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On the Restrictive Channel Thickness Estimation

Iskandar Karapetyan

Abstract: Channel routing is an important phase of physical design of LSI and VLSI
chips. The channel routing method was first proposed by Akihiro Hashimoto and
James Stevens [1]. The method was extensively studied by many authors and applied
to different technologies. At present there are known many effective heuristic algo-
rithms for channel routing. A. LaPaugh [2] proved that the restrictive routing problem
is NP-complete. In this paper we prove that for every positive integer k there is a re-
strictive channelC for whichτ(C) > ϕ(HG)+L(VG)+k, whereτ(C) is the thickness
of the channel,ϕ(HG) is clique number of the horizontal constraints graphHG and
L(VG) is the length of the longest directed path in the vertical constraints graphVG.
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1 Introduction

Channel routing is one of the most important phases of routing problem in LSI and
VLSI chips’ physical design.

Most of modern routing systems are mainly based on channel routers. These
systems employ the “divide-and-conquer” strategy, where the layout routing prob-
lem splits into channel routing problems. Channel routers are widely used in the
design of custom chips as well as uniform structures such as gate-arrays and stan-
dard cells. In the design of gate arrays, after completing placement and global rout-
ing phases, the channel router is launched to perform final interconnection within
individual wiring bays. Similarly, channel routers are used to realize interconnec-
tion of standard-cell based designs. In custom layout of VLSI chips channel routers
are used to set up final interconnection between macro blocks.
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Since channel routers perform detailed (final) interconnections in layout de-
sign, the general routing strategies and algorithms are substantially dependent on
technological restrictions. Different technologies produce different approaches to
the problem.

In this paper we mainly concentrate on the channel thicknessbounds for clas-
sical channel routing problem. The classical model (also known as the Manhattan
model) presents to be a rectangular space between two parallel rows of pins (ter-
minals). The locations of these pins are fixed on the verticallines of the grid. Two
layers are available for routing: one exclusively for horizontal segments and the
other for vertical segments.

Vias are used for each layer change.

2 Channel Routing Problem

To formulate the problem more precisely we need the following definitions. A
channelC is a pair of vectors of nonnegative integers:T = (t(1), t(2), . . . , t(n))and
B = (b(1),b(2), . . . ,b(n)). We assume that these numbers are the labels of points
that are located at the top and at the bottom of ann×m rectangle grid under condi-
tion that any positive integer with an entry inT or B has at least another entry, as it
is shown in Fig. 1.

Fig. 1. A channel and its associated net list.

They represent the netlist. Terminals (points) with the same positive labeli must
be connected by neti. Terminals numbered as zero are called vacant terminals. A
vacant terminal does not belong to any net, and therefore requires no electrical
connection. With every net i we associate an intervalI(i), where the left (right)
point of I(i) is the minimal (maximal) column numberj such thatt( j) or b( j)
equalsi. Let us consider the restrictive channel routing problem, when the number
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of horizontal tracks on which any net can be positioned is 1. In this case wire
geometry is very simple. Every net is implemented as a singlehorizontal segment
with vertical branches connecting it to the pins; this is illustrated in Fig. 2.

Fig. 2. Terminology for channel routing problem.

The problem of restrictive routing is to determine the number of a horizontal
track for every net. Simplicity and the usage of minimal number of vias are the main
advantages of restrictive routing. In two-layer routing, all the horizontal wires lay
out on the tracks of one layer and all the vertical wires on thetracks of the other
one. If two horizontal intervals of different nets do not overlap, then they could be
assigned to the same track. If two horizontal intervals of different nets overlap, then
they must be assigned to different tracks. Thus, there are horizontal constraints on
nets, whether or not they can be assigned to the same tracks.

Also, any two net must not overlap at a vertical column. It is clear that the
interval of a net, connected to the upper terminal at a given column, must be placed
above the interval of another net, connected to the lower terminal at that column
(see Fig. 2). Therefore, there are also vertical constraints between nets. Hence, we
may associate two constraints graphs to any channel routingproblem, one to model
the horizontal constraints and the other to model vertical ones. For both graphs
every net is represented by a vertex.

The horizontal constraints graph denoted byHG = (V,E) is an undirected
graph, where a vertexi ∈ V represents neti and (i, j) ∈ E if the horizontal in-
tervals of neti and netj overlap. So it is an interval graph by construction (Fig.3).

The vertical constraints graph, denoted byVG = (V,E′) is a directed graph,
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Fig. 3. The horizontal constraints graph HG for the channel (Fig. 1).

where each node corresponds to neti, and each columnj, ( j = 1,2, . . . ,n)) such
that t( j) and b( j) are distinct nonzero numbers introduces a directed edge from
nodet( j) to b( j). That is, for any two nets having pins in the same column, on the
opposite sides of the channel there will be a directed edge between corresponding
vertices of the graphVG= (V,E′). Therefore, if there is a directed cycle in graph
VG, the routing requirements cannot be realized without splitting some nets. For
some cases, the restrictive routing problem is quite unrealizable. For example the
restrictive channelT = (1,2) andB= (2,1) is not routable. It is easy to see that the
vertical constraint implies the horizontal constraint, however, the converse is not
true. Fig.4 shows the vertical constraints graph for the channel routing problem,
given in Fig. 1. These two graphs allow us to view the channel routing problem as
a graph theoretic problem.

Fig. 4. The vertical constraints graphs for channel (Fig.1.).

