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Abstract: This paper reviews recent developments in the use of reversible synthesis
techniques in the reversible and quantum logic circuit design of binary and multiple-
valued switching functions. In particular, this paper reviews the specific developments
and various uses of spectral transforms and functional expansions, group theory, and
cellular automata in the reversible logic synthesis of digital functions.
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1 Introduction

A (k,k) reversible circuit is a circuit that has the same number of inputs (k) and
outputs(k) and is a one-to-one mapping between the vectors of inputs andthe vec-
tors of outputs, thus the vector of input states can be alwaysuniquely reconstructed
from the vector of output states [1–13]. Thus, a(k,k) reversible map is a bijec-
tive function which is both injective (“one-to-one”) and surjective (“onto”). The
auxiliary outputs and inputs that are needed only for the purpose of reversibility
are called “garbage” outputs and “garbage” inputs respectively. These are auxiliary
outputs and inputs from which a reversible map is made. A(k,k) conservative cir-
cuit has the same number of inputs(k) and outputs(k) and has the same number of
values in inputs and outputs (e.g., the same number of ones ininputs and outputs
for binary, the same number of ones and twos in inputs and outputs for ternary,
etc) [1,5,10].
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Motivations for pursuing the possibility of implementing circuits using re-
versible logic (RL) would include items such as: (1) power: the fact that, theo-
retically, the internal computations in RL systems consumeno power. It is shown
in [7] that a necessary (but not sufficient) condition for notdissipating power in any
physical circuit is that all system circuits must be built using fully reversible logical
components. For this reason, different technologies have been studied to implement
reversible logic in hardware, such as adiabatic CMOS [14], optical [11], and quan-
tum [10]. Fully reversible digital systems will greatly reduce the power consump-
tion (theoretically eliminate) through three conditions:(i) logical reversibility: the
vector of input states can always be uniquely reconstructedfrom the vector of out-
put states, (ii) physical reversibility: the physical switch operates backwards as well
as forwards, and (iii) the use of “ideal-like” switches: switches that have no para-
sitic resistances; (2) size: since the newly emerging quantum computing technology
must be reversible [10], the current trends related to more dense hardware imple-
mentations are heading towards 1 Angstrom, at which quantummechanical effects
have to be accounted for; and (3) speed: if the properties of quantum superposition
and entanglement can be usefully employed in the reversiblecircuit design context,
significant computational speed enhancements can be expected [1, 10]. One of the
advantages of using such RL circuits is their potential utilization in adiabatic low-
power VLSI circuit designs [14] for several applications inanalogy to the role of
classical circuits in non-adiabatic VLSI design [15,16].

Several spectral-based techniques for the reversible logic synthesis are pre-
sented in Section 2. Group-based method for RL representation is presented in
Section 3. Elementary cellular automata (ECA) - based methods for RL synthesis
is shown in Section 4. Conclusions and future work are presented in Section 5.
Although the review presented in this paper is conducted forthe second and third
radices of Galois logic, the extensions to higher radices and other logics use similar
methods as well.

2 Spectral-Based Synthesis

Spectral techniques have been extensively used in the classical domain in the de-
sign of logic functions [1, 17–19]. This section presents several methods that are
used in the spectral-based design of two-valued and multiple-valued reversible and
quantum circuits.

2.1 Reversible expansions and reversible spectral transforms

Galois field (GF) possesses desired properties that are useful in circuit applications
like testing [20]. Figure 1 shows GF addition and multiplication for ternary radix.
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Fig. 1. (a) GF3(+), and (b) GF3(∗).

Let us define the 1-Reduced Post Literal (1-RPL) [1]:

ix = 1 iff x = i else ix = 0 (1)

For example,0x, 1x, 2x are the zero, first, and second polarities of the 1-RPL, re-
spectively. The fundamental Shannon expansion over GF(3) for a ternary function
with a single variable is [1,19]:

f (x) = 0x f0 + 1x f1 + 2x f2 (2)

where f0 = f (x = 0), f1 = f (x = 1), and f2 = f (x = 2). Using the addition and
multiplication over GF(3), and the axioms of GF(3), it can beshown that the 1-
RPLs defined in Equation (1), are related to the shifts of variables over GF(3) in
terms of powers as follows [1]:

0x =2(x)2 +1 (3)
0x =2(x′)2 +2(x′) (4)
0x =2(x′′)2 + x′′ (5)
1x =2(x)2 +2(x) (6)
1x =2(x′)2 + x′ (7)
1x =2(x′′)2 +1 (8)
2x =2(x)2 + x (9)
2x =2(x′)2 +1 (10)
2x =2(x′′)2 +2(x′′) (11)

After the substitution of Equations (3) through (11) in Equation (2), and after
the minimization of the terms according to the axioms of Galois field, one obtains
the following Equations:

f =1· f0 + x · (2 f1 + f2)+2(x)2( f0 + f1 + f2) (12)

f =1· f2 + x′ · (2 f0 + f1)+2(x′)2( f0 + f1 + f2) (13)

f =1· f1 + x′′ · (2 f2 + f0)+2(x′′)2( f0 + f1+ f2) (14)
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Equations (2) and (12) - (14) are the fundamental ternary Shannon and Davio
expansions for a single variable, respectively. These Equations can be re-written in
the following matrix-based forms [1,19], respectively:

f =
[

0x 1x 2x
]





1 0 0
0 1 0
0 0 1









f0
f1
f2



 (15)

f =
[

1 x x2
]





1 0 0
0 2 1
2 2 2









f0
f1
f2



 (16)

f =
[

1 x′ (x′)2
]





0 0 1
2 1 0
2 2 2









f0
f1
f2



 (17)

f =
[

1 x′′ (x′′)2
]





0 1 0
1 0 2
2 2 2









f0
f1
f2



 (18)

The extension of the multiple-valued Shannon and Davio expansions for two or
more variables is obtained using the Kronecker product of the vector of the basis
functions and the Kronecker product of the transform matrix[19] (cf. Equation
(33)).

Definition 1. The matrix that is constructed from the permutations of many
basis functions of the same type for the corresponding spectral transform is called
Generalized Basis Function Matrix (GBFM) [1].

Definition 2. From the total space of the all possible Generalized Basis Func-
tion Matrices, the matrices that produce reversible expansions are called Reversible
Generalized Basis Function Matrices (RGBFM) [1].

A necessary and sufficient condition to generate the reversible multi-valued
Shannon expansions is that the order of the permuted basis functions in the GBFM
should satisfy the following constraint:in any given row or column the elements in
that row or column are different than the elements in the adjacent positions of the
other rows or columns [1].

Example 1.The following is the ternary Shannon transform over GF(3).

f =
[

0c 1c 2c
]





1 0 0
0 1 0
0 0 1









f0
f1
f2
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The following is one possible GBFM:




0c 1c 2c
0c 2c 1c
2c 1c 0c





Yet the upper GBFM is not reversible; it does not produce a reversible expansion.
One possible Reversible Shannon Generalized Basis Function Matrix (RSGBFM)
that leads to a reversible expansion is the following GBFM:





0c 1c 2c
1c 2c 0c
2c 0c 1c





The reversibility constraint, mentioned above, can be illustrated by means of tables
as follows: since the Shannon matrix isorthogonal, then the following (3,3) ternary
Shannon expansion in Equation (19a):

~f =





2c 0c 1c
1c 2c 0c
0c 1c 2c









1 0 0
0 1 0
0 0 1









f0
f1
f2



 =





fr0

fr1

fr2



 (19a)

is reversible given that inputc is produced in the output for which a modified form

of Eq. (19a) would be as follows:

~f =









2c 0c 1c 0
1c 2c 0c 0
0c 1c 2c 0
0 0 0 1

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















f0
f1
f2
c









=









fr0

fr1

fr2

c









(19b)

(As an example we are using in this case Shannon set of basis functions{0c,1 c,2 c}
that appear in the third row, but Shannon set of basis functions {0c,1 c,2 c} can
appear in any of the rows of the corresponding RGBFM.) The reversible Shannon
expansion in Equation (19b) is reversible as shown in Table 1.

Table 1. Proof of the reversibility of the 4-input 4-output (i.e., (4, 4)) Equation (19b).

