FACTA UNIVERSITATIS (Nlé)
SER.: ELEC. ENERG. vol. 20, no. 3, December 2007, 437-459

Digital Signal Processing Designing for FPGA
Architectures

Mariusz Rawski, Bogdan J. Falkowski, and Tadeusz tuba

Abstract: This paper presents the discussion on efficiency of diffégreplementation
methodologies of DSP algorithms targeted for modern FP@Aitectures. Modern
programmable structures are equipped with specialized &8Pedded blocks that
allow implementing digital signal processing algorithmighwuse of the methodology
known from digital signal processors. On the first place, &ogv, programmable ar-
chitectures give the designer the possibility to incredeiency of designed system
by exploitation of parallelism of implemented algorithnMoreover, it is possible to
apply special techniques, such as distributed arithmBt) that will boost the per-
formance of designed processing systems. Additionallgliegtion of the functional
decomposition based methods, known to be best suited foAFR@ctures, allows
utilizing possibilities of programmable technology in ydrigh degree. The paper
presents results of comparison of different design apfrean this area.

Keywords: Digital signal processing, DSP algorithm, FPGA architegflDSP em-
bedded blocks, distributed arithmetic.

1 Introduction

Digital Signal Processing (DSP), thanks to explosive dgwslent of wired and
wireless networks and multimedia, represents one of the fassinating areas in
electronics. The applications of DSP continue to expangedrby trends such
as the increased use of video and still images and the denwaridcteasingly

Manuscript received August 14, 2007.

M. Rawski is with Warsaw University of Technology, Instiéutof Telecommunications
Nowowiejska 15/19, 00-665 Warsaw, Poland (e-madlwski @ el e. pw. edu. pl). B. Falkowski
is with Nanking Technological University, School of Electl and Electronic Engineering, 50 Nany-
ing Avenue, Singapore 639798 (e-madf al kowski @t u. edu. sg). T. Luba is with Warsaw
University of Technology, Institute of TelecommunicaorNowowiejska 15/19, 00-665 Warsaw,
Poland (e-mailli uba@ el e. pw. edu. pl).

437

438 M. Rawski, B. Falkowski, and T. tuba:

reconfigurable systems such as Software Defined Radio (S0&jy of these ap-
plications combine the need for significant DSP processifigiency with cost
sensitivity, creating demand for high-performance, lavgtcDSP solutions. Tradi-
tionally, digital signal processing algorithms are beimgplemented using general-
purpose programmable DSP chips. Alternatively, for higinfgrmance applica-
tions, special-purpose fixed function DSP chipsets andiagijan-specific inte-
grated circuits (ASICs) are used. Typical DSP devices asedban the concept of
RISC processors with an architecture that consists of feay anultipliers. In spite
of using pipeline architecture, the speed of such impleatant is limited by the
speed of array multiplier.

Multiplications, followed by additions, subtractions arcamulations are the
basis of most DSP applications. The number of multiplierbetded in DSP pro-
cessor is generally in the range of one to four. The microggeor will sequence
data to pass it through the multipliers and other functistieying intermediate
results in memories or accumulators. Performance is iseckgrimarily by in-
creasing the clock speed used for multiplication. Typidtatk speeds are between
tens of MHz to 1GHz. Performance, as measured by millions oftiply And
Accumulate (MAC) operations per second, typically rangemf10 to 4000.

The technological advancements in Field Programmable &asgys (FPGAS)
in the past decade have opened new paths for DSP design ersyif® GAs, with
their newly acquired digital signal processing capaleififiare now expanding their
roles to help offload computationally intensive digitalrsadjprocessing functions
from the processor.

FPGAs are an array of programmable logic cells intercoretebly a matrix of
programmable connections. Each cell can implement a sifogle function de-
fined by a designer's CAD tool. Typical programmable cirdws a large number
(64 to over 300,000) of such cells, that can be used to formptexrdigital cir-
cuits. The ability to manipulate the logic at the gate levelams that designer can
construct a custom processor to efficiently implement theree function.

FPGAs offer performance target not achievable by DSP psmres However,
to achieve the high-performance, FPGA-based designs lave at a cost. Effi-
cient utilization of possibilities provided by modern pragimable devices requires
knowledge of hardware specific design methods. Designing By8tem targeted
for FPGA devices is very different than designing it for DSBgessors. Most algo-
rithms being in use were developed for software implemeénriatSuch algorithms
can be difficult to translate into hardware. Thus the efficjeof FPGA-based DSP
is heavily dependent on experience of the designer and hiiy &b tailor the algo-
rithm to efficient hardware implementation. Moreover CADl®for FPGA based
DSP design are immature.

FPGA manufacturers have for years now been extending thigis'cability to

Digital Signal Processing Designing for FPGA Architectire 439

implement digital signal processing efficiently, for exdenpy introducing low-
latency carry-chain-routing lines that speed-up additiod subtraction operations
spanning multiple logic blocks. Such mechanism is relgtiefficient when im-
plementing addition and subtraction operations. However,not optimal in cost,
performance, and power for multiplication and divisiondtians. As a result, Al-
tera (with Stratix), QuickLogic (with QuickDSP, now renathEclipse Plus) and
Xilinx (with Virtex-11 and Virtex-11 Pro) embedded in theichips dedicated multi-
plier function blocks. Altera moved even further along theegration path, pro-
viding fully functional MAC blocks called the DSP blocks. iShallows design
methodologies known from DSP processors to be used.

However DSP-oriented FPGAs provide the ability to implemerany func-
tions in parallel on one chip. General-purpose routingidegnd memory resources
are used to interconnect the functions, perform additifumattions, sequence and,
as necessary, store data. This provides possibility tease the performance of
digital system by exploitation of parallelism of implemedtalgorithms. Moreover,
this technology allows also application of special techei such as distributed
arithmetic (DA) [1, 2]. DA technique is extensively used iongputing sum of
product with constant coefficients. In such a case partiadlpet term becomes a
multiplication with constant (i.e. scaling). DA approadgrsficantly increases the
performance of implemented filter, by removing general pagpmultipliers and
introducing combinational blocks that implement the swli These blocks have
to be efficiently mapped onto FPGA's logic cells. This can bealwith the use of
advanced synthesis methods such as functional deconguoft5].