The thickness of the channelC denoted byτ(C) must be determined by the
router, i.e. we are allowed to add horizontal tracks to the rectangle, but vertical
columns must remain intact. The channel router is provided to minimize the num-
ber of tracks, in other words to route within a channel of minimal thickness.

The horizontal constraints graphHG plays an important role in determining the
channel thickness. No two nets which have a horizontal constraint may be assigned
to the same track. Hence the maximum clique numberϕ(HG) of graphHG, which
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is the maximum number of pairwise intersected intervals, forms a lower bound for
channel thickness, i.eϕ(HG)≤ τ(C).

This trivial lower bound is important and sometimes is the only lower bound
available.

Let us consider the effect of directed path in the vertical constraints graphVG
on the channel thickness. The length of the longest directedpathL(VG) of graph
VG presents another lower bound for channel thickness:L(VG) ≤ τ(C). This is
due to the fact that no two nets in a directed path may be routedon the same track.
For other lower bounds of channel thickness the interested reader can refer to [3].

3 Main Result

Obviously the existence of “good” (i.e. easily computable)lower and upper bounds
for the channel thickness is very important, because they can help to estimate the
chips’ area and the quality of placement. So, it is natural toask the question:
is it possible to derive an upper bound for channel thicknessin terms of easily-
computableϕ(HG) and L(VG)? The answer to this question for restrictive channel
routing is negative, since, as it will be demonstrated bellow, ϕ(HG) andL(VG) are
not the only factors determining the channel thickness.

Note that for restrictive channel routing horizontal wire segments positioned
on the same track do not intersect. This means that assignment of wire segments
to tracks is reduced to proper coloring of the horizontal constraints graphHG,
and vice versa. SinceHG is an interval graph, one can use the well known left
edge algorithm to color its vertices. As it is mentioned above, when the vertical
constraints graphVGhas directed cycles, then the restrictive solution does notexist.
But even if graphVG is acyclic, the restrictive channel routing problem is far from
being simple. A. LaPaugh [2] proved that the restrictive channel routing problem
is NP-complete. It is easy to see that the restrictive routing problem is reduced to
the special coloring of vertical constraints graphVG, and vice versa.

A specialk-coloring ofVG= (V,E′) is a labelingf :V →{1,2, . . . ,k}. Here the
labels are colors. A specialk-coloring f is proper, if(i, j) ∈ E implies f (i) 6= f ( j)
and if (k,m) ∈ E′ implies f (k) < f (m). The graphVG is called specialk-colorable
if it has a proper specialk-coloring. The special chromatic numberχ ′(V,G) is the
minimumk such thatVG is specialk-colorable.

A. Frank [4] conjectures that for every channel

τ(G) ≤ L(VG)+ ϕ(HG)+2,

whereL(VG) is the length of the longest directed path inVG andϕ(HG) is the
clique number ofHG.
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Theorem 1. For every positive integerk there is a restrictive channelC for
which τ(C) > L(VG)+ ϕ(HG)+k.

Proof. Let us consider a restrictive channel the initial part of which is shown
in Fig. 5. Fig. 6 illustrates graph VG for the mentioned part of restrictive channel.
The channel is constructed step by step (the vertices added at each step are encircled
by a dashed curve in Fig. 6).

Fig. 5. Restrictive channel.

Let G j denotes that subgraph ofVG which is induced by all vertices of level
j, j = 0,1, . . . (The levels are shown in Fig. 6). To prove the theorem we need the
following statements:

(i) ϕ(HG) = 5,

(ii) L(G0) = 1 and L(G j+1) = L(G j)+1, j = 0,1,2, . . .,

(iii) χ ′(G0) = 5 and χ ′(G j+1) = χ ′(G j)+2, j = 0,1,2, . . .

By construction of the channel the vertices of the same step are pairwise ad-
jacent in the horizontal constraints graphHG. Every directed edge connects only
vertices from succesive steps, moreover the vertical constraints graphVG contains
all such edges except to(5,5′), (7,7′), (9,9′), (11,11′) and so on. Since the vertical
constraint implies vertical constraint, hence all directed edges ofVGas undirected
edges belong toHG. It is not difficult to see that the addition of every next step
increases the length of the longest path by 1 in the corresponding subgraph.

This proves statements (i) and (ii). To prove (iii) first notethat if there is a
directed path from vertexi to vertex j, then in the special coloring ofVG, the color
of i must be less than the color ofj. Secondly, having the optimal special coloring
of Gi we can continue this coloring to obtain optimal special coloring of Gi+1 by
using two new colors. AsG0 is a clique inHG, henceχ ′(G0) = 5. Every vertex
of G0 is connected by direct path to every vertex of step 3 except vertex 5 which
is not connected to vertex 5′ by a directed path, therefore the color of vertices 6
and 7 must be greater than the color of all the vertices of subgraph G0. We can
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color vertex 5′ by the color of vertex 5. Hence the optimal special coloring of G1 is
obtained by adding two new colors.

Fig. 6. Vertical constraints graph.

Using the same arguments one can obtain the optimal special coloring of G2

from the optimal special coloringG1 by using 2 new colors and so on. Statement
(iii) is proved. Thus addition of every new stepi (i > 2) retains the clique number,
the length of the longest path is increased by 1, but the special chromatic number is
increased by 2. For the graph in Fig. 6ϕ(HG) = 5, L(VG) = 6 andχ ′(VG) = 15.
Taking sufficient steps for everyk we can construct restrictive channel for which
τ(C) > L(VG)+ ϕ(HG)+k. The theorem is proved.

Note that the conjecture mentioned above remains open for nonrestrictive chan-
nels.
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