Inputs (I) Outputs (O)
fff 0 fff 1 fff 2 ccc fff r0 fff r1 fff r2 ccc
f0 f1 f2 0 f1 f2 f0 0
f0 f1 f2 1 f2 f0 f1 1
f0 f1 f2 2 f0 f1 f2 2



512 A. Al-Rabadi:

Table 1. (continued.)
I O I O I O I O I O I O I O I O I O

0000 00000100 10000200 20001000 00101100 10101200 20102000 00202100 10202200 2020
0001 00010101 00110201 00211001 01011101 01111201 01212001 02012101 02112201 0221
0002 00020102 01020202 02021002 10021102 11021202 12022002 20022102 21022202 2202
0010 01000110 11000210 21001010 01101110 11101210 21102010 01202110 11202210 2120
0011 10010111 10110211 10211011 11011111 11111211 11212011 12012111 12112211 1221
0012 00120112 01120212 02121012 10121112 11121212 12122012 20122112 21122212 2212
0020 02000120 12000220 22001020 02101120 12101220 22102020 02202120 12202220 2220
0021 20010121 20110221 20211021 21011121 21111221 21212021 22012121 22112221 2221
0022 00220122 01220222 02221022 10221122 11221222 12222022 20222122 21222222 2222

Example 2.Lets produce the reversible ternary Shannon expansions forternary
Galois logic usingall possible permutations of the RGBFM of the ternary Shannon
transform matrix [ I ] [1] given that inputc is produced in the output.

~f =





0c 1c 2c
1c 2c 0c
2c 0c 1c









1 0 0
0 1 0
0 0 1









f0
f1
f2



 =





fr0

fr1

fr2



 (20)

~f =





0c 1c 2c
2c 0c 1c
1c 2c 0c









1 0 0
0 1 0
0 0 1









f0
f1
f2



 =





fr0

fr1

fr2



 (21)

~f =





1c 2c 0c
0c 1c 2c
2c 0c 1c









1 0 0
0 1 0
0 0 1









f0
f1
f2



 =





fr0

fr1

fr2



 (22)

~f =





2c 0c 1c
0c 1c 2c
1c 2c 0c









1 0 0
0 1 0
0 0 1









f0
f1
f2



 =





fr0

fr1

fr2



 (23)

~f =





1c 2c 0c
2c 0c 1c
0c 1c 2c









1 0 0
0 1 0
0 0 1









f0
f1
f2



 =





fr0

fr1

fr2



 (24)

~f =





2c 0c 1c
1c 2c 0c
0c 1c 2c









1 0 0
0 1 0
0 0 1









f0
f1
f2



 =





fr0

fr1

fr2



 (25)

Reversible circuits for the synthesis of Equations (20) - (25) were shown [1] using
(3,3) multiplexers (cf. Figure 2). Using Equations (20) - (25), reversible Davio
expansions have been also derived [1]. This is done as follows: Let us produce
reversible Davio expansion, for the ternary case over GF(3), for one possible multi-
valued reversible Shannon expansion:

~f =





0c 1c 2c
1c 2c 0c
2c 0c 1c









1 0 0
0 1 0
0 0 1









f0
f1
f2



 =





fr0

fr1

fr2



 (26)



Representations, Operations, and Applications of Switching Circuits... 513

Using the same method that was utilized for deriving Equation (16) from Equa-
tion (15) using Equations (1) and (3)-(11), there exist for Equation (26) three Davio
types for each row of the RSGBFM. The following are theD0-type expansions for

the first row, second row, and third row of the above RSGBFM





0c 1c 2c
1c 2c 0c
2c 0c 1c



,

respectively (where the subscripts indicate the orderingsof the literalskc in the
RSGBFM in Equation (26), andD0 indicates reversible Davio expansion of type
D0) [1]:

f012,D0=1 · f0 + c · (2 f1+ f2)+ (c)2(2 f0 +2 f1+2 f2)=
[

1 c c2
]





1 0 0
0 2 1
2 2 2









f0
f1
f2



 (27)

f120,D0=1 · f2 + c · (2 f0+ f1)+ (c)2(2 f0 +2 f1+2 f2)=
[

1 c c2
]





0 0 1
2 1 0
2 2 2









f0
f1
f2



 (28)

f201,D0=1 · f1 + c · (2 f2+ f0)+ (c)2(2 f0 +2 f1+2 f2)=
[

1 c c2
]





0 1 0
1 0 2
2 2 2









f0
f1
f2



 (29)

The above Davio expansions are reversible. Reversibility can be shown by
utilizing the identities in Equations (3), (6), and (9) to simplify (re-write) Equations
(27) - (29) as follows:

f012,D0 = 1 · f0 + c · (2 f1+ f2)+ (c)2(2 f0 +2 f1+2 f2) (30)

= (1+2c2) f0 +(2c +2c2) f1 +(c +2c2) f2 =0c f0 +1c f1 +2c f2
f120,D0 = 1 · f2 + c · (2 f0+ f1)+ (c)2(2 f0 +2 f1+2 f2) (31)

= (2c +2c2) f0 +(c +2c2) f1 +(1+2c2) f2 =1c f0 +2c f1 +0c f2
f201,D0 = 1 · f1 + c · (2 f2+ f0)+ (c)2(2 f0 +2 f1+2 f2) (32)

= (c +2c2) f0 +(1+2c2) f1 +(2c +2c2) f2 =2c f0 +0c f1 +1c f2

By using results from Equation (20), this shows the reversibility in Equations
(30) - (32).

In addition to reversibility, the reversible Shannon and Davio expansions shown
in this Section are also conservative [1]. The importance ofconservativeness in
such expansions stems from the fact that the property of conservativeness reflects
the physical law of energy preservation:no energy can be created or destroyed,
but can be transformed from one form to another. Thus reversible conservative
expansions will incorporate the fundamental law of energy preservation into the
logic design of systems [5].
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2.2 Reversible primitives (gates)

The reversible formulation in Section 2.1 has been used in deriving families of
reversible gates [1]. For example, Figures 2a and 2b represent one possible
logic circuit realizations for Equations (21) and (24) respectively, where all in-
puts{c, f0, f1, f2} and outputs{c, fr0, fr1, fr2} can have any of the ternary values
{0,1,2}. The process of forward permutation of cofactors [1] is illustrated at the
outputs of the ternary reversible Shannon primitives in Figures 2a and 2b, respec-
tively.

Fig. 2. Logic circuit realization of the reversible expansion in Equations (21) and (24), respectively.

2.3 Reversible decision trees (RDTs)

The classical logic Shannon and Davio expansions and spectral transforms are pro-
duced for higher dimensions using the Kronecker (tensor) product [1, 19]. The
Kronecker product is defined for a transform matrix[M] as follows:





a d g
b e h
c f i



⊗ [M] =





a[M] d[M] g[M]
b[M] e[M] h[M]
c[M] f [M] i[M]



 (33)

Although the Kronecker recursion defined in Equation (33) isused for the re-
cursive generation of the transform matrices in the logic expansions such as in
Equations (15) through (18), the same Kronecker recursion can be used for the re-
cursive generation of the RGBFMs for functions of several input variables [21].
This is shown as follows:

~frn×1 = [⊗[RGBFM]]rn×rn[⊗[T.M.]]rn×rn~Frn×1 (34)

wheren is the number of variables,r is the logic radix, RGBFM is any reversible
generalized basis function matrix, and T.M. is the corresponding transform matrix.
For example, for a two-variable third-radix Galois logic, Equation (34) becomes:

~f32×1 = [⊗[RGBFM]]32×32[⊗[T.M.]]32×32~F32×1 (35)

= ~f9×1 = [⊗[RGBFM]]9×9[⊗[T.M.]]9x9~F9×1
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The general mathematical form in Equation (34) implies the recursive generation of
the corresponding RDTs [21]. Example 3 shows an example for the generation of
RDTs for ternary logic functions of two variables for the case of reversible Shannon
DTs.

Example 3.For a ternary two-variable truth vector~F, the following shows the
use of the operation of Kronecker product for the recursive reversible expansion
using the reversible Shannon expansion in Equation (20) [21] given that inputsa
andb are produced in the outputs.