In the case of applications targeting FPGA structures baseldokup tables
(LUTSs), the influence of advanced logic synthesis proceslune the quality of
hardware implementation of signal and information proitegsystems is espe-
cially important. Direct cause of such a situation is theaénfigction of technology
mapping methods that are widely used at present, such asimation and factor-
ization of Boolean function, which are traditionally adeghtto be used for struc-
tures based on standard cells. These methods transforne@o&rmulas from
sum-of-products form into multilevel, highly factorizedrin that is then mapped
into LUT cells. This process is at variance with the natureLofT cell, which
from the logic synthesis’ point of view is able to implemenydogic function of
limited input variables. For this reason, for the case oflanpentation targeting
FPGA structure, decomposition is a much more efficient neetlidecomposition
allows synthesizing the Boolean function into multilevigusture that is built of
components, each of which is in the form of LUT logic block dfied by truth
tables. Efficiency of functional decomposition has beervgdon many theoreti-
cal papers [6-10]. However, there are relatively few papérere functional de-
composition procedures were compared with analogous sgistimethods used in

440 M. Rawski, B. Falkowski, and T. tuba:

commercial design tools. The reason behind such a situaidime lack of ap-

propriate interface software that would allow transforgniskescription of project

structure obtained outside commercial design system ieseription compatible
with its rules. Moreover, the computation complexity of tional decomposition

procedures makes it difficult to construct efficient autdmaynthesis procedures.
These difficulties - at least partially - have been elimidaite so called balanced
decomposition [11, 12].

In this paper, FPGA based DSP implementation methodolagiesliscussed.
As the example Discrete Wavelet Transform and Discrete iEodiransform are
used.

The wavelet transform has gained much attention in receanisydt is widely
used in signal and image processing [13-16]. Discrete watr@insform (DWT) is
one of the useful and efficient signal and image decompasitiethods with many
interesting properties. Similar to the Fourier transfoitims transformation can
provide information about frequency contents of signalswiver, unlike Fourier
transform, this approach is more natural and fruitful whpplid to non-stationary
signals, like speech and images. The flexibility offered Isgcrbte wavelet trans-
form allows researchers to develop and find the right waviiets for their partic-
ular application. For example, for the compression of fipgets, a particular set
of bio-orthogonal filters, Daubechies bio-orthogonal mphlvavelet filters, is found
to be very effective [17]. The computational complexity bétdiscrete wavelet
transform is very high. Hence, efficient hardware impleragah is required to
achieve very good real-time performance. Application & BWVT requires con-
volution of the signal with the wavelet and scaling funcsorkfficient hardware
implementation of convolution is performed as a finite ingautesponse (FIR) fil-
ter. Two filters are used to evaluate a DWT: a high-pass and-g#ss filter, with
the filter coefficients derived from the wavelet basis functi

Fourier transform is another most recognized DSP functitins deployed in
a wide range of communications, radar, and signal intelligeapplications. While
this transform can be implemented using MAC operation, drieeomost efficient
methods of performing this transformation is Fast Fouriensform (FFT) [18].
Simplest and most common form of FFT is the radix-2 "buttéréligorithm. Each
butterfly consists of multipliers and adders that acceptibpat points and compute
two output points based on suitably chosen coefficients fiwime table.

2 Digital Filters

Digital filters are typically used to modify attributes ofysal in the time or fre-
quency domain trough the process called linear convolutign This process is

Digital Signal Processing Designing for FPGA Architectire 441

formally described by following formula
yin) =xinl+yin] = ¥ i fln—K = 3 el (1)

where the values]i] # 0 are called the filter's coefficients.

There are only a few applications (e.g. adaptive filters) nehgeneral pro-
grammable filter architecture is required. In many casesctiedficients do not
change over time - linear time-invariant filters (LTI). Dugji filters are generally
classified as being finite impulse response (FIR) or infimipulse response (IIR).
According to the names, an FIR filter consists of a finite nunatbeamples values,
reducing the above presented convolution to a finite sumygud sample. An lIR
filter requires that an infinite sum has to be performed. I plaiper implementation
of the LTI FIR filters will be discussed.

The output of an FIR filter of order (length) L, to an input tirs@mple(n|, is
given by a finite version of convolution sum

L-1
= k|c[k 2
y(n| kZOX[Jclk &)

The L-th order LTI FIR filter is schematically presented in Fig. ILconsists of a
collection of delay line, adders and multipliers.

x[n] 7~ o

colN/ el cl2]

= +) Y
Fig. 1. Direct form FIR filter.

Available digital filter software allows for very easy comation of coefficients
of given filter. However, the challenge is in mapping the FiRcure into suitable
architecture. Digital filters are typically implemented rasiltiply-accumulate al-
gorithms with use of special DSP devices. In case of prograbinstructures
direct or transposed forms are preferred for maximum speed@wvest resource
utilization. Efficient hardware implementation of filterdructure is possible by
optimization of multipliers and adders implementation.

A completely different FIR architecture is based on theritisted arithmetic
concept. In contrast to a conventional sum-of-productitgcture, in distributed
arithmetic the sum of product of a specific bit of input sammpler all coefficients
is always computed in one step.

442 M. Rawski, B. Falkowski, and T. tuba:

3 Fourier Transform

The essence of the Fourier transform of a waveform is to dpose or separate
the waveform into a sum of sinusoids of different frequesci@ other words, the
Fourier transform identifies or distinguishes the différaquency sinusoids, and
their respective amplitudes, which combine to form an eabjt waveform. The
Fourier transform is then a frequency domain represemtatifoa function. This
transform contains exactly the same information as thahefdriginal function;
they differ only in the manner of presentation of the infotima [16]. Fourier
analysis allows one to examine a function from another pafimtew, the frequency
domain.

