deterministic learning. It found the circuit from Fig. 11. Observe that the
symmetric Boolean functionS2,3(a,b,c)was found as a component of the learned
complete Boolean functionf = S2,3(a,b,c)⊕d = ab⊕ac⊕bc⊕d. Such symmet-
ric functions result in this and similar problems from the Occam Razor principle.
Interestingly, this discovery leads to the same class of functions as those invented
by mathematical definitions in an unrelated research by Sasao [27].

The unitary matrix of this circuit is also a permutative matrix and thus its be-
havior is deterministic. The graphical method of analysis of the solution circuit
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VVV

a
b
c

f = S2,3(a,b,c)⊕d

V†d

Fig. 11. The final circuit for the majority-controlled gate specified in Table 7

that is applied in the cost function evaluation is shown in Table 8. Identities
V†V = VV† = I andVV = NOT were used. The numerical equivalent of this
method is used in our exhaustive and evolutionary software as a part of the fitness
function calculation.

Table 8. Stages of the symbolic analysis of the Majority GateFunction.
cd 00 01 11 10

ab
00 - - VV† VV†

01 VV† VV† VV VV
11 VV VV VVVV† VVVV†

10 VV† VV† VV VV
↓

cd 00 01 11 10
ab
00 I I I I
01 I I NOT NOT
11 NOT NOT NOT× I NOT× I
10 I I NOT NOT

↓
cd 00 01 11 10

ab
00 0 1 1 0
01 0 1 0 1
11 1 0 0 1
10 0 1 0 1

Table 9. Example of K-map with half of the values as don’t cares
c 0 1

ab
00 0 1
01 - -
11 1 0
10 - -

Example 3.0.5
Given is a set of examples represented as cares from K-map in Table 9. All other
minterms are don’t cares. Use the probabilistic learning method presented in this
paper to design a circuit that may have both probabilistic and deterministic behav-
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iors. The circuit with three segments was found, Fig. 12a, ithas a determinis-
tic output with respect to the desired function:f = {000→ 0,001→ 1,110→
1,111→ 0}. This mapping agrees thus on all cares with the initial set ofexamples.
The circuit is deterministic and obviously not minimal since the minimal circuit is
just a⊕ c. In another learning attempt the circuit from Fig. 12b was found with
two segments. In this circuit the probabilistic behaviors exist, as can be easily seen.
For example|010〉 → 1

2(|010〉+ |011〉)}. Analysis of the control for the circuit in
Figure 12a using symbolic values is shown in Table 10. Analysis of the circuit
from Figure 12b is done in Table 11.

Table 10. K-map for analysis of the learned specification from Table 9 that has a learned circuit
from Figure 12

c 0 1
ab
00 I(0) VV(0)
01 I(0) VV(0)
11 VV(0) I(0)
10 VV(0) I(0)

→

c 0 1
ab
00 0 NOT(0)
01 0 NOT(0)
11 NOT(0) 1
10 NOT(0) 1

→

c 0 1
ab
00 0 1
01 0 1
11 1 0
10 1 0

As it can be seen the K-map from the Table 11 agrees on all careswith the
specification from Table 9 but the don’t cares from the Table 9are now replaced
with valuesV0 = V(0) andV1 = V(1) which leads to measuring the values 0 and 1
with equal probability1

2.

V

a
b

c V

a
b
c
0 V

a⊕c

V
b)a)

a⊕c

Fig. 12. The final circuits for the function from Table 9. Observe that the circuit
12a is not optimal as the twoControlled−V gates can be combined to a CNOT.

If one would request that the circuit should have a non-deterministic behavior
for minterm¬abcthen there would be no choice between the circuit from Fig. 12a
and one from Fig. 12b, and only the circuit from Fig. 12b wouldbe a solution to
this quantum learning problem.