~f =



























fr0
fr1
fr2
fr3
fr4
fr5
fr6
fr7
fr8



























=









0a 1a 2a
1a 2a 0a
2a 0a 1a



⊗





0b 1b 2b
1b 2b 0b
2b 0b 1b

















1 0 0
0 1 0
0 0 1



⊗





1 0 0
0 1 0
0 0 1

















fa0
fa1
fa2



⊗





fb0
fb1
fb2







 (36)

=





























0a





0b 1b 2b
1b 2b 0b
2b 0b 1b





1a





0b 1b 2b
1b 2b 0b
2b 0b 1b





2a





0b 1b 2b
1b 2b 0b
2b 0b 1b





1a





0b 1b 2b
1b 2b 0b
2b 0b 1b





2a





0b 1b 2b
1b 2b 0b
2b 0b 1b





0a





0b 1b 2b
1b 2b 0b
2b 0b 1b





2a





0b 1b 2b
1b 2b 0b
2b 0b 1b





0a





0b 1b 2b
1b 2b 0b
2b 0b 1b





1a





0b 1b 2b
1b 2b 0b
2b 0b 1b



























































1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





















































fa0b0
fa0b1
fa0b2
fa1b0
fa1b1
fa1b2
fa2b0
fa2b1
fa2b2



























=





























0a0b 0a1b 0a2b 1a0b 1a1b 1a2b 2a0b 2a1b 2a2b
0a1b 0a2b 0a0b 1a1b 1a2b 1a0b 2a1b 2a2b 2a0b
0a2b 0a0b 0a1b 1a2b 1a0b 1a1b 2a2b 2a0b 2a1b
1a0b 1a1b 1a2b 2a0b 2a1b 2a2b 0a0b 0a1b 0a2b
1a1b 1a2b 1a0b 2a1b 2a2b 2a0b 0a1b 0a2b 0a0b
1a2b 1a0b 1a1b 2a2b 2a0b 2a1b 0a2b 0a0b 0a1b
2a0b 2a1b 2a2b 0a0b 0a1b 0a2b 1a0b 1a1b 1a2b
2a1b 2a2b 2a0b 0a1b 0a2b 0a0b 1a1b 1a2b 1a0b
2a2b 2a0b 2a1b 0a2b 0a0b 0a1b 1a2b 1a0b 1a1b























































1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





















































fa0b0
fa0b1
fa0b2
fa1b0
fa1b1
fa1b2
fa2b0
fa2b1
fa2b2



























Figure 3 shows the RDT synthesis for Equation (36). In Figure3, function
inputs are values in the leaves, input control variablesa andb propagate through
each level to the outputs, and basis functions are located onthe internal intercon-
nects (edges) where — means 1-RPL for variable of value 0 (i.e., 0a or 0b), - - -
means 1-RPL for variable of value 1 (i.e.,1a or 1b), and− ·− means 1-RPL for
variable of value 2 (i.e.,2a or 2b).

If one multiplies each leaf value, going left-to-right, with all possible bottom-up
paths (i.e., from the leaves to the roots) and add them over Galois field (using Figure
1) then one obtains the outputs{ fr0, . . . , fr8}, respectively. The (11,11) reversible
Shannon decision tree (RSDT) in Figure 3 is a multi-input multi-output specific
type of DTs [21].
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f

f f f f f f f f f

aa

bb

f fr0

a  b0  0 a  b0  1 a  b0  2 a  b1  0 a  b1  1 a  b1  2 a  b2  0 a  b2  1 a  b2  2

r3 r6r1 r4 r7r2 r5 r8f f ff f f

Fig. 3. Multiplexer-based (11,11) Reversible Shannon Decision Tree (RSDT) for Equation (36).

2.4 Reversible lattice circuits

Lattice circuits have been introduced as an important application of spectral trans-
forms to reversible regular circuits [1, 22]. The algorithmfor the synthesis of re-
versible lattice circuits depends on the hierarchical application of the process of
permutation of cofactors that has been presented in Section2.2 (e.g., see the output
functions in Figures 2a and 2b, respectively). A general procedure for the con-
struction of a reversible Shannon lattice circuit overnth radix logic is as follows
(cf. Example 4) [1,22]:

Synthesis Stage:

1. Utilizing a reversible Shannon primitive (from Section 2.1), assign the multi-
valued map of the function that is needed to be realized in thereversible
lattice circuit for one output of the reversible Shannon primitive in the first
level, and assign don’t care maps for the rest of the primitive outputs at the
first level. Also assign don’t care maps to the “garbage” outputs of the prim-
itives in each level of the reversible lattice circuit. These “garbage” outputs
are needed only for the purpose of reversibility. (The process of assigning
don’t cares to multi-valued maps stems from the fact that onedoes not know
a priori what will be the values of the leaves of the corresponding reversible
lattice circuit.)

2. Following the output-to-input paths of the reversible Shannon primitive in
the first level of the reversible lattice circuit, going fromoutputs-to-inputs,
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and using the reverse of the method of permutation of cofactors from Sec-
tion 2.2 (e.g., constructing inputs from outputs in Figures2a and 2b, for
instance), construct new maps at the input of the reversibleShannon primi-
tive by permuting the output cofactors (in the output maps) that correspond
to the expansion variable in the first level. This process of permuting the out-
put cofactors will result in new maps at the inputs of the reversible Shannon
primitive at the first level. Thus, the contents of the input maps will result
from the permutation of the values of the cofactors in maps atthe output of
the same reversible Shannon primitives at the first level.

3. Going from top-to-bottom and left-to-right in the reversible lattice circuit, re-
peat Step 2 for each expansion variable in each level (i.e., for each reversible
Shannon primitive in every level) until one reaches multi-valued maps at the
bottom of the reversible lattice circuit with each map having only a constant
value from the set{0,1,2}.

Analysis Stage: An opposite process to the synthesis.

4. Following the input-to-output paths of the reversible Shannon primitives at
the last level of the reversible lattice circuit, going frominputs-to-outputs,
and using the forward method of permutation of cofactors from Section 2.2,
construct new maps at the output of the reversible Shannon primitives by
permuting the input cofactors (in the input maps) that correspond to the ex-
pansion variable in the last level. This process of permuting the input cofac-
tors will result in multi-valued maps at the outputs of the reversible Shannon
primitives at the last level. Thus, the contents of the output maps (at the last
level) will result from the permutation of the values of the cofactors in maps
at the inputs of the same reversible Shannon primitives.

5. Going from bottom-to-top and right-to-left of the reversible lattice circuit,
repeat Step 4 for each expansion variable in each level (i.e., for each re-
versible Shannon primitive in each level) until one reachescompletely spec-
ified maps, in all wires through the reversible lattice circuit from bottom-to-
top and right-to-left, with no don’t cares.

Example 4. Figure 4 illustrates the creation of the reversible ternarylattice
circuit for the ternary function (F) using the reversible Shannon gate from Figure
2a. Note that, in Figure 4, the desired output function is denoted as F and the
“garbage” outputs (that are necessary only for reversibility) are denoted as G1 -
G8.
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Fig. 4. Bottom-up analysis of the reversible lattice circuit for the synthesis of the ternary function (F)
in Example 4.

2.5 Reversible fast transform circuits

Spectral methods have also been used to synthesize reversible fast transform cir-
cuits [23–25]. The spectral transformS (i.e., the vector of spectral coefficients) for
n variables is defined as follows [1,19]:

~Sn = [M][~F] (37)

where[M] is the transform matrix,[~F ] is the truth vector of functionf , and~Sn is the
vector of spectral coefficients forn variables. For example, performing the same
method used for obtaining Equations (27) - (29), one can obtain similar Equations
for reversible Davio of typesD1 andD2. The vectors of spectral coefficients for re-
versible Davio expansions of typesD0, D1, andD2 are obtained as follows: (where
the subscripts indicate the orderings of the literalskc in the RSGBFM in Equation
(20), D0 indicates reversible Davio expansion of typeD0, D1 indicates reversible
Davio expansion of typeD1, andD2 indicates reversible Davio expansion of type
D2) [24]:

~S1
012,D0

=





1 0 0
0 2 1
2 2 2









f0
f1
f2



 =





f0
2 f1 + f2

2 f0 +2 f1 +2 f2



 (38)

~S1
120,D0

=





0 0 1
2 1 0
2 2 2









f0
f1
f2



 =





f2
2 f0 + f1

2 f0 +2 f1 +2 f2



 (39)
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~S1
201,D0

=





0 1 0
1 0 2
2 2 2









f0
f1
f2



 =





f1
2 f2 + f0

2 f0 +2 f1 +2 f2



 (40)

~S1
012,D1

=





0 0 1
2 1 0
2 2 2









f0
f1
f2



 =





f2
2 f0 + f1

2 f0 +2 f1 +2 f2



 (41)