The Discrete Fourier Transform (DFT) is described by théofeing formula:

N-1 : 2rmk

F(k):ZOf(n)e*JT, for 0<k<N-1 (3)

DFT transforms the sequenceMditomplex numbersg, ..., xn_1 (time domain
samples) into the sequence Nfcomplex number,...,Xy_1 called frequency
domain samples.

If xo,...,Xn_1 a@re real numbers, as they often are in practical applicatiten
the DFT obeys the symmet¥j = X, _,, where the" denotes complex conjugation
and the subscripts are interpreted modilo Therefore, the DFT output for real
inputs is half redundant, and one obtains the completenmdtion by only looking
at roughly half of the outputs.

Computation oN-point DFT requiredN? complex valued multiplications (4
N? real valued multiplications). Typical case in digital sijprocessing is trans-
formation of real valued signals, so the DFT needs onkyN¥ real valued multi-
plications. For both cases DFT’s computational compleisi®(N?).

In 1965, IBM researcher Jim Cooley and Princeton faculty iendohn Tukey
developed what is now known as the Fast Fourier TransfornTYFE8]. It is
an algorithm for computing DFT where the computational ctaxipy is of order
O(NlogN) for certain length inputs. Now when the length of data dosibtee
spectral computational time will not quadruple as with tHeélalgorithm; instead,
it approximately doubles. Later research showed that norigihgn for computing
the DFT could have a smaller complexity than the FFT.

The most well-known use of the Cooley-Tukey algorithm isitac the trans-
form into two pieces of sizdl /2 at each step, and is therefore limited to power-of-
two sizes. It is called the radix-2 algorithm. Radix-2 diesda DFT of sizeéN into

Digital Signal Processing Designing for FPGA Architectire 443
two interleaved DFTs of sizH /2 with each recursive stage.

N
N1

F(k)znzof(+% (2n+1)e

31 !
_ G n (2n+1 (2n+1)k
2, e Zo " @

%—1 ——1

—Feven(k) + Fodd (k)W

2n(2n+1

Radix-2 first computes the Fourier transforms of the evelexed input samples
and of the odd-indexed input samples, and then combines tixasresults to pro-
duce the Fourier transform of the whole sequence. This idadlen be performed
recursively to reduce the overall runtime @NIlogN). This simplified form as-

sumes thaN is a power of two; since the number of sample poiNtsan usually

be chosen freely by the application, this is often not an irgm restriction.

bt &
Z

Fig. 2. Schematic diagram of but- Fig. 3. Simplified butterfly operation.
terfly operation.

Basic operation in radix-2 algorithm is called butterfly doehe shape of the
dataflow diagram (Fig. 2). Butterfly operation requires tvaonplex multiplica-
tions. Slnca/VN/2+k = —W¥, by replacing one addition with subtraction only one
complex valued multiplication need to be performed. Thepdifred butterfly op-
eration is shown in Figure 3.

Figure 4 shows the diagram of an 8-point DFT. In the diagrdm, radix-2
decimation-in-time algorithm is used. In the algorithme thput samples are per-
muted so that they follow the so called bit-reversed ordét.[1

444 M. Rawski, B. Falkowski, and T. tuba:

NIA

*

o OXIN] 2 <N

(< s

("g G

=
3
O]

25
=
=
¥
"K{xé

AN
$

(":

Fig. 4. Schematic diagram of 8-point DFT.

4 Distributed Arithmetic

Distributed arithmetic is a method of computing the sum aidoicts. In many
DSP applications, a general purpose multiplication is aquired. In case of filter
implementation, if filter coefficients are constant in tintleen the partial product
termx[njc[n] becomes multiplication with a constant. Then taking intcocamt the

fact that the input variable is a binary number:

B-1
X = Y xp[n]-2°, where xo[n] € [0,1] (5)
b=0
the whole convolution sum can be described as shown below.

=S 25 xlk-cld=S 25 f0ok.ck) (6)
Y B bZO kZOXb B bZO kZO el .

The efficiency of filter implementation based on this constpingly depends
on implementation of the functioffi(xy[k],c[k]). The preferred implementation
method is to realize the mappirfgx, k], c[k]) as the combinational module with
inputs. The schematic representation of such implememtati shown in Fig. 5,

Digital Signal Processing Designing for FPGA Architectire 445

where the mapping is presented as a lookup table that includes all the possible
linear combinations of the filter coefficients and the bitshaf incoming data sam-
ples [1]. The utility programs that generate the lookupeabibr filters with given
coefficients can be found in the literature.

B shift reglater ADC
ECIENET TN

Dodn [eee T00[HT |yl)

Ir.:rui au |¥1t:l-l||=¢.n:-ﬂ =

’—»z—i—-

k4

+—-—" R

Fig. 5. DA architecture with lookup table.

The hardware description language (HDL) specification ef litokup table
can be easily obtained for filter described by d{g coefficients. Since the size
of lookup tables grows exponentially with the number of itgpthe efficient im-
plementation of these blocks becomes crucial to final resoutilization of filter
implementation. In the approach presented in this paperp#ttanced decompo-
sition has been successfully applied for technology mappinDA circuits onto
FPGA logic cells.

5 Balanced Functional Decomposition

There are several approaches to FPGA-based logic synthEs&smost common
approach relies on breaking of the synthesis process irdgphases: a technology
independent one, and a technology mapping phase. The teghriadependent
phase attempts to generate an optimal abstract reprasaentdtthe logic circuit.
For the combinational logic, the abstract representas@Boolean network, i.e. a
structure of a directed acyclic graf@(V, E) where each node € V represents an
arbitrarily complex single-output logic function.

The second phase of logic synthesis maps the design onsoofelluser spec-
ified target library, and performs technology dependentinuigations taking the
given constraints into account. For FPGAs the constrairgsspecific because
their structures differ from the structures of the standa&IC technologies. The
architecture based on LUTs is the prevalent one among ma@AFrPchitectures.

446 M. Rawski, B. Falkowski, and T. tuba:

LUT-based FPGAs consist of an array of LUTs, each of whichiogslement any
Boolean function with up td (typically 4 or 5) inputs. A Boolean network can be
directly realized by a one-to-one mapping between noded b if every node
in the network is feasible, i.e. has upkdnput variables. Thus in FPGA-based
technology mapping the functional decomposition algaritis usually applied to
multi-output functions which result from a node clusteripgcess in a Boolean
network [8].

