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On the Restrictive Channel Thickness Estimation

Iskandar K arapetyan

Abstract: Channel routing is an important phase of physical designSifdnd VLSI
chips. The channel routing method was first proposed by Akirfashimoto and
James Stevens [1]. The method was extensively studied by enghors and applied
to different technologies. At present there are known mdfgctve heuristic algo-
rithms for channel routing. A. LaPaugh [2] proved that th&trietive routing problem
is NP-complete. In this paper we prove that for every posititeger k there is a re-
strictive channeC for which 7(C) > ¢ (HG) + L(V G) + k, wheret(C) is the thickness
of the channelg (HG) is cligue number of the horizontal constraints grap6 and
L(VG) is the length of the longest directed path in the verticalst@ints graplv G.
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1 Introduction

Channel routing is one of the most important phases of rgyimeblem in LS| and
VLSI chips’ physical design.

Most of modern routing systems are mainly based on chanugtne These
systems employ the “divide-and-conquer” strategy, whieeddyout routing prob-
lem splits into channel routing problems. Channel routeesvedely used in the
design of custom chips as well as uniform structures suclassayrays and stan-
dard cells. In the design of gate arrays, after completiaggrhent and global rout-
ing phases, the channel router is launched to perform finatdannection within
individual wiring bays. Similarly, channel routers are dge realize interconnec-
tion of standard-cell based designs. In custom layout of Mib$ps channel routers
are used to set up final interconnection between macro hlocks
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Since channel routers perform detailed (final) intercotinas in layout de-
sign, the general routing strategies and algorithms arsetanbally dependent on
technological restrictions. Different technologies prod different approaches to
the problem.

In this paper we mainly concentrate on the channel thickbessds for clas-
sical channel routing problem. The classical model (alsminas the Manhattan
model) presents to be a rectangular space between twoglamails of pins (ter-
minals). The locations of these pins are fixed on the verticak of the grid. Two
layers are available for routing: one exclusively for hontal segments and the
other for vertical segments.

Vias are used for each layer change.

2 Channel Routing Problem

To formulate the problem more precisely we need the follgmiefinitions. A
channelC is a pair of vectors of nonnegative integefs= (t(1),t(2),...,t(n))and

B = (b(1),b(2),...,b(n)). We assume that these numbers are the labels of points
that are located at the top and at the bottom ofiarm rectangle grid under condi-
tion that any positive integer with an entry Thor B has at least another entry, as it

is shown in Fig. 1.
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Fig. 1. A channel and its associated net list.

They represent the netlist. Terminals (points) with thesaositive label must
be connected by nét Terminals numbered as zero are called vacant terminals. A
vacant terminal does not belong to any net, and thereforeinexyno electrical
connection. With every net i we associate an inteial, where the left (right)
point of I (i) is the minimal (maximal) column numbgrsuch thatt(j) or b(j)
equalsi. Let us consider the restrictive channel routing probleremthe number
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of horizontal tracks on which any net can be positioned is i.this case wire
geometry is very simple. Every net is implemented as a sihgtezontal segment
with vertical branches connecting it to the pins; this igstrated in Fig. 2.
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Fig. 2. Terminology for channel routing problem.

The problem of restrictive routing is to determine the numiiea horizontal
track for every net. Simplicity and the usage of minimal nemdf vias are the main
advantages of restrictive routing. In two-layer routint tiee horizontal wires lay
out on the tracks of one layer and all the vertical wires onttaeks of the other
one. If two horizontal intervals of different nets do not dag, then they could be
assigned to the same track. If two horizontal intervals fiédgnt nets overlap, then
they must be assigned to different tracks. Thus, there aredmtal constraints on
nets, whether or not they can be assigned to the same tracks.

Also, any two net must not overlap at a vertical column. Itlsac that the
interval of a net, connected to the upper terminal at a giwdnon, must be placed
above the interval of another net, connected to the lowenitexl at that column
(see Fig. 2). Therefore, there are also vertical consgdiatween nets. Hence, we
may associate two constraints graphs to any channel roptotgem, one to model
the horizontal constraints and the other to model verticedso For both graphs
every net is represented by a vertex.

The horizontal constraints graph denoted B = (V,E) is an undirected
graph, where a verteke V represents netand (i, j) € E if the horizontal in-
tervals of nei and netj overlap. So it is an interval graph by construction (Fig.3).

The vertical constraints graph, denoted \b% = (V,E’) is a directed graph,
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4 6

Fig. 3. The horizontal constraints graph HG for the chanki.(1).

where each node corresponds to netnd each columi, (j = 1,2,...,n)) such
thatt(j) andb(j) are distinct nonzero numbers introduces a directed edge fro
nodet(j) to b(j). That is, for any two nets having pins in the same column, en th
opposite sides of the channel there will be a directed edtyedam corresponding
vertices of the grapi G = (V,E’). Therefore, if there is a directed cycle in graph
V G, the routing requirements cannot be realized without tipditsome nets. For
some cases, the restrictive routing problem is quite urzaale. For example the
restrictive channel = (1,2) andB = (2,1) is not routable. Itis easy to see that the
vertical constraint implies the horizontal constraintwewer, the converse is not
true. Fig.4 shows the vertical constraints graph for thenok&routing problem,
given in Fig. 1. These two graphs allow us to view the chanmeting problem as

a graph theoretic problem.

5

Fig. 4. The vertical constraints graphs for channel (F)g.1.