~S1
120,D1

=





0 1 0
1 0 2
2 2 2









f0
f1
f2



 =





f1
2 f2 + f0

2 f0 +2 f1 +2 f2



 (42)

~S1
201,D1

=





1 0 0
0 2 1
2 2 2









f0
f1
f2



 =





f0
2 f1 + f2

2 f0 +2 f1 +2 f2



 (43)

~S1
012,D2

=





0 1 0
1 0 2
2 2 2









f0
f1
f2



 =





f1
2 f2 + f0

2 f0 +2 f1 +2 f2



 (44)

~S1
120,D2

=





1 0 0
0 2 1
2 2 2









f0
f1
f2



 =





f0
2 f1 + f2

2 f0 +2 f1 +2 f2



 (45)

~S1
201,D2

=





0 0 1
2 1 0
2 2 2









f0
f1
f2



 =





f2
2 f0 + f1

2 f0 +2 f1 +2 f2



 (46)

From Equations (38) - (46), one can note that:

~S1
012,D0

=~S1
201,D1

= ~S1
120,D2

(47)

~S1
120,D0

=~S1
012,D1

= ~S1
201,D2

(48)

~S1
201,D0

=~S1
120,D1

= ~S1
012,D2

(49)

Utilizing Equations (47) - (49), Figure 5 shows all of the (3,3) reversible kernels
for Equations (38) - (46), respectively [24].

Using Equations (47) - (49), the following Equations hold (where the subscripts
indicate the orderings of the literalskc in the RSGBFM in each of Equations (20) -
(25), respectively) [24]:

~S1
(012,120,201),D0

=~S1
(201,012,120),D1

= ~S1
(120,201,012),D2

(50)

~S1
(012,201,120),D0

=~S1
(201,120,012),D1

= ~S1
(120,012,201),D2

(51)

~S1
(120,012,201),D0

=~S1
(012,201,120),D1

= ~S1
(201,120,012),D2

(52)

~S1
(201,012,120),D0

=~S1
(120,201,012),D1

= ~S1
(012,120,201),D2

(53)

~S1
(120,201,012),D0

=~S1
(012,120,201),D1

= ~S1
(201,012,120),D2

(54)

~S1
(201,120,012),D0

=~S1
(120,012,201),D1

= ~S1
(012,201,120),D2

(55)
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Fig. 5. (3,3) Reversible kernels for Equations (38) - (40), where dashed lines indicate
multiplications by 2, and addition operation over GF(3) is used at the intersects of end
lines. The three inputs to each of the three circuits are{ f0, f1, f2}, and output vectors from
three circuits are:~S1

012,D0
,~S1

120,D0
and~S1

201,D0
, respectively.

Figure 6 shows all of the six (9,9) classes of reversible circuits using the parallel
orderings of spectral vectors from Equations (50) - (55), respectively [24].

Fig. 6. (9,9) Reversible butterfly circuits for Equations (50)-(55). The inputs to each of the
six circuits are{ f0, . . . , f8}.

Another type of (9,9) reversible butterfly circuits can be implemented for a
ternary two-variable discrete function:

~F =
[

f0 f1 f2 f3 f4 f5 f6 f7 f8
]T

.

This is done by utilizing the (3,3) reversible kernel circuits in Figure 5, Equations
(38) - (40), and by using the Kronecker product (defined in Equation (33)) over
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GF(3) as follows:

~S2
012,D0

=









1 0 0
0 2 1
2 2 2



⊗





1 0 0
0 2 1
2 2 2







 [~F ] =





























1 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
0 0 0 2 0 0 1 0 0
0 0 0 0 1 2 0 2 1
0 0 0 1 1 1 2 2 2
2 0 0 2 0 0 2 0 0
0 1 2 0 1 2 0 1 2
1 1 1 1 1 1 1 1 1





























[~F ] (56)

~S2
120,D0

=









0 0 1
2 1 0
2 2 2



⊗





0 0 1
2 1 0
2 2 2







 [~F ] =





























0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 2 2 2
0 0 2 0 0 1 0 0 0
1 2 0 2 1 0 0 0 0
1 1 1 2 2 2 0 0 0
0 0 2 0 0 2 0 0 2
1 2 0 1 2 0 1 2 0
1 1 1 1 1 1 1 1 1





























[~F ] (57)

~S2
201,D0

=









0 1 0
1 0 2
2 2 2



⊗





0 1 0
1 0 2
2 2 2







 [~F ] =





























0 0 0 0 1 0 0 0 0
0 0 0 1 0 2 0 0 0
0 0 0 2 2 2 0 0 0
0 1 0 0 0 0 0 2 0
1 0 2 0 0 0 2 0 1
2 2 2 0 0 0 1 1 1
0 2 0 0 2 0 0 2 0
2 0 1 2 0 1 2 0 1
1 1 1 1 1 1 1 1 1





























[~F ] (58)

Figure 7 shows the two-variable (9,9) reversible butterfly circuits for Equations
(56) - (58), respectively.

(a) (b) (c)

Fig. 7. (9,9) Reversible butterfly circuits for Equations (56) - (58), respectively. The nine
inputs to each of the three circuits take the following order{ f0, f1, . . . , f8}.

The same two methods of (1) parallel orderings (cf. Figure 6)and (2) Kro-
necker recursion (cf. Figure 7) can be implemented for any Galois radix N and
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arbitrary number of variablesNm (m = 1,2, . . .). Various families of fast permuta-
tion transform circuits for the reversible Shannon expansions have been also cre-
ated [23,26].

2.6 Reversible decision diagrams (RDDs)

A decision diagram (DD) is a fundamental data structure thatis used extensively to
represent and manipulate logic functions [27]. Reversibledecision diagrams have
been created using two methods [1]: (1) direct synthesis from classical decision
diagrams by using (a) reversible gates and (b) the careful and optimal use of out-
puts from a horizontal level to the next and a vertical level to the next in order
to minimize the number of gates and garbage lines used, and (2) the use of the
classical rules for obtaining the corresponding reversible decision diagrams from
their corresponding reversible decision trees (e.g., Figure 3) [1]: (a)join all of the
isomorphic nodes, and (b)remove all of the redundant nodes. The following is a
simple example that illustrates the creation of a two-valued RDDs using the first
method.

Example 5. This example shows the realization of the Boolean function
F = ab⊕ bc⊕ ac using a reversible binary decision diagram (RBDD), as shown
in Figure 8. Note that, in Figure 8b, the binary reversible Shannon primitives [1],
also known as Fredkin gates [1], are used in the internal nodes.

Fig. 8. Reversible DD: (a) BDD for the Boolean functionF = ab⊕bc⊕ac, and
(b) reversible BDD (RBDD) for F.

2.7 Reversible cascade circuits

The reversible expansions, from Section 2.1, have an important circuit realiza-
tion using cascades [1]. One important motivation for the use of such topol-
ogy is that one of the most efficient ways to realize quantum circuits, that are
intrinsically reversible, is by using cascade-based circuit topology of intercon-
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nected reversible quantum primitives [1]. Figure 9 shows two important multiple-
valued reversible and quantum primitives: C-Not (C(NOT); Feynman) and C-C-
Not (C2NOT; C2(NOT); Toffoli) gates [1,10].

a

b

a

a+ b
b

c

b

c+ ab

a a

(a) (b)

Fig. 9. Ternary GF reversible quantum primitives: (a) (2,2)C-Not gate, and (b) (3,3) C-C-Not
(C2NOT) gate.

Table 2 proves the reversibility for the ternary (3, 3) Toffoli gate where the
inputs are in order{a,b,c} and the outputs are in order{a,b,d = c+3 a∗3 b}.

Table 2. Reversibility proof for the ternary (3, 3) Toffoli gate where the inputs are in
the order{a,b,c} and the outputs are in the order :{a,b,d = c+3 a∗3 b}.

000 000 100 100 200 200
001 001 101 101 201 201
002 002 102 102 202 202
010 010 110 111 210 212
011 011 111 112 211 210
012 012 112 110 212 211
020 020 120 122 220 221
021 021 121 120 221 222
022 022 122 121 222 220

As an example, by using the following reversible Davio0 expansion (cf. Eqns.
(30)-(32)):

~fD0 =





1 1+ c 1+2c+ c2

1 c c2

1 2+ c 1+ c+ c2









0 0 1
2 1 0
2 2 2









f0
f1
f2



 =





fr0

fr1

fr2



 (59)

One obtains the ternary reversible Davio0 cascade shown in Fig. 10, where the
quantum notation for ternary reversible C-Not and C2NOT primitives is used [1].

