
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 20, no. 3, December 2007, 437-459

Digital Signal Processing Designing for FPGA
Architectures

Mariusz Rawski, Bogdan J. Falkowski, and Tadeusz Łuba

Abstract: This paper presents the discussion on efficiency of different implementation
methodologies of DSP algorithms targeted for modern FPGA architectures. Modern
programmable structures are equipped with specialized DSPembedded blocks that
allow implementing digital signal processing algorithms with use of the methodology
known from digital signal processors. On the first place, however, programmable ar-
chitectures give the designer the possibility to increase efficiency of designed system
by exploitation of parallelism of implemented algorithms.Moreover, it is possible to
apply special techniques, such as distributed arithmetic (DA) that will boost the per-
formance of designed processing systems. Additionally, application of the functional
decomposition based methods, known to be best suited for FPGA structures, allows
utilizing possibilities of programmable technology in very high degree. The paper
presents results of comparison of different design approaches in this area.

Keywords: Digital signal processing, DSP algorithm, FPGA architecture, DSP em-
bedded blocks, distributed arithmetic.

1 Introduction

Digital Signal Processing (DSP), thanks to explosive development of wired and
wireless networks and multimedia, represents one of the most fascinating areas in
electronics. The applications of DSP continue to expand, driven by trends such
as the increased use of video and still images and the demand for increasingly

Manuscript received August 14, 2007.
M. Rawski is with Warsaw University of Technology, Institute of Telecommunications

Nowowiejska 15/19, 00-665 Warsaw, Poland (e-mail:rawski@tele.pw.edu.pl). B. Falkowski
is with Nanking Technological University, School of Electrical and Electronic Engineering, 50 Nany-
ing Avenue, Singapore 639798 (e-mail:efalkowski@ntu.edu.sg). T. Łuba is with Warsaw
University of Technology, Institute of Telecommunications, Nowowiejska 15/19, 00-665 Warsaw,
Poland (e-mail:luba@tele.pw.edu.pl).

437



438 M. Rawski, B. Falkowski, and T. Łuba:

reconfigurable systems such as Software Defined Radio (SDR).Many of these ap-
plications combine the need for significant DSP processing efficiency with cost
sensitivity, creating demand for high-performance, low-cost DSP solutions. Tradi-
tionally, digital signal processing algorithms are being implemented using general-
purpose programmable DSP chips. Alternatively, for high-performance applica-
tions, special-purpose fixed function DSP chipsets and application-specific inte-
grated circuits (ASICs) are used. Typical DSP devices are based on the concept of
RISC processors with an architecture that consists of fast array multipliers. In spite
of using pipeline architecture, the speed of such implementation is limited by the
speed of array multiplier.

Multiplications, followed by additions, subtractions or accumulations are the
basis of most DSP applications. The number of multipliers embedded in DSP pro-
cessor is generally in the range of one to four. The microprocessor will sequence
data to pass it through the multipliers and other functions,storing intermediate
results in memories or accumulators. Performance is increased primarily by in-
creasing the clock speed used for multiplication. Typical clock speeds are between
tens of MHz to 1GHz. Performance, as measured by millions of Multiply And
Accumulate (MAC) operations per second, typically ranges from 10 to 4000.

The technological advancements in Field Programmable GateArrays (FPGAs)
in the past decade have opened new paths for DSP design engineers. FPGAs, with
their newly acquired digital signal processing capabilities, are now expanding their
roles to help offload computationally intensive digital signal processing functions
from the processor.

FPGAs are an array of programmable logic cells interconnected by a matrix of
programmable connections. Each cell can implement a simplelogic function de-
fined by a designer’s CAD tool. Typical programmable circuithas a large number
(64 to over 300,000) of such cells, that can be used to form complex digital cir-
cuits. The ability to manipulate the logic at the gate level means that designer can
construct a custom processor to efficiently implement the desired function.

FPGAs offer performance target not achievable by DSP processors. However,
to achieve the high-performance, FPGA-based designs have come at a cost. Effi-
cient utilization of possibilities provided by modern programmable devices requires
knowledge of hardware specific design methods. Designing DSP system targeted
for FPGA devices is very different than designing it for DSP processors. Most algo-
rithms being in use were developed for software implementation. Such algorithms
can be difficult to translate into hardware. Thus the efficiency of FPGA-based DSP
is heavily dependent on experience of the designer and his ability to tailor the algo-
rithm to efficient hardware implementation. Moreover CAD tools for FPGA based
DSP design are immature.