The thickness of the chann€l denoted byt (C) must be determined by the
router, i.e. we are allowed to add horizontal tracks to theamgle, but vertical
columns must remain intact. The channel router is providemihimize the num-
ber of tracks, in other words to route within a channel of mial thickness.

The horizontal constraints graphG plays an important role in determining the
channel thickness. No two nets which have a horizontal cainstmay be assigned
to the same track. Hence the maximum clique nungtiétG) of graphHG, which
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is the maximum number of pairwise intersected intervalsn®a lower bound for
channel thickness, i.¢(HG) < 1(C).

This trivial lower bound is important and sometimes is théydower bound
available.

Let us consider the effect of directed path in the verticalst@ints graplv G
on the channel thickness. The length of the longest dirguatidlL (V G) of graph
V G presents another lower bound for channel thicknés¥ G) < 7(C). This is
due to the fact that no two nets in a directed path may be rautdtie same track.
For other lower bounds of channel thickness the interestader can refer to [3].

3 Main Result

Obviously the existence of “good” (i.e. easily computalidsyer and upper bounds
for the channel thickness is very important, because thayhe#p to estimate the
chips’ area and the quality of placement. So, it is naturahgk the question:
is it possible to derive an upper bound for channel thickrasterms of easily-
computablgp (HG) and L(V G)? The answer to this question for restrictive channel
routing is negative, since, as it will be demonstrated belp(HG) andL(V G) are
not the only factors determining the channel thickness.

Note that for restrictive channel routing horizontal wiggsents positioned
on the same track do not intersect. This means that assigrohanre segments
to tracks is reduced to proper coloring of the horizontal straints graphHG,
and vice versa. SincEIG is an interval graph, one can use the well known left
edge algorithm to color its vertices. As it is mentioned ahowhen the vertical
constraints grapW G has directed cycles, then the restrictive solution doegxist.
But even if graptV Gis acyclic, the restrictive channel routing problem is famf
being simple. A. LaPaugh [2] proved that the restrictiversie routing problem
is NP-complete. It is easy to see that the restrictive rgutiroblem is reduced to
the special coloring of vertical constraints grayt®, and vice versa.

A specialk-coloring ofV G= (V,E’) isalabelingf : V — {1,2,... ,k}. Here the
labels are colors. A specicoloring f is proper, if(i, j) € E implies f(i) # f(j)
and if (k,m) € E' implies f (k) < f(m). The graphV Gis called speciak-colorable
if it has a proper specid-coloring. The special chromatic numbefV,G) is the
minimumk such thav G is speciak-colorable.

A. Frank [4] conjectures that for every channel
T(G) <L(VG)+¢(HG) +2,

whereL(V G) is the length of the longest directed pathvis and ¢ (HG) is the
cliqgue number oHG.
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Theorem 1. For every positive integkrthere is a restrictive chann€l for
which7(C) > L(VG)+ ¢(HG) + k.

Proof. Let us consider a restrictive channel the initialt mdrwhich is shown
in Fig. 5. Fig. 6 illustrates graph VG for the mentioned pdntestrictive channel.
The channel is constructed step by step (the vertices addediastep are encircled
by a dashed curve in Fig. 6).
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Fig. 5. Restrictive channel.

Let G; denotes that subgraph ¥fG which is induced by all vertices of level
j, ] =0,1,... (The levels are shown in Fig. 6). To prove the theorem we need t
following statements:

(i) ¢(HG) =5,
(i) L(Go)=1 and L(Gj;1)=L(Gj)+1, j=0,1,2..,
(i) X'(Go)=5 and x'(Gj;1)=x'(Gj)+2,j=0,1,2,...

By construction of the channel the vertices of the same stepairwise ad-
jacent in the horizontal constraints graplc. Every directed edge connects only
vertices from succesive steps, moreover the vertical caing$ graph/ G contains
all such edges except t6,5), (7,7'), (9,9), (11,11) and so on. Since the vertical
constraint implies vertical constraint, hence all dirdlotelges oV G as undirected
edges belong té1G. It is not difficult to see that the addition of every next step
increases the length of the longest path by 1 in the correpgrsubgraph.

This proves statements (i) and (ii). To prove (iii) first ndket if there is a
directed path from verteixto vertex|, then in the special coloring &G, the color
of i must be less than the color ¢f Secondly, having the optimal special coloring
of G; we can continue this coloring to obtain optimal special datp of G;. 1 by
using two new colors. A& is a clique inHG, hencex’(Gg) = 5. Every vertex
of Gg is connected by direct path to every vertex of step 3 excepexé which
is not connected to verteX By a directed path, therefore the color of vertices 6
and 7 must be greater than the color of all the vertices of mylhgGy. We can
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color vertex 5by the color of vertex 5. Hence the optimal special coloringGeis
obtained by adding two new colors.
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Fig. 6. Vertical constraints graph.

Using the same arguments one can obtain the optimal speta@irng of G,
from the optimal special colorinG; by using 2 new colors and so on. Statement
(iii) is proved. Thus addition of every new stepi > 2) retains the clique number,
the length of the longest path is increased by 1, but the abatiomatic number is
increased by 2. For the graph in Figg¢6HG) =5,L(VG) =6 andx’(VG) = 15.
Taking sufficient steps for evelywe can construct restrictive channel for which
7(C) > L(VG) + ¢ (HG) + k. The theorem is proved.

Note that the conjecture mentioned above remains open foesuictive chan-
nels.
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