One can observe that, by using Equation (59), other cascade forms can be cre-
ated. Therefore, an important issue becomes apparent, whenanalyzing Figure 10
and Equation (59) as an example, is that one would like to findoptimal methods for
the cascade circuit synthesis in terms of: (1) minimizing the number of garbage out-
puts (i.e., minimizing outputs that are needed only for the purpose of reversibility),
and (2) minimizing the number of gates that are internally used.
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0
0
2
c

c2

f0
f1
f2
f2
0

fr0

Fig. 10. Ternary GF quantum cascade for the realization of the output fr0 in the reversible
expansion in Equation (59).

A second important issue is the design of a reversible cascade that isquantum-
realizable [1, 10], i.e., the reversible circuit can be directly implemented (mapped)
into a functioning quantum system. (This issue of technology mapping is important
because while each quantum primitive is reversible, the opposite is not necessarily
true, i.e.,not each reversible primitive is quantum.) An important theorem that
addresses this issue of quantum-realizable circuits is thetheorem that states that any
C2(U) gate can be built fromC(NOT) gates,C(V ) gates, andC(V +) gates, where
V 2 = U (orVV =U ) andVV + = I (cf. Barenco et al. Theorem [10].) For example,

if U = NOT =

[

0 1
1 0

]

(i.e., C2(U) is the Toffoli gate) thenV =
1
2

[

1+ i 1− i
1− i 1+ i

]

(i.e., square root of NOT gate) andV + =
1
2

[

1− i 1+ i
1+ i 1− i

]

(i.e., square root ofNOT

Hermitian gate).
Other spectral transforms that transform functions in the quantum domainQQQ

(which is the linear complex Hilbert vector space), such as the quantum Fourier
transform, the quantum Walsh transform, and the quantum Chrestenson transform,
have been also addressed [1] as methods that can be used to design quantum circuits
of quantum discrete functions in the quantum domain (space)QQQ.

2.8 Reversible systolic arrays

It has been shown in [28,29] a new design method to implementm-ary logic func-
tions bijectively through the realization ofm-ary reversible functional expansions
usingm-ary reversible systolic arrays and the corresponding quantum systolic ar-
rays as illustrated in Figure 11.
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m−ary Galois Logic
Function

m−ary Reversible
Expansions

m−ary Reversible Systolic
Arrays

m−ary Quantum Systolic
Arrays and Computations

Fig. 11. The implementation of anm-ary Galois logic function bijectively usingm-ary reversible
systolic arrays and their correspondingm-ary quantum systolic arrays.

Since the architecture of conventional computers suffers from two inherent
difficulties of (1) long communication paths and (2) the factthat the single CPU
sequentially fetches and executes instructions, systolicarchitecture speeds up the
computation through the following: (1) cost-effectiveness throughsimplicity and
regularity, (2) concurrency (parallelism) through pipelining and multiprocessing,
(3) regular communication wiring occurs only between neighboring processing el-
ements (PEs) (i.e., theelimination of global broadcasting), and (4) I/Obandwidth -
throughput improvements, where in a systolic architecture three factors are funda-
mental: (1) the type of the processing element (PE), (2) the systolic topology, and
(3) the input/output ordering of data items in the I/O streams. Figure 12 shows an
example of a 2D reversible systolic array [28,29], where each pulsation in the array
consists of the following operations: (1)shift and (2)multiply andadd.

Basic processing cells that are used in the construction of reversible systolic
arithmetic arrays are the add-multiply cells. This kind of cells has the three inputs
{a,b,c} and the three outputs are{a = a,b = b,d = c+a∗b}. One can assumesix
interface registers are attached at the I/O ports of a processing cell. All registers
are clocked for synchronous transfer of data among adjacentcells. Hexagonally
connected processors (i.e., processing elements (PEs)) can optimally perform ma-
trix multiplication, where three data streams flow through the array in a pipelined
fashion. One can follow the operation of the 2D reversible hexagonal systolic array
by studying the data flow by moving transparencies of the bandmatrices over the
network (cf. Figure 12). The reversible systolic array can finish the band matrix
multiplication inT time units, where:T = 3n + min(w1,w2). Therefore the com-
putation time is linearly proportional to the dimensionn of the matrix, and when
the matrix bandwidths increase tow1= w2= n (for dense matrices[AAA] and[BBB]), the
time becomesO(4n), neglecting the I/O time delays. If one used a single additive-
multiply processor to perform the same matrix multiplication, O(n3) computation
time would be needed. The reversible systolic array thus hasa speed gain ofO(n2),
and this becomes more apparent for largen. Multiplication of band matrices[AAA] and
[BBB], [AAA] · [BBB] = [CCC], and the associated definition of bandwidth is shown as follows:
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Fig. 12. Reversible GF(3) Kung systolic array: (a) reversible (3, 3) Toffoli gate,
(b) reversible (3, 3) Kung cell, and (c) reversible Kung systolic architecture.













a11 a12 0 0 0
a21 a22 a23 0 0
a31 a32 a33 a34 0
0 a42 a43 a44 a45
0 0 a53 a54 a55













·













b11 b12 b13 0 0
b21 b22 b23 b24 0
0 b32 b33 b34 b35
0 0 b43 b44 b45
0 0 0 b54 b55













=













c11 c12 c13 c14 0
c21 c22 c23 c24 c25
c31 c32 c33 c34 c35
c41 c42 c43 c44 c45
0 c52 c53 c54 c55













Band1 Band2 Band3

where: bandwidth1: w1 = 3+ 2− 1 = 4, bandwidth2: w2 = 2+ 3− 1 = 4, and
bandwidth3: w3 = w1 + w2− 1 = 4 + 4− 1 = 7. Figure 12 shows the two-
dimensional (2D) reversible hexagonal systolic array [28,29] that implements the
operation of multiplying two band matrices[AAA] and[BBB].

Each propagating data level in the three data flow streams in Figure 12 is called
a wave front, the initial values of the input[CCC] array elements (from the lower side
in Figure 12) are all zeros, and the final (resulting) values of the output[CCC] array
elements (from the upper side in Figure 12) are obtained overGF(3) as follows:
c11 = a11b11+ a12b21,c21 = a21b11+ a22b21,c31 = a31b11+ a32b21,c41 = a42b21,
c51 = 0,c12 = a11b12 + a12b22,c22 = a21b12 + a22b22 + a23b32,c32 = a31b12 +
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a32b22 + a33b32,c42 = a42b22 + a43b32,c52 = a53b32,c13 = a11b13 + a12b23,c23 =
a21b13 + a22b23 + a23b33,c33 = a31b13 + a32b23 + a33b33 + a34b43,c43 = a42b23 +
a43b33 + a44b43,c53 = a53b33 + a54b43,c14 = a12b24,c24 = a22b24 + a23b34,c34 =
a32b24 + a33b34 + a34b44,c44 = a42b24 + a43b34 + a44b44 + a45b54,c54 = a53b34 +
a54b44+a55b54,c15 = 0,c25 = a23b35,c35 = a33b35+a34b45,c45 = a43b35+a44b45+
a45b55,c55 = a53b35+ a54b45+ a55b55.

The topological distribution of the processing elements (PEs) in the systolic
structure, shown in Figure 12, is obtained as follows: # PEs in top-left =w1 = 4, #
PEs in top-right =w2 = 4, # PEs in bottom =w3 = 7, and the total # PEs = 4·4 =
16.

For the systolic implementation ofm-ary functions using the corresponding
GF(3), as an example of anm-ary GF logic, the matrix-based elements that are
obtained using the GF(3) reversible Shannon and Davio functional expansions are
obtained as follows, respectively:













0 0 0 0 0
0e 1e 2e 0 0
1e 2e 0e 0 0
0 0e 1e 2e 0
0 0 0 0 0













·













0 0 f0 0 0
0 0 f1 0 0
0 0 f2 0 0
0 0 f0 0 0
0 0 0 0 0













=













0 0 0 0 0
0 0 0e f0 +1 e f1 +2 e f2 0 0
0 0 1e f0 +2 e f1 +0 e f2 0 0
0 0 0e f1 +1 e f2 +2 e f0 0 0
0 0 0 0 0













(60)
where:a21 =0 e, a22 =1 e, a23 =2 e, a31 =1 e, a32 =2 e, a33 =0 e, a42 =0 e, a43 =1 e,
a44 =2 e, b13 = f0, b23 = f1, b33 = f2, b43 = f0, c23 =0 e f0 +1 e f1 +2 e f2,
c33 =1 e f0 +2 e f1 +0 e f2, c43 =2 e f0 +0 e f1 +1 e f2.