A serial decomposition of the Boolean functibiiX) =Y is defined as follows
(Fig. 6). LetX = AUB be the set of input variable¥,the set of output variables and
C C A. There exists a serial decompositionfFoif F = H(A ,G(B,C)) = H(A,Z),
whereG andH denote functional dependencié$B,C) = Z andH (A,Z) =Y, and
Z is the set of output variables @. If, in addition,C = @, thenH is called a
disjoint decomposition ofF.

The functional decomposition algorithms are usually ipooated into a mul-
tilevel synthesis environment [8], where the nodes areteteand then, each of the
nodes is treated as a Boolean function to be decomposechdnwbrds, each such
node then constitutes an input to the decomposition alguarit

A completely different approach to FPGA-based technologypping was in-
troduced by tuba and Selvaraj [20], where the concept oflighidecomposition
was introduced and effectively applied in the so called tetd decomposition
method. Based on redundant variable analysis of each oofpaitmulti-output
function, parallel decomposition separatesnto two or more functions, each of
which has as its inputs and outputs a subset of the origipaiténand outputs. Al-
though in their method (recently improved in [21]), the daligoint of the whole
mapping process is again created by the serial decompuosilimrithm, the paral-
lel decomposition based on argument reduction process plagry important role.
Thanks to this algorithm the functional decomposition piare can start directly
with a two-level, espresso based specification. Thus théodetself allows to
develop a uniform, autonomous tool for decomposition baselknology mapping
of FPGAs. The influence of these improvements which parily ee application
of argument reduction algorithm mentioned above on theltesf FPGA-based
technology mapping will be shortly described below.

Consider a multi-output functioR. Assume thaF has to be decomposed into
two componentsG andH, with disjoint setsYg andYy of output variables (Fig.
7). This problem occurs, for example, when we want to impleinaelarge func-
tion using components with a limited number of outputs. Nbtg such a parallel
decomposition can also alleviate the problem of an excessimnber of inputs of
f. This is because, for typical functions, most outputs dodemend on all input
variables. Therefore, the sEt of input variables on which the outputs ¥éf de-
pend, may be smaller thafi Similarly, the seXy of input variables on which the

Digital Signal Processing Designing for FPGA Architectire 447

outputs ofYy depend may be smaller that As a result, components andH
have not only fewer outputs, but also fewer inputs tRaThe exact formulation of
the parallel decomposition problem depends on the consdramposed by the im-
plementation style. One possibility is to find s¥tsandYy such that the combined
cardinality of Xg andXy is minimal. Partitioning the set of outputs into only two
disjoint subsets is not an important limitation of the methimecause the procedure
can be applied again for compone@sncH.

T
LE 1
H |l
- T

A Y,

Fig. 6. Schematic representation of serial de- Fig. 7. Schematic representation of
composition. parallel decomposition.

Example 1. The influence of the parallel decomposition on the final tesil
the FPGA-based mapping process will be explained with thetfon F given in
Table 1, for which cells with 4 inputs and 1 output are assufiigd is the size of
Altera’s FLEX FPGAS).

Table 1. Truth table of functions

type fr 0001001110 01
10 0110000110 01
02 1110110010 10
p25 0111100000 00
0101000000 00 0100011011 00
1110100100 00 001011101001
0010110000 10 0110001110 00
0101001000 10 011011011111
1110101101 01 0001001011 11
0100010101 01 1110001110 10
1100010001 00 0011001011 10

001110111001

001001101001

448 M. Rawski, B. Falkowski, and T. tuba:

As F is a ten-input, two-output function, in the first step of thecdmposition
either parallel or serial decompaosition can be applied. dffisst apply serial de-
composition (Fig. 8), then the algorithm extracts functgwith inputsx;, X3, Xa,
andxg, thus the next step deals with seven-input functipfor which again serial
decomposition is assumed, now resulting in blggkvith 4 inputs and 2 outputs
(implemented by 2 Logic Cells -LC). It is worth noting thattbbtained block g
takes as its input variableg, X2, x5, andxz, which, fortunately, belong to primary
variables, and therefore the number of levels is not ine@as this step. In the
next step we apply parallel decomposition. Parallel deamsiijpn generates two
components, both with one output but 4 and 5 inputs, resgdgti The first one
forms a logic cell. The second component is subject to twgesserial decompo-
sition shown in Fig. 8. The obtained network can be built o 7q(1) cells, where
the number of levels in the critical path is 3.

|
|

A Xy A5 X7

WL L

| oLes | Xo Ky X g Ky Xg K K Xy Iy

X,

| LG | 2LCs
¥, G110 Gz (LC)
LC ¥
Hi (0) Hz qo
L 2] Y,

Yo

Fig. 8. Decomposition of function Fig. 9. Decomposition of functiorr
F where serial decomposition is per-where parallel decomposition is per-
formed first. formed at first.

Decomposition of the same function such that the parallebagosition is
applied in the first step leads to completely different surce (Fig. 9). Parallel
decomposition applied directly to functidh generates two components both with
6 inputs and one output. Each of them is subject to two-stagal flecomposi-
tion. For the first component, a disjoint serial decompositivith four inputs and
one output can be applied. The second component can be desethperially
as well, however with the number of outputs of the extractletlbG equals to
two. Therefore, to minimize the total number of componeatsion-disjoint de-
composition strategy can be applied. The truth tables oflée®mposed functions
G31,H1,Go, Hy, are shown in Table 2. The columns in the table denote vagahl

Digital Signal Processing Designing for FPGA Architectire 449

the order shown in Fig. 9. For example, the first left hand simlamn in Table 2b
denotes variablg,, the second variabbe;, and the third denotes varialde (output

of G;1). The above considerable impact on the structure resuts the fact that
the parallel decomposition simultaneously reduces thebmurof inputs to both re-
sulting components, leading to additional improvemenheffinal representation.