Table 11. Quantum K-map for analysis of the specification function from Table 9 that has a learned
circuit from Figure 12b

c 0 1
ab
00 - -
01 V V
11 VV VV
10 V V

→

c 0 1
ab
00 I(0) I(1)
01 V(0) V(1)
11 NOT(0) NOT(1)
10 V(0) V(1)

→

c 0 1
ab
00 0 1
01 V0 V1
11 1 0
10 V0 V1
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Table 12. K-map of a more complicated function
c 0 1

ab
00 0 0
01 – –
11 V0 –
10 0 1

Example 3.0.6
Given is a quantum truth table in a form of aquantum Karnaugh map(QKM) as
shown in Table 12. Observe that the output values in a QKM can be cares, don’t
cares and also quantum states such asV0 = [V]|0〉 = V(0) andV1 = [V]|1〉 = V(1).
Design a circuit that has both probabilistic and deterministic behaviors specified
by the cares of this truth table. First solution is deterministic, Fig. 13a which
leads to K-map from Fig. 13b and the circuit with four segments fi/gi (but five
gates). Observe that for mintermab¬c the value was changed fromV0 to 0 and the
symbolic quantum careV0 is not satisfied. This means that for input combination
110 the robot will always generate 0 and not only in half of thecases. Observe that
this circuit does generate the function with a relaxed structure. This means that in
the original idea of Symbolic Synthesis the[Controlled-V] and [CNOT] gate can
only be controlled in the top-down manner; the control qubitis always above the
controlled bit. In the circuit from Figure 13 the Genetic Algorithm had relaxed
structural constraints on the synthesis and thus the resultis a slight deviation form
the original paradigm. The second solution circuit, Fig. 14a, leads to the learned

b)

f
0
0

0

1
1

00
01
11
10

0 1
0

cab

a)

1 1

V Vc
b
a

V†

Fig. 13. Solution to non-completely specified quantum function from Table 12. Observe the different
structure of the circuit as the requirements are relaxed.

function from Fig. 14b. The circuit has with four controlled-V gate segments and
non-deterministic behaviors. In this case all symbolic quantum cares (i.e.V0, 0 and
1) are satisfied, as can be verified by comparing Table 12 with Figure 14b. Stages
of symbolic analysis are shown in Fig. 14c.
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c)

b)

0 1

VV+

V
V
I

I
V

0 0
V0 V0

V1V0

10
VVV
VV

10

10
11
01
00
ab

c

VVV+

VV+

V

0

VVV+

1

NOT
V+

a
b
c
0 f 0

00
01
11
10

cab

a)

V V V

0

1

0
V0 V0

10

V1V0

V†

Fig. 14. A more complicated solution to the function from Table 12. a) the
circuit, b) the Karnaugh map and c) the analysis of the Controlled-V based logic
executed in fitness function calculation. Let us observe that an ancilla bit initial-
ized to 0 was added.

4 Experiments and Results

The genetic algorithm was tested on various benchmarks and for different initial
parameter settings. Table 13 refers to various settings andparameters of the vari-
ous experimentations with the GA. The genetic algorithm wasrun under all these
conditions, and each time a solution was found. From the experimental point of
view, there are various parameters that allow to force the GAto particular areas of
the problem space. For example, the GA starts with the minimal number of seg-
ments equal 2 and the maximal number of segments set up to 5. Inanother case, the
GA will start with the minimum of 9 and the maximum of 15 segments per chro-
mosome. This limitation has been automated to allow the GA explore particular
subspace in space with a limited size. In other words, the GA searches for a given
solution in a non-limited space, and when a solution is foundit tries to find a similar
solution in the more size-restricted space. For a given problem that has a known
solution with 8 segments, the GA is given freedom to explore surrounding problem
space with four segments more than the current known minimum. For more explo-
ration it is possible to adjust the segment number to higher values, so as to restrict it
to a more tight search space. Also, when the individual chromosomes are evaluated,
if they are too long, they are not to be shortened at the strictrequirements given by
the user, but the maximum operating length of individual chromosomes is double
of the user required. Experimentally this measure was founduseful, when search-
ing for a solution to an unknown circuit that the user does notknow the minimum
representation of. In the case when the maximum circuit length under-estimates the
realizable minimum, the solution can still be found due to this double size measure.
This can also be observed during the synthesis process. Whenlooking for a circuit
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Table 13. GA settings
Population size: 10, 50, 100