0 0 0 0 0
1 1+ e 1+2e + e2 0 0
1 e e2 0 0
0 2+ e 1+ e + e2 1 0
0 0 0 0 0













·













0 0 f2 0 0
0 0 2f0 + f1 0 0
0 0 2f0 +2 f1+2 f2 0 0
0 0 f2 0 0
0 0 0 0 0













= (61)













0 0 0 0 0
0 0 f2 +(1+ e)(2 f0+ f1)+ (1+2e + e2)(2 f0 +2 f1+2 f2) 0 0
0 0 f2 + e(2 f0+ f1)+ e2(2 f0 +2 f1 +2 f2) 0 0
0 0 f2 +(2+ e)(2 f0+ f1)+ (1+ e + e2)(2 f0 +2 f1+2 f2) 0 0
0 0 0 0 0













,

where:

a21 = 1,a22 = 1+ e,a23 = 1+ e + e2,a31 = 1,a32 = e,a33 = e2,a42 = 2+ e,a43 =
1+ e + e2,a44 = 1,b13 = f2,b23 = 2 f0 + f1,b33 = 2 f0 + 2 f1 + 2 f2,b43 = f2,c23 =
f2 + (1+ e)(2 f0 + f1) + (1+ 2e + e2)(2 f0 + 2 f1 + 2 f2),c33 = f2 + e(2 f0 + f1) +
e2(2 f0 +2 f1+2 f2),c43 = f2 +(2+ e)(2 f0 + f1)+ (1+ e+ e2)(2 f0 +2 f1+2 f2).
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Example 6 shows the reversible implementation, using the reversible Kung sys-
tolic array from Figure 12, of the two-digit ternary multiplication which is per-
formed utilizing the mod-multiplication operator.

Example 6.Table 3 shows the maps for the ternary multiplication (M) and the
output carry (Cout ).

Table 3. Ternary mod-multiplication for ternary 2-digit multiplier: (a) mul-
tiplication (M), and (b) carry out (Cout ).

(a) (b)
H

H
H

HH
b

a
0 1 2

H
H

H
HH

b
a

0 1 2

0 0 0 0 0 0 0 0
1 0 1 2 1 0 0 0
2 0 2 1 2 0 0 1

The following is a bijective implementation, using GF(3) reversible 2D hexag-
onal Kung systolic array from Figure 12, of the two-digit ternary multiplication
which is performed using the mod-multiplication operator.

M =1 a1b+2·2 a1b+2·1 a2b+2 a2b
Cout =2 a2b
→ c33 = M, a31 =1 a, b13 =1 b, a32 = 2·2 a, b23 =1 b, a33 = 2·1 a, b33 =2 b,
a34 =2 a, b43 =2 b,
→ c11 = Cout , a11 =2 a, b11 =2 b, a12 = 0, b21 = 0.

The upper implementation follows directly by the substitution of the array’s
values using the correspondingm-ary functional literals. A second way to imple-
ment the upper multiplier is by using the many-variable ternary Kronecker-based
reversible Shannon expansion (cf. Equation (36)) and the following Davio expan-
sion:

~f =



























fr0
fr1
fr2
fr3
fr4
fr5
fr6
fr7
fr8



























=









1 1+a 1+2a+a2

1 a a2

1 2+a 1+a+a2



⊗





1 1+b 1+2b+b2

1 b b2

1 2+b 1+b+b2

















0 0 1
2 1 0
2 2 2



⊗





0 0 1
2 1 0
2 2 2

















fa0
fa1
fa2



⊗





fb0
fb1
fb2
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=





























1 1+b 1+2b+b2 1+a (1+a)(1+b) (1+a)(1+2b+b2) 1+2a+a2 (1+2a+a2)(1+b) (1+2a+a2)(1+2b+b2)

1 b b2 1+a (1+a)b (1+a)b2 1+2a+a2 (1+2a+a2)b (1+2a+a2)b2

1 2+b 1+b+b2 1+a (1+a)(2+b) (1+a)(1+b+b2) 1+2a+a2 (1+2a+a2)(2+b) (1+2a+a2)(1+b+b2)

1 1+b 1+2b+b2 a a(1+b) a(1+2b+b2) a2 a2(1+b) a2(1+2b+b2)

1 b b2 a ab ab2 a2 a2b a2b2

1 2+b 1+b+b2 a a(2+b) a(1+b+b2) a2 a2(2+b) a2(1+b+b2)

1 1+b 1+2b+b2 2+a (2+a)(1+b) (2+a)(1+2b+b2) 1+a+a2 (1+a+a2)(1+b) (1+a+a2)(1+2b+b2)

1 b b2 2+a (2+a)b (2+a)b2 1+a+a2 (1+a+a2)b (1+a+a2)b2

1 2+b 1+b+b2 2+a (2+a)(2+b) (2+a)(1+b+b2) 1+a+a2 (1+a+a2)(2+b) (1+a+a2)(1+b+b2)





























×



























0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 2 2 2
0 0 2 0 0 1 0 0 0
1 2 0 2 1 0 0 0 0
1 1 1 2 2 2 0 0 0
0 0 2 0 0 2 0 0 2
1 2 0 1 2 0 1 2 0
1 1 1 1 1 1 1 1 1





















































fa0b0
fa0b1
fa0b2
fa1b0
fa1b1
fa1b2
fa2b0
fa2b1
fa2b2



























(62)

where the values of the arrays[AAA] and[BBB] (in Figure 12) are given the corresponding
values from the reversible Shannon and Davio expansions in amanner similar to
the method used in Equations (60) and (61).

In Example 6, the implementation (utilizing Figure 12) can be done in two
ways: (1) using asingle matrix - matrix multiplication systolic array that multiplies
the first basis vector matrix by the second vector of weightedsum of cofactors, and
(2) usingtwo chained matrix-matrix multiplication systolic arrays where the first
systolic array multiplies the spectral transform matrix[SSS] and the cofactors vec-
tor and the second systolic array multiplies the basis vector matrix and the output
vector that results from the first systolic array.

Although the Toffoli processing element (TPE) - based results that are pre-
sented in this section are illustrated for the case of the 2D hexagonal reversible
systolic array, and since the add-multiply cell is the basicPE in these circuits and
the TPE cell is the reversible GF counterpart of this fundamental add-multiply PE,
other ternary add-multiply-based systolic arrays can be constructed reversibly using
the interconnection between TPEs as well [28, 29]. Figure 13shows the quantum
circuit realization of the reversible systolic array from Figure 12 [28, 29], where
the quantum data called qubits (quantum bits) are used in theinput data streams as
shown.

3 Group-Theoretic Methods

A finite group G is a set of finite number of elements together with a binary op-
eration (called the group operation) satisfying the properties of (1) closure, (2)
associativity, (3) identity, and (4) inverse. Group theoryhas been used in the design
of digital circuits [13, 30]. Since several of the primitives used in reversible logic
perform specific permutations of inputs, and since group theory is a mathematical
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Fig. 13. Quantum GF(3) systolic array: (a) quantum (3, 3) Toffoli PE (TPE), (b)
quantum (3, 3) Kung cell, and (c) quantum Kung systolic array.

tool that offers a powerful representation of systems that exhibit internal symme-
tries (e.g., permutations), it becomes natural to think of group-theoreticcompact
representation of the Galois reversible primitives.

A symmetric groupSn (i.e., of degreen and is the group of all permutations on
n objects) is a permutation group of ordern!, where each of then! group operators
(permutations) is a group element. As an example, Figure 14 shows the 2-cycle
(transposition) group representations of several important classes of GF(2) (i.e., bi-
nary) reversible gates [21]. General k-cycle group representations for reversible
circuits made of serial-interconnected and parallel-interconnected reversible prim-
itives are done by performing the appropriate step-by-steppermutations of each
stage of the reversible circuit.

Example 7. Using the 2-cycle (i.e., transposition) group representations in
Figure 14, the following are group representations of various reversible circuits:

7a. Stage1: Feynman gate (23), Stage2: Swap gate (12), Interconnect: Serial
(◦)→ Group representation: 3-cycle group element (123).
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7b. Stage1: Swap gate (12), Stage2: Feynman gate (23), Interconnect: Serial (◦)
→ Group representation: 3-cycle group element (132).