Table 2. Truth tables of decomposition components.

a) functionG; b) functionH; c¢) functionG, d) functionH,

01101 -010 01101 1610
11011 0111 00111 —-1011
1000 1 1110 01001 —-1111
00101 1001 1000 1 00110
00000 0-00 01011 00011
01010 1100 11000 41000
11000 00100 00000
01000 10100 11101
00110 11100 10100
10110 00010 01001
11110 01110 00101
11110

It is worth noticing that the same function synthesized alyeby commercial
tool, e.g. Quartus can be mapped onto 32 logic cells.

The serial and parallel decompositions are intertwinedtwpadown synthesis
process to obtain the required topology. At each step, refibrallel or serial de-
composition is performed, both characterized by operdtipat parameters. In the
case of serial decomposition the related paran®eandG,; denotes the number
of G block inputs and outputs, respectively. In the case of rdécomposition
the related paramet&s,; represents the number &f block outputs. Intertwining
of serial and parallel decomposition strategies opensvgrakinteresting possibil-
ities in multilevel decomposition. Experimental result®w that the right balance
between the two strategies and the choice of operation Edeasnseverely influ-
ence the area and depth of the resultant network.

Example 2. The influence of the right balance on the final result of the RPG
based mapping process will be explained with the fundiiaapresenting DA logic
of a certain wavelet filter with the following filter coeffiaits [1495,-943, —9687,
18270,—9687,—943, 1495].

As F is a seven-input, sixteen-output function, in the first stéthe decom-
position both the parallel and serial decomposition canpied. Let us apply
parallel decomposition at first (Fig.10). Parallel decosipon with Go; = 1 gen-
erates two components: the first one with 6 inputs and 1 ougnd the second

450 M. Rawski, B. Falkowski, and T. tuba:

with 7 inputs and 15 outputs. This is illustrated by two armmarks with the com-
mon starting point going to different directions. The smattomponent is subject
to two-stage serial decomposition resulting in bl@kvith 4 inputs and 1 output
and blockH with 3 inputs and 1 output (botG andH blocks are implemented by
2 cells). Two brackets (4,1), (3,1), which are given on thidro side of the arrow
mark, show the number of inputs and outputs for functi@id,1) andH(3,1),
respectively. The second component is again decomposextaligd yielding (7,7)
and (7,8) components. For the (7,8) component serial deositiqgmn is assumed,
now resulting in blockG with 4 inputs and 2 outputs (implemented by 2 logic
cells), thus the next step deals with six-input function Hjak can be directly im-
plemented in ROM. In the next iterative step parallel decositpon is applied to
split the (7,7) component into (7,3) and (7,4) blocks. Iteéssible to implement
the (7,4) block in ROM. The second block is decomposed $egadlding G(4,3)
andH(6,3). As G block can be implemented by 3 logic cells, the next step deals
with functionH. Parallel decomposition applied to functibhgenerates two com-
ponents. Each of them is subject to two-stage serial decsitigpn The obtained
network can be built of 14 logic cells and 2 M512 ROMs.

A8)
1) 715 oA %
l /\
@nEn) O @ ey [T ROM 78}
|
an [(TAIRON] {42[EBSIROM] (1) @y [CAIROM] (74 ROM]
428,83} NG
@1 62 wn 52
21 “B42) “hia

Fig. 10. Decomposition process for the ahfrig. 11. Decomposition process for the ahp
(7,16) filter. (7,16) filter.

If we change the size of smaller component in the first stepaddlfel decom-
position, i.e. (7,4) instead of (6,1) as in Fig.10, then t@lementation needs 3
M512 ROMs and 9 LCs. The structure is shown in Fig.11. Howefere decide
on serial decomposition to decompose (7,16), instead allphdecomposition as

Digital Signal Processing Designing for FPGA Architectire 451

in Fig.10 and 11, the implementation needs only 3 ROMs. Thetire is shown
in Fig.12.

(r.18)

(818)

N,

Fig. 12. Decomposition process for the ahp (7,16) filter.

Balanced decomposition was implemented as software peackalied DE-
MAIN [12]. Recently the package was improved to help desigrie deal with
large truth tables. All described methods of truth tablaesgformations can be per-
formed easily, and results are shown immediately on theesdi@ further work. It
is designed for performing manual operations on functiamsl therefore is meant
to be highly user friendly, as well as cross-platform conipat After choosing
the operation, a dialog pops up which can be used to inputdreneters of the
operation. After the actual operation is performed, itailssare displayed in the
project window.

6 Synthesis of FIR Filters

Below the experimental results of FIR filter implementatioith different design
methodologies are presented. For experiments, filter fann22] as well as
Daubechies’ dbN, coifN, symN and 9/7-tap bio-orthogonaéffd have been cho-
sen.

In the first experiment filter with length (order) 15 has bekaosen. It has 8-bit
signed input samples and its coefficients can be found in [2&] the comparison
the filter has been implemented in Stratix EP1S10F484C5o0GgdEP1C3T100C6
and Cyclonell EP2C5T144C6 structures with use of Alterar@usd v5.1 SP0.15.

Table 3 presents the comparison of implementation resoitdifferent design
methodologies. Column falling under the “MAC” label prestre results obtained
by implementing multiply-and-accumulate strategy witk o$logic cell resources,
without utilization of embedded DSP blocks. Multipliers, well as accumulator
were implemented in logic cells of circuit. This implemerda, due to its serial
character, requires 15 clock cycle to compute the resuteqtires relatively large

452 M. Rawski, B. Falkowski, and T. tuba:
amount of resources, while delivering the worst perforneainccomparison to other
implementations.

Table 3. Implementation results for different design mdtilogies. Chip: S - Stratix
EP1S10F484C5, C - Cyclone EP1C3T100CS6, CII - Cyclonell EBA2@4C6.