Mutation: 0.01, 0.1, 0.3
Crossover: 0.6, 0.7

Fitness function: Type 3 and 4
Input gate set: CNOT, CV(V∗), Full

Min/Max Segment size: (2/5) 3/6, 6/12, 9/15

of a known length n (and assuming this length is minimal) it isrequired to allow
the GA to search space above and below the given length. From previous work in
this area [28, 12] it was shown that a ”messy GA” algorithm (with random length
of the individual circuit (chromosome)) was not completelysuccessful because of
the many local maxima of the fitness function in this problem.In this approach
(as already mentioned) the size of the circuit is much more controlled, however it
is required that the initial estimate of the maximal size of the circuit appropriately
over-estimates the minimal length (or the expected minimallength) of the circuit.
This is important as it allows to design the given function with various costs and
thus to obtain different results close to the minimum. Thus,the search space has
to be restricted around the expected minimum as close as possible. Moreover, as
the GA converges towards a local or global minimum (maximum fitness) the intro-
duction of the new individuals should be in the problem spaceclose to the global
optimum. This way, there will be a global convergence in the desired region of the
problem space.

4.1 Symbolic synthesis - single output functions

The GA was used to search three and four qubit-single output circuits for fully or
partially defined functions. Some of the benchmarks have already been introduced
in Section 3 and they all are incompletely specified functions. Table 14 shows
some benchmark functions used in the discussed experimentations and their qubit
numbers.

Table 14. GA benchmark functions
f1 = [−,−,0,1,0,1,1,0,0,0,−,−,0,1,1,0] 4

f2 = [0,1,−,−,−,−,1,0] 3
f3 = [0,0,−,−,0,1,V0,−] 3
f4 = [0,−,0,−,V0,1,−,1] 3

f5 = [−,V0,−,1,−,1,V0,−] 3
f6 = [0,0,0,1,0,1,1,1] 3

f7 = [0,−,0,M0,1,M0,1,1,−,1] 3

For the discussion of the results and synthesis four of thesebenchmarks have
been selected. In particular, functionsf4, f5, f6 and f7 have been analyzed and
studied.
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Example 4.1.1
The first function wasf (a,b,c,d) = M f = [0,−,0,−,V0,1,−,1] with the least
significant qubit being the output. As already introduced the V0 operator repre-
sents the probabilistic behavior of this function for a given input. Its realization
is shown in Figure 15, with top qubit being constant 0|0〉 and bottom qubit be-
ing the output. Because the measured qubit can be entangled with the rest of the
circuit, the output qubit can present the entangled behavior. One observation can
be made about the function realization from Figure 15. This circuit maps the
desired outputs (specification) to:{|0000〉 → |0000〉, |0010〉 → |0010〉, |0100〉 →
1
2(|0100〉)+ 1

2(|0101〉), |0101〉 → |0001〉, |0111〉 → |0011〉}. This illustrates an ex-
act matching of the circuit mapping to the desired function.With respect to the
single-output function learning method introduced in thispaper this circuit can be
written as:[0,1,0,1,V0,1,V0,1] which covers the quantum cares with 100% accu-
racy.

c = 0ab
00

01

11

10

c = 1

−
−

1

1−
V0

0

0

|0 >

a

b

c

V

V†

(a) (b)

Fig. 15. Benchmark function 1: a - the learned circuit, b - theinitial specification

Example 4.1.2
The next benchmark is another partially specified function,shown in Figure
16. Similarly to the previous example, this function is defined over a subset
of desired mappings. Circuit from the Figure 16 generates the desired outputs
such as:{|001〉 → 1

2(|000〉+ |010〉+ |100〉+ |110〉)+ 1
2(|101〉+ |111〉), |011〉 →

1
2(|101〉) + 1

2(|111〉), |111〉 → 1
2(|001〉) + 1

2(|011〉), |100〉 → 1
2(|000〉 + |010〉 +

|100〉+ |110〉) + 1
2(|001〉+ |011〉)}. As can be seen this function uses superpo-

sition to generate the correct result.