7c. Stage1: Operator (map) (123), Stage2: Operator (map) (24), Interconnect:
Serial (◦) → Group representation: 4-cycle group element (1423).

7d. Stage1: Not gate (01) in parallel with Feynman gate (23),Stage2: Toffoli
gate (67), Interconnect: Serial (◦) → Group representation: (04)(15)(2637).

(01) (23) (67) (12)

(a) (b) (c) (d)

f0 f1 c f1r0 f1r1 c
0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1
2 0 1 0 0 1 0 2
3 0 1 1 1 0 1 5
4 1 0 0 1 0 0 4
5 1 0 1 0 1 1 3
6 1 1 0 1 1 0 6
7 1 1 1 1 1 1 7

cc

1 0r

0 1

1 1r
f

f f

f

0 10 1

cc

2 0r

0 1

2 1r
f

f f

f

0 10 1

f0 f1 c f2r0 f2r1 c
0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1
2 0 1 0 1 0 0 4
3 0 1 1 0 1 1 3
4 1 0 0 0 1 0 2
5 1 0 1 1 0 1 5
6 1 1 0 1 1 0 6
7 1 1 1 1 1 1 7

Input Order{ f0, f1,c} and Input Order{ f0, f1,c} and
Output Order{ f1r0, f1r1,c}: (35) Output Order{ f2r0, f2r1,c}: (24)

(e) (f)

Fig. 14. Group-theoretic representations for important reversible primitives: (a) Not gate (Inverter),
(b) Feynman gate, (c) Toffoli gate, (d) Swap gate, (e) reversible GF(2) Shannon1 (Fredkin1) gate,
and (f) reversible GF(2) Shannon2 (Fredkin2) gate.

The ternary reversible expansions in Equations (20) - (25) result in ternary (4,4)
gates that can be represented using the symmetric groupS that corresponds to spe-
cific permutations of 4 input objects (i.e.,{ f0, f1, f2,c} in Equations (20) - (25)),
and by using ternary group-theoretic representation, Table 4 shows the group rep-
resentations of Equations (20) - (25), respectively, for the input order{ f0, f1, f2,c}
and output order{ fr0, fr1, fr2,c}.

Note that each 2-digit decimal number within each of the number strings be-
tween parentheses in Table 4 is produced using the ternary number expansion
∑3

n=0cn3n for the corresponding group-represented input row (vector{ f0, f1, f2,c})
and output row (vector{ fr0, fr1, fr2,c}) for each ternary truth table of Equations
(20) - (25).

One can observe that, by using the group-theoretic representations in Table 4,
the spectral-based (i.e., spectral generated) reversibleexpansions in Equations (20)
- (25) can be further classified into two families [21]: (1) 2-cycle permutations
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family1 that contains Equations (20), (23), and (24), and (2) 3-cycle permutations
family2 that contains Equations (21), (22), and (25).

Table 4. Group-theoretic representations of the ternary reversible expansions (gates) in Equations
(20) - (25).

Equation Group-Theoretic Representation

20
(0309)(0529)(0618)(0856)(1028)(1331)(1438)(1521)(1634)
(1765)(1955)(2258)(2347)(2561)(2674) (3036)(3345)(3559)
(4248)(4468)(4664)(4967)(5270)(5377)(5763)(6072)(6975)

21
(041028)(052911)(071955)(085620)(133731)(143238)
(164658)(175947)(226434)(233565)(257361) (266274)
(434967)(446850)(527670)(537177)

22
(032709)(051129)(065418)(082056)(123036)(143832)
(155745)(174759)(213363)(236535)(246072) (267462)
(426648)(445068)(516975)(537771)

23
(0428)(0511)(0755)(0820)(0927)(1230)(1337)(1533)(1664)
(1723)(1854)(2157)(2246)(2460)(2573) (3238)(3458)(3547)
(4367)(4450)(4563)(4866)(5169)(5276)(5965)(6274)(7177)

24
(0327)(0410)(0654)(0719)(1129)(1236)(1432)(1563)(1622)
(1735)(2056)(2145)(2359)(2472)(2662) (3137)(3357)(3446)
(4266)(4349)(4765)(5068)(5175)(5371)(5864)(6173)(7076)

25
(030927)(042810)(061854)(075519)(123630)(133137)
(154557)(165846)(216333)(223464)(247260) (256173)
(424866)(436749)(517569)(527076)

As another example of group-based representation, we obtain
(121314)(151716)(212322)(242526) as the group-theoretic representation of
the ternary Toffoli gate. The (121314)(151716)(212322)(242526) group-theoretic
representation of the ternary Toffoli gate stems from the fact that the ternary Toffoli
primitive transforms the inputs as follows: 12→13→14→12, 15→17→16→15,
21→23→22→21, 24→25→26→24, while preserving the domain-range mapping
for the rest (cf. Table 2).

4 Elementary Cellular Automata (ECA) - Based Synthesis

A cellular automaton is a decentralized universal computing model oftime-based
(i.e., temporal) digital circuits and systems that provide an excellent platform for
performing complex computation with the help of only local information. A CA
consists of a spatiallattice of cells, each of which, at timet, can be in onem states.
The lattice starts out with some initial configuration of local states (where config-
uration means the pattern of states over the entire lattice)and at each time step,
the states of all cells in the lattice are synchronously updated. The communica-
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tion in CA between constituent cells is limited to local interaction, and the overall
structure can be viewed as a parallel processing device. Elementary Cellular Au-
tomata (ECA) as a special type of CA has been proven to be a powerful computing
paradigm for the following properties: (1) universality: an ECA can model any
discrete system, and thus it is a powerful logicallycomplete system from which
all functions can be obtained and can be used to model complexsystems; (2) sim-
plicity: an elementary cellular automaton is the building block of the elementary
cellular automata, which is a simple structure that evolvesover time using specific
evolution rules, that leads to modeling complex discrete systems using such simple
structures; and (3) regularity: the evolution of ECA to generate discrete time sys-
tems consists of geometrically evolving cellular grids. Set-theoretically, a regular
ECA rule is a mapping of (st(i−1)⊗ st(i)⊗ st(i + 1)) onto st+1(i) (where⊗ here
means the Cartesian product).

An ECA consists of an array of cells in one dimension (1-D). Ina Boolean
ECA, each cell can take on one of two states{0,1} where the binary string rep-
resenting the array changes at discrete time steps (intervals). The Boolean ECA
dynamics is commonly represented: (1)spatially: by a horizontal sequence of 0’s
and 1’s or of white and black cells, and (2)temporally: time, in successive rows, is
the vertical axis. The next state of any cell in ECA depends only upon its present
“neighborhood”, which includes (a) the state of the cell itself and (b) those of its
immediate neighbors to the left and right. That is, ifst(i) is the state of celli at
time t, the dynamic law governing the Boolean ECA is described by the Boolean
function (mapping):

st+1(i) = f (st(i−1),st(i),st(i+1)) (63)

Since there are 23 = 8 possible neighborhoods and since each neighborhood
can map into either of the two states ofst(i+1), then there are 28 = 256 mappings
(or ECA rules).

The evolution that results from Equation (63) is an irreversible evolution
[31, 32]; the evolution of ECA according to Equation (63) in general leads toir-
reversible dynamics, i.e., result is not a one-to-one mappings between vectors of
inputs and outputs, and thus the vector of input states cannot be always uniquely
reconstructed from the vector of output states. To achieve reversible discrete dy-
namics, one may use the following alternative definition of ECA evolution [31,32]:

scr,t+1(i−1) = f1(st(i−1),st(i),st(i+1)) (64)

scr,t+1(i) = f2(st(i−1),st(i),st(i+1)) (65)

scr,t+1(i+1) = f3(st(i−1),st(i),st(i+1)) (66)

where subscriptc means conservative and subscriptr means reversible, such that



534 A. Al-Rabadi:

the (3,3) mappings from one step to the next are conservativeand reversible and
thus producing a CRECA.

Example 8.Using the algorithm CRBF [31], Table 5 shows a a (3,3) conserva-
tive reversible map for ECA Rule # 170.

Table 5. An example of CRECA forst+1(i−1) Rule #170.

st(i−1) st(i) st(i+1) st+1(i−1) st+1(i) st+1(i+1)

0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 0 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 1 1
1 1 1 1 1 1

The (3,3) conservative reversible mapping in Table 5 for Rule
#170 can be represented by the set of three binary strings as fol-
lows {10101010,11110000,11001100}2, which produces the set of Rule
#{170,240,204}.