. MULT DSP DA
Chip MAC block | block Parallel | DA decomposed
LC 421 287 247 402 1013 569
S DSP 0 2 4 30 0 0
Fmax[MHz] | 80.44 | 86.01 | 105.34| 58.97 87.6 84.86
LC 421 421 421 2226 1013 569
C DSH - - — — - —
Frax[MHz] | 77.03| 77.03 | 77.03 61.0 80.4 78.37
LC 403 271 271 637 1014 569
Cll DSP 0 2 2 26 0 0
Frax[MHz] | 89.92 | 102.43| 102.43| 76.49 | 84.11 82.61

aDSP blocks are not present in this device family

Next column - “MULT block” - holds the implementation resalbf method
similar to “MAC” with such difference that multipliers weienplemented in ded-
icated DSP embedded blocks. It can be noticed that the peafore of the filter
increased at the cost of utilization of additional resosriogorm of DSP embedded
blocks. Results in column falling under “DSP block” wereaibed by implement-
ing the whole MAC unit in embedded DSP block. Further incegasperformance
could be noticed, but still 15 clock cycles have to be usediopute the result.

Results given in “Parallel” column were obtained by implenirgg filter in par-
allel manner. In this case results are obtained in singlekctycle. Even though
the maximal frequency of this implementation is less thaprevious ones, it out-
performs these implementations due to its parallel charact

Application of DA technique results in increase of perforro@ since maximal
frequency has increased. However in this approach more tmdi resources have
been used, since multipliers have been replaced by largbioational blocks and
no DSP embedded modules ware utilized.

Finally results presented in column under “DA decomposatél demonstrate
that application of DA technique combined with advancedtsysis method based
on balanced decomposition allows obtaining the circuit tiwa only outperforms
any other implemented circuit but also reduces the necg$sgic resources. The
balanced decomposition was applied to decomposed coridrinbblocks of DA
implementation.

In Table 4, the experimental results of Daubechies’ dbNN;a@gymN and 9/7-
tap bio-orthogonal filter banks are presented. Filters ®&7imtwo versions: (a)

Digital Signal Processing Designing for FPGA Architectire 453

analysis filter and (s) synthesis filter. Filters dbN, coi®¢mN are similar for
analysis and synthesis (a/s). All filters have 16 bit sigreed@es and have been
implemented with the use of DA concept in the fully paralledyw Balanced de-
composition software was also added to increase efficiehtlyeoDA tables’ im-
plementations.

Table 4. Implementation results of filters with and withoatdmposition.

Without decomposition| With decomposition

Filter Order =T F _MHZ | LC | FrexMHZ]
db3, a/s low-pass 6 1596 278.63 1345 254.26
db4, a/s low-pass 8 3747 212.9 2891 201,73
db5, a/s low-pass 10 10057 169.81 7377 119.39
db8, a/s low-pass 12 -a — 31153 b
9/7, a low-pass 9 3406 206.61 1505 212.86
9/7, s low-pass 7 1483 273.37 881 263.5
9/7, a high-pass 7 2027 253.29 1229 223.16
9/7, s high-pass 9 4071 180.93 1616 189.47
coif6, a/s low-pass 6 1133 283.45 1041 260.62
coifl2, a/s low-pass| 12 -a - 1614 196.85
sym8, a/s low-pass 8 3663 212.72 2249 197.94
sym12, a/s low-pass 12 -a - 2313 198.61
syml4, als low-pass 14 —-a — 2345 200.24
syml6, a/s low-pass 16 —a — 2377 206.83

8Too long compilation time (more than 24 hours)
bDoes not fitin EP1S10F484C5

Table 4 presents the result for filter implementations uSitrgtix EP1S10F484C5
device, with a total count 10570 of logic cells. In the impentation without de-
composing the filters, the new method was modeled in AHDL anarfps2v6.0SP1
was used to map the model into the target structure. In théemmgntation using
decomposition, the DA tables were first decomposed usingnaatic software.
Quartus system was then applied to map the filters into FPGA.

The application of the balanced decomposition concepifgigntly decreased
the logic cell resource utilization and at the same timedased the speed of the
implementation.

FPLD devices have very complex structure. They combine Rké\structures
as well as FPGA's and even memory-based structures. In masgsadesigners
cannot utilize all of these possibilities such as complekigectures provide due to
the lack of appropriate synthesis methods. Embedded meanays make possi-
ble an implementation of memory like blocks such as largesters, FIFO’s, RAM
or ROM modules [1].

These memory resources make up considerably large pareafavices. For

454 M. Rawski, B. Falkowski, and T. tuba:

example, EP20K1500E devices provide 51 840 logic cells d2dbit of SRAM.
Taking under consideration the conversion factors of la@nents and memory
bits to logic gates (12 gates/logic element and 4 gates/mehit) it turns out that
embedded memory arrays make up over 70% of all logic resseufi@ce not every
design consists of such modules as RAM or ROM, in many casse tfresources
are not utilized. However, such embedded memory blocks eamsbd for imple-
mentation of DA blocks in a way that requires less resourhas the traditional
cell-based implementation. This may be used to implemean-vital” sequen-
tial parts of the design, saving logic cell resources for enionportant sections.
Since the size of embedded memory blocks is limited, suchhmgteimentation
may require more memory than is available in a device. Togdedumemory usage
in ROM-based DA implementations, astructure with combamegt! logic partially
implemented in the ROM and partially implemented in logitisceras proposed.

In Table 5, the experimental results of Daubechies’ 9/7siaporthogonal filter
banks are presented. All filters have 16 bit signed sampldshame been imple-
mented with the use of DA concept. Balanced decompositififwace was also
added to increase efficiency of the DA tables’ implemeniestio

Table 5. Implementation results of 9/7 filters.

Filter Order | LC ROM FF bits Frmax

alp 9 236 | 7xM512, 1xM4K | 181 | 8192 | 133.51
alp dec 9 248 1xM4K 181 | 4096 | 140.51
ahp 7 204 4xM512 149 | 2048 | 155.04
ahp dec 7 210 2xM512 153 | 1024 | 157.53
slp 7 204 4xM512 149 | 2048 | 155.04
slp dec 7 211 2xM512 153 | 1024 | 161.21
shp 9 236 | 7xM512, 1xM4K | 181 | 8192 | 133.51
shp dec 9 246 1xM4K 181 | 4096 | 134.25

Table 5 presents the results for filter implementationsguSitnatix EP1S10F484C5
device. In the implementation without decomposing therlt¢he method was
modeled in AHDL and Quartus2v6.0SP1 was used to map the nirtdethe tar-
get structure. In the implementation using decompositaanéted dec), DEMAIN
software was used to initially decompose DA tables and thear@Qs system was
applied to map the filters into FPGA.