Interestingly, adding two gates: Controlled-V† on wires b and c at the begin-
ning of the circuit and Controlled-V right after the first controlled-Not on the a
and b wires, will generate partially deterministic and partially probabilistic behav-
ior. Again, it is possible to describe this function using quantum symbolic values:
[V1,V0,0,1,V1,V0,0,1]. Also observe that we allow the change fromV0 to V1 in the
case of the input states|100〉 and |101〉. This is both because under normal stan-
dard projective measurement it is not possible to distinguish easily between the two
states (both states will generate a 0 with 50% probability and 1 with 50% probabil-
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c = 0ab
00

01

11

10

c = 1

1−
V0

−
−

V0

1

−V V†

a

b

c

(a) (b)

Fig. 16. Benchmark function 2: a - the learned circuit, b - theinitial specification

ity) as well as becauseV|1〉 = V†|0〉. However depending on the specification of
the behavior the solution can have multiple undesired outputs.

Example 4.1.3
The last result is for the 3-qubit majority function [5]

f = {0,0,0,1,0,1,1,1} (6)

.

The function is shown on Figure 17 and is a pure permutative matrix.

c = 0ab
00

01

11

10

c = 1

1

Y

V

0 0

0 1

1

0 1
c

b

a

V†V†YV†

Fig. 17. Function Majority 3.

In this case the analysis is a little more complicated

[VV†,V†V†,VV†,VV†,V†V†,VV†V†V†,V†V†,VV†] (7)

however again the correct result is obtained. Observe that the Pauli Y rotation
operator was used by the Genetic Algorithm and that this solution is not minimal.

From the point of view of the synthesis costs it is valid to askif the concepts of
superposition and entanglement can be useful for learning and logic synthesis. In
other words, can the given function be designed cheaper using superposition and
entanglement? So far, the research in quantum logic synthesis is on the usage of
a particular set of gates for minimization, possibly resulting in entanglement, but
it is possible that logic synthesis should intentionally use the entanglement, super-
position and measurement to synthesize the desired function, either measurement
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independent of measurement dependent. This problem remains an open research
area.

The GA synthesis algorithm itself used in this work is similar to our previous
work in this area [28, 25] however particular settings allowed to generate circuits
from certain subspaces. For example, when one wishes to synthesize circuits using
the presented method, the set of declared component gates must contain only those
gates that the user intends to be used. Thus, it is simple to influence the behavior of
the GA in this direction. More interesting is the problem of the error/fitness func-
tion. For example assume that the GA is to synthesize circuitthat has to have at
least one state in superposition. This will generate a statethat is in superposition.
However, now assume that the designer wants to synthesize a two qubit output state
transition such as|00〉 → |00〉+|11〉√

2
. If the GA is using only the probabilities of out-

come, the specification in the amplitudes of observation such as above could easily
synthesize the output using simple superposition. Thus forhigher dimensionality
of quantum circuits, particular measurement operator mustbe generated allowing
to distinguish the desired states.

5 Conclusions

We showed a new approach to machine learning; i.e. learning quantum circuits
from partially specified examples with symbolic quantum states. This has applica-
tion in robotics [8, 9]. The behavior is specified by a truth table with don’t cares
and symbolic quantum states such asV0 =V|0〉 andV1 =V|1〉 which lead to known
probabilities of observation of the output under certain measurement operators[25].
A circuit matching the symbolic cares of the specification isfound. This circuit has
both deterministic and probabilistic behaviors when one ofits qubits is measured.
Such behaviors have been designed for robots and observed onseveral small mobile
and humanoid robots[8, 9]. This paper introduced also the concept of a quantum
function with binary inputs and a single (quantum symbolic)binary output. We
formulate the synthesis problem for such functions and solve this problem using
the genetic algorithm and exhaustive search. Quantum truthtables can be repre-
sented as standard Karnaugh maps with symbolic quantum states as their outputs.
We called them Quantum Karnaugh Maps. This new representation has a didactic
value because it links the quantum concepts to the binary synthesis concepts such
as minterms, symmetry, unatness, implicants and other thatpeople are familiar with
while using K-maps. This representation, similar to maps for binary input multiple-
valued output functions, allows to create new quantum circuits from K-maps. These
methods are more knowledge-based than the GA or exhaustive search. We created
for instance methods based on encircling large groups of symbols 1,V0 andV1
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similarly as it is done in hand methods for ESOP synthesis.

Finally, the future work includes:

1. extension of the synthesis process to multi-output reversible, and truly quan-
tum functions, and

2. observation of physical robots with their controllers simulated on a quantum
simulator.

In particular, we are investigating the quantum robot controllers with respect to
social behavior and the automatic generation of social behaviors.
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