Figure 15 shows an example of ECA discrete system dynamics for irreversible
Rule #240 (Figure 15a) versus reversible Rule #{170,240,204} (cf. Table 5) using
the same initial condition{110010101} (Figure 15b). While the evolution in Fig-
ure 15a is a non-overlapping neighbor evolution, the evolution in Figure 15c is an
overlapping neighbor evolution. One notes that the irreversible overlapping-based
neighbor ECA evolution for Rule #240 in Figure 15c leads to a more complex
evolution than the irreversible non-overlapping-based neighbor ECA evolution for
Rule #240 in Figure 15a. One can also observe that if one conducts a 3-block re-
versible evolution with overlapping neighbor (Figure 15d)then several cell(s) will
result with conflict values inside it, and this case will be forbidden (avoided) since
the value and its “opposite” cannot possess the same spatiallocation (address) at
the same time. Therefore, 3-block reversible non-overlapping neighbor ECA evo-
lutions (such as in Figure 15b) will be only used.

Given: (1a) 1-D array lengthl, (1b) time stepsn, (2) initial condition (distri-
bution), and (3) reversible maps{ f1, f2, f3}, theanalysis of CRECA refers to the
finding of the CRECA evolution at stept +1 from stept. While analysis is useful
to explore the whole space of all potential reversible system dynamics, the opposite
problem ofsynthesis is the more interesting problem. The synthesis problem can be
stated as follows: Given (1a) 1-D array lengthl, (1b) discrete time stepsn, (2) a pri-
ori known or assigned (i.e., a priori unknown) initial condition, and (3) the result of
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a total spatial evolution over time, produce the reversible maps{ f1, f2, f3}. It turns
out that, while CRECA analysis is relatively an easy problem, CRECA synthesis is
a more difficult one.

Fig. 15. Discrete system dynamics for: (a) irreversible non-overlapping neighbor ECA evolution
for Rule #240, (b) reversible non-overlapping neighbor ECAevolution for Rule #{170,240,204},
(c) irreversible overlapping neighbor ECA evolution for Rule #240, and (d) reversible overlapping
neighbor ECA evolution for Rule #{170,240,204} where x means a cell with contradictory values
(i.e., a cell with more than one value at the same spatial location.)

Modeling and processing using Swap-based circuits is important since
many of the two-valued and many-valued quantum circuit implementations
use two-valued and multiple-valued quantumSwap-based andNot-based gates
[1, 10]. This can be important, since the Swap and Not gates are basic
primitives in quantum computing, from which many otherm-valued funda-
mental gates are built, such as [1]: (1)m-valued Not gate, (2)m-valued
Controlled-Not gate (m-valued C-Not gate orm-valued Feynman gate), (3)
m-valued Controlled-Controlled-Not gate (m-valued C2-Not gate or m-valued
Toffoli gate), (4) m-valued Swap gate, and (5)m-valued Controlled-Swap
gate (m-valued C-Swap gate orm-valued Fredkin gate). The following is
an algorithm to generate one possible Swap-based CRECA (SCRECA) [31].

Algorithm SCRECA

1. For a BECA (Boolean ECA or binary-input binary-output ECA) map spec-
ified as follows: (1) spatial length (i.e., array length) isl, and (2) temporal
length (i.e., number of steps) isn.

2. If the lengthl is not a multiplication of 3,Then add minimum number of
columns with zero values to make the lengthl/3 is an integer,Elsegoto 3.

3. For temporal (row) indexK = 1,2,3, . . . ,n, spatial automatonak with index
k = 0,1,2, . . . ,(l/3)−1, and evolution matrix from an arbitrary time(z−1)
to timez: [M(z−1)z], find transformation matrix from time (row)p (i.e.,t + p)
to time (row)q (i.e.,t + q) as follows:

~aT
k,t+q =~aT

k,t+p[[M(q−1)q] . . . [M(p+1)(p+2)][Mp(p+1)]]
T or

~ak,t+q = [[M(q−1)q] . . . [M(p+1)(p+2)][Mp(p+1)]]~ak,t+p
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wheret, p, andq are positive integers.
4. For top-to-down and left-to-right evolution,goto 5.
5. Since the CRECA isconservative, then by using the Swap-based reversible

primitives, synthesize a reversible circuit for the CRECA map as follows:

5a. For (m = 0; m < n; m ++)

For (k = 0; k ≤ (l/3)−1; k ++)
5b. Perform one-to-one spatial mapping of permuted automaton cellak be-

tween levelsm and(m + 1) into (3,3) Swap-based reversible primitive
(cf. Figure 16) between stagesm and (m + 1) in the corresponding
reversible circuit.

6. End

The SCRECA Algorithm [31] can be used for modeling (representation) and
processing (operation) reversibly on the final resulting lattice of the ECA evolu-
tion, whether that evolution was conducted using a non-overlapping neighbor ECA
evolution or an overlapping neighbor ECA evolution.

Since the elementary cellular automaton in its fundamentalform is a 3-cell
block, then the SCRECA algorithm is based on mapping a partition of the spatial
state of the automata in blocks of three cells and then findinga suitable permutation
matrix reflecting the behavior of the conservative reversible system. This simplicity
of the Swap-based SCRECA algorithm is also the reason for itsability to model
complex evolutions.

As SCRECA is: (1) reversible and (2) conservative, the output of each au-
tomaton~aT

k,t+q can be always obtained aspermutation of input~aT
k,t+p. Therefore,

the matrix [[M(q−1)q] . . . [M(p+1)(p+2)][Mp(p+1)]]
T (i.e., the total matrix that results

from multiplying the matrices:{[M(q−1)q], . . . , [M(p+1)(p+2)], [Mp(p+1)]} ) is always
a permutation matrix. For example, for a 3-input 3-output permutation, Figure
16 shows all possible reversible (3,3) Swap-based permutations using the Wire
(Buffer) and Swap reversible logic primitives. The matrix representation in Fig-
ure 16 is obtained by solving for the output spatial state (vector) permutation from
the input state (vector). This is shown for Figure 16d as an example as follows:




1 0 0
0 0 1
0 1 0









u
v
w



 =





u
w
v



 , where





u
v
w



 is the input vector and





u
w
v



 is the out-

put vector in Figure 16d, respectively.

One notes that the above algorithm SCRECA can be usedspatially for any of
the following three cases: (a1) evolving a single automaton, (b1) evolving any set
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(a) [1] (b)

[

0 1
1 0

]

(c)





1 0 0
0 1 0
0 0 1



 (d)





1 0 0
0 0 1
0 1 0





(e)





0 1 0
1 0 0
0 0 1



 (f)





0 1 0
0 0 1
1 0 0



 (g)





0 0 1
1 0 0
0 1 0



 (h)





0 0 1
0 1 0
1 0 0





Fig. 16. Two-valued (binary) reversible and conservative permutation-based circuits: (a) (1,1) Wire
(Buffer), (b) (2,2) Swap, and (c) - (h) all possible reversible (3,3) Swap-based primitives.

of automata at the same time, and (c1) evolving all of automata at the same time.
Also, one notes that the above algorithm SCRECA can be usedtemporally for any
of the following three cases: (a2) step-by-step automata evolution between two
consecutive times (steps)(k−1) andk, (b2) automata evolution between any two
times (steps)p andq, and (c2) total automata evolution for all of stepsn. While
temporal complexity in methods (a2) through (c2) result in step-by-step evolution
matrix transformations (i.e., matrix multiplications), methods (a1) through (c1) re-
sult in spatial complexity that determines the number of input-output permutation
primitive, e.g., (3,3), (6,6), (9,9), etc. The determiningfactor for using methods
(a1) - (c2) can be, for example, the complexity of possible circuit implementation
of the resulting reversible circuit models.

5 Conclusions and Future Work

This paper presents several recent developments in the reversible and quantum logic
circuit synthesis of binary and multiple-valued switchingcircuits. This review in-
cludes the synthesis methods and representations using: (1) spectral transforms and
functional expansions, (2) group theory, and (3) cellular automata. Future work will
involve more detailed investigation into cost / benefit based analysis (evaluation) of
such methods. Future work will also involve items such as newgroup-based synthe-
sis methods for the design of reversible and quantum circuits, and the investigation
of the implementation of reversible cellular automata for the test of reversible and
quantum circuits.
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