Filters 9/7 are in two versions: (a) analysis filter and (9)thgsis filter. Low
pass and high pass filters are denoted as Ip and hp, respeclite implementa-
tion of filters is characterized by the number of logic cell€) and Flip-Flops (FF),
memory bits, the number of memory modules (ROM) and opagdtiequency. In
all cases, decomposition reduces the sizes of memory antuthber of memory
modules. For example, implementation of ahp filter requ2@4$ LCs and 4 M512

Digital Signal Processing Designing for FPGA Architectire 455

embedded memories if performed by Quartus software. Agptio of DEMAIN
tool allows DA logic of this filter to be implemented with 2 M&Inemories and
11 LCs. This allows implementing the whole filter with 210 L&sd 2 M512
memories.

7 Synthesis of DFT

It has been shown that no algorithm for computing the DFT @ la smaller com-
plexity than the FFT. Thus most FPGA implementations aredbas this approach.
With the introduction of specialized DSP blocks embedded fmogrammable ar-
chitectures the efficiency of FFT is limited by the speed atiaere multipliers of
DSP modules.

However, programmable architectures provide possibitityncrease the per-
formance of digital system by exploiting the parallelismtloé implemented algo-
rithms. DFT transforms the sequenceNdtomplex numbersy,...,xy_1 into the
sequence oN complex numbersy,...,XN_1. Each output sample is computed
as sum of products of input samples with constant coeffisidnmiplementation of
DFT based on DA concept in FPGA structure requires compurtaif each output
sample with the DA unit presented in Fig. 5. Since in prattigplications most
frequently DFT of real valued input samples is required, ithplementation can
benefit from the symmetri = X§_,. Therefore, the DFT output for real inputs
can be obtained by only looking at roughly half of the outputs

Each DA unit contains a number of DA tables, which are contimnal cir-
cuits, and an adder tree. Since adder tree can be efficiampiemented using low-
latency carry-chain-routing lines of the FPGA device, thplementation quality
of DA unit (and the whole DFT) mostly depends on the qualitypéf tables’ im-
plementation.

Below the implementations’ comparison of 16-points DFT edlirvalued 12
bits input samples are presented. For comparison thregrdasethodologies were
chosen:

e FFT_LC — radix-2 FFT; implementation in logic cell resources (LC)yn

e FFT_DSP - radix-2 FFT; implementation with use of logic cell resowgce
as well as embedded DSP modules for fast hardware multijlica

e DFT_DA — distributed arithmetic based implementation.

For the implementations, device EP2C35F672C6 from Alsey/clonell fam-
ily was chosen. The implementations were performed usingrQs 6.0 SP1 sys-
tem. To efficiently utilize possibilities provided by DSP lkedded blocks of Cy-
clonell device Library Parameterized Modules (LPM) weredign HDL descrip-
tion of FFT_LC and FFT_DSP algorithms.

456 M. Rawski, B. Falkowski, and T. tuba:

Logic synthesis methods implemented in Quartus CAD systemal allow
efficient mapping of DA tables into logic cells. Compilatiohlarge DA tables of
DA implementation of DFT required to much time and resultedarge logic cell
resource utilization. Thus decomposition based methotigshware best suited for
FPGA architectures, were used to optimize DA table implesatémn.

Table 6 presents the results of DFT implementation using Felix-2 algo-
rithm in logic cells only (row labeled FFTLC) and with utilization of embedded
DSP blocks (row labeled FEDSP). Row labeled DFTDA presents the result of
DFT implementation based on DA concept. Columns of TableeSgt the logic
cell resource and embedded DSP blocks usage. Numbers keksatiow the per-
centage of total chip resources utilization. In the tabkerfaximal frequency and
achieved throughput are also presented.

Table 6. Implementation results of DFT.

Resource usage Clock Throu_ghput
[4LC] [#DSP] fn[el\(jli'ezr]wcy [Mbit/s]
FFT_LC (izg/f) — 43.51 522.12
FFT_DSP 2'550/50;1 70(100%) 48.93 587.16
DFT_DA (;;3/3) — 74.36 892.32

The classical implementation of FFT required 4723 logidsgcelhich consti-
tutes 14% of total logic cells available. The throughput la timplementation
is 522.12 Mbit/s. It can be noticed that the utilization oflexdded DSP blocks
in FFT_DSP implementation decreased the number of needed lodjcacel at
the same time increasing the throughput to 587.16 Mbit/glizaltion of 70 DSP
blocks, which is 100% of available blocks, reduced the lagilt utilization from
14% to 5%.

However the best performance of 892.32 Mbit/s is achievednaDA concept
is used. This DFT realization required 53% more logic cellscomparison to
FFT_LC implementation but the performance was increased by ahiras 71%.

The efficiency of DA based implementation strongly depemd®gic synthesis
quality. In the paper decomposition based synthesis mettiedeloped by authors
were used to implement DA tables, since Quartus CAD systesumable to map
them in reasonable time. Development of more sophisticayathesis methods
directed to DA implementation may give much more efficienflDRodules.

Digital Signal Processing Designing for FPGA Architectire 457

8 Conclusions

The modern programmable structures deliver the possgsilio implement DSP
algorithms in dedicated embedded blocks. This makes degigsf such algo-
rithm an easy task. However the flexibility of programmalfieitures enables
more advanced implementation methods to be used. In pari@xploitation of
parallelism in the algorithm to be implemented may yieldyvgood results. Ad-
ditionally, the application of advanced logic synthesighods based on balanced
decomposition, which is suitable for FPGA structure leadsesults that can not
be achieved with any other method.

The presented results lead to the conclusion that if thegdesidecides to use
the methodology known from DSP processor application, riigeémentation qual-
ity will benefit from the utilization of specialized DSP mdds embedded in the
programmable chip. However, best results can be obtaineutilizing the par-
allelism in implemented algorithms and by applying advahsgnthesis methods
based on decomposition. Influence of the design methoda@ogythe balanced
decomposition synthesis method on the efficiency of praktaital filter imple-
mentation is particularly significant, when the designeduit contains complex
combinational blocks. This is a typical situation when iepkenting digital filters
using the DA concept.

The most efficient approach to logic synthesis of FIR filtgoaithms discussed
in this paper relies on the effectiveness of the functiordodnposition synthesis
method. These methods were already used in decomposigmitams; how-
ever they were never applied together in a technology spetifipper targeted at
a lookup table FPGA structure. This paper shows that it isipésto apply the
balanced decomposition method for the synthesis of FPG&baircuits directed
towards area or delay optimization.

Acknowledgements

This paper was supported by Ministry of Science and Higharcation financial
grant for years 2006-2009 (Grant No. SINGAPUR/31/2006) el as Agency for
Science, Technology and Research in Singapore (Grant Rb200011).

References
[1] U. Meyer-BaeseDigital Sgnal Processing with Field Programmable Gate Arrays.
Berlin: Springer-Verlag, 2004.

[2] A. Peled and B. Liu, “A new realization of digital filtefs,EEE Trans. on Acoustics,
Speech and Sgnal Processing, vol. 22, no. 6, pp. 456-462, June 1974.

458 M. Rawski, B. Falkowski, and T. tuba:

[3] M. Rawski, P. Tomaszewicz, H. Selvaraj, and T. Luba, ‘&t implementation of
digital filters with use of advanced synthesis methods tayfpga architectures,” in
Proc. of Eighth Euromicro Conference on Digital System Design (DSD 2005), Porto,
Portugal, Aug. 2005, pp. 460-466.

[4] M. Rawski, P. Tomaszewicz, and T. Luba, “Logic synthésiportance in fpga-based
designing of information and signal processing systermmsPrioc. of International
Conference on Signal and Electronics Systems, Poznah, Poland, 2004, pp. 425-428.

[5] T. Sasao, Y. Iguchi, and T. Suzuki, “On lut cascade reaigns of fir filters,” in
Proc. of Eighth Euromicro Conference on Digital System Design (DSD 2005), Porto,
Portugal, Aug. 2005, pp. 467-474.

[6] J. T. Astola and R. S. StankoviEundamentals of Switching Theory and Logic De-
sign. Dordrecht: Springer, 2006.

[7]1 J. A. Brzozowski and T. Luba, “Decomposition of booleamétions specified by
cubes,”Journal of Multiple-Valued Logic and Soft Computing, vol. 9, pp. 377417,
2003.

[8] S. C. Chang, M. Marek-Sadowska, and T. T. Hwang, “Tecbgglmapping for tlu
fpgas based on decomposition of binary decision diagralBEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 10, pp.
1226-1236, Oct. 1996.

[9] M. Rawski, L. J6zwiak, and T. Luba, “Functional decoosftion with an efficient in-
put support selection for sub-functions based on inforomatélationship measures,”
Journal of Systems Architecture, vol. 47, pp. 137-155, 2001.

[10] C. Scholl,Functional Decomposition with Application to FPGA Synthesis. Kluwer:
Academic Publishers, 2001.

[11] T. kuba, H. Selvaraj, M. Nowicka, and A. KrasniewskBd&lanced multilevel de-
composition and its applications in fpga-based syntiasid,ogic and Architecture
Synthesis, G. Saucier and A. Mignotte, Eds., 1995.

[12] M. Nowicka, T. Luba, and M. Rawski, “Fpga-based decosifian of boolean func-
tions: Algorithms and implementation,” iRroc. of Sxth International Conference
on Advanced Computer Systems, Szczecin, Poland, 1999, pp. 502-509.

[13] B. J. Falkowski, “Haar transform: Calculation, gerle@tions, and applications in
logic design and signal processing,” Rroc. of International Workshop on Trans-
forms and Filter Banks (2nd IWTFB), Brandenburg, Germany, Mar. 1999, pp. 101—
120.

[14] ——, “Compact representations of logic functions fos$tess compression of grey

scale images,JEE Proc., Computers and Digital Techniques, United Kingdom, vol.
151, no. 3, pp. 221-230, May 2004.

[15] R. M. Rao and A. S. Bopardikav\avelet Transform: Introduction to Theory and
Applications. Addison-Wesley, 1998.

[16] O. Rioul and M. Vetterli, “Wavelets and signal proceesi |EEE Signal Processing
Magazine, vol. 8, no. 4, pp. 14-38, Oct. 1991.

[17] C. M. Brislawn, C. B. J. Bradley, R. Onyshczak, and H.“The fbi compression
standard for digitized fingerprintimages,”lroc. of SPIE Conference 2847, Denver,
USA, 1996, pp. 344-355.

[18] J. W. Cooley and J. W. Tukey, “An algorithm for the maadhicalculation of complex
fourier series,Mathematics of Computation, vol. 19, pp. 297-301, 1965.

[19] R. G. LyonsUnderstanding Digital Sgnal Processing. Upper Saddle River: Pren-
tice Hall, 2004.

Digital Signal Processing Designing for FPGA Architectire 459

[20] T.tubaand H. Selvaraj, “A general approach to boolearcfion decomposition and
its applications in fpga-based synthesk|’S Design, vol. 3, no. 3-4, pp. 289-300,
1995.

[21] P. Tomaszewicz, M. Nowicka, B. J. Falkowski, and T. L ifhapgic synthesis impor-
tance in fpga-based designing of image signal processisigisyg,” inProc. of the
14th International Conference on Mixed Design of Integrated Circuits and Systems
(MIXDES 2007), Ciechocinek, Poland, June 2007, pp. 141-146.

[22] D. J. Goodman and M. J. Carey, “Nine digital filters forcdeation and interpola-
tion,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 25, no. 2,
pp. 121-126, 1977.