FPGA manufacturers have for years now been extending their chips’ ability to



Digital Signal Processing Designing for FPGA Architectures 439

implement digital signal processing efficiently, for example by introducing low-
latency carry-chain-routing lines that speed-up additionand subtraction operations
spanning multiple logic blocks. Such mechanism is relatively efficient when im-
plementing addition and subtraction operations. However,it is not optimal in cost,
performance, and power for multiplication and division functions. As a result, Al-
tera (with Stratix), QuickLogic (with QuickDSP, now renamed Eclipse Plus) and
Xilinx (with Virtex-II and Virtex-II Pro) embedded in theirchips dedicated multi-
plier function blocks. Altera moved even further along the integration path, pro-
viding fully functional MAC blocks called the DSP blocks. This allows design
methodologies known from DSP processors to be used.

However DSP-oriented FPGAs provide the ability to implement many func-
tions in parallel on one chip. General-purpose routing, logic and memory resources
are used to interconnect the functions, perform additionalfunctions, sequence and,
as necessary, store data. This provides possibility to increase the performance of
digital system by exploitation of parallelism of implemented algorithms. Moreover,
this technology allows also application of special techniques such as distributed
arithmetic (DA) [1, 2]. DA technique is extensively used in computing sum of
product with constant coefficients. In such a case partial product term becomes a
multiplication with constant (i.e. scaling). DA approach significantly increases the
performance of implemented filter, by removing general purpose multipliers and
introducing combinational blocks that implement the scaling. These blocks have
to be efficiently mapped onto FPGA’s logic cells. This can be done with the use of
advanced synthesis methods such as functional decomposition [3–5].

In the case of applications targeting FPGA structures basedon lookup tables
(LUTs), the influence of advanced logic synthesis procedures on the quality of
hardware implementation of signal and information processing systems is espe-
cially important. Direct cause of such a situation is the imperfection of technology
mapping methods that are widely used at present, such as minimization and factor-
ization of Boolean function, which are traditionally adapted to be used for struc-
tures based on standard cells. These methods transform Boolean formulas from
sum-of-products form into multilevel, highly factorized form that is then mapped
into LUT cells. This process is at variance with the nature ofLUT cell, which
from the logic synthesis’ point of view is able to implement any logic function of
limited input variables. For this reason, for the case of implementation targeting
FPGA structure, decomposition is a much more efficient method. Decomposition
allows synthesizing the Boolean function into multilevel structure that is built of
components, each of which is in the form of LUT logic block specified by truth
tables. Efficiency of functional decomposition has been proved in many theoreti-
cal papers [6–10]. However, there are relatively few paperswhere functional de-
composition procedures were compared with analogous synthesis methods used in



440 M. Rawski, B. Falkowski, and T. Łuba:

commercial design tools. The reason behind such a situationis the lack of ap-
propriate interface software that would allow transforming description of project
structure obtained outside commercial design system into description compatible
with its rules. Moreover, the computation complexity of functional decomposition
procedures makes it difficult to construct efficient automatic synthesis procedures.
These difficulties - at least partially - have been eliminated in so called balanced
decomposition [11,12].

In this paper, FPGA based DSP implementation methodologiesare discussed.
As the example Discrete Wavelet Transform and Discrete Fourier Transform are
used.

The wavelet transform has gained much attention in recent years. It is widely
used in signal and image processing [13–16]. Discrete wavelet transform (DWT) is
one of the useful and efficient signal and image decomposition methods with many
interesting properties. Similar to the Fourier transform,this transformation can
provide information about frequency contents of signals. However, unlike Fourier
transform, this approach is more natural and fruitful when applied to non-stationary
signals, like speech and images. The flexibility offered by discrete wavelet trans-
form allows researchers to develop and find the right waveletfilters for their partic-
ular application. For example, for the compression of fingerprints, a particular set
of bio-orthogonal filters, Daubechies bio-orthogonal spline wavelet filters, is found
to be very effective [17]. The computational complexity of the discrete wavelet
transform is very high. Hence, efficient hardware implementation is required to
achieve very good real-time performance. Application of the DWT requires con-
volution of the signal with the wavelet and scaling functions. Efficient hardware
implementation of convolution is performed as a finite impulse response (FIR) fil-
ter. Two filters are used to evaluate a DWT: a high-pass and a low-pass filter, with
the filter coefficients derived from the wavelet basis function.

Fourier transform is another most recognized DSP functions. It is deployed in
a wide range of communications, radar, and signal intelligence applications. While
this transform can be implemented using MAC operation, one of the most efficient
methods of performing this transformation is Fast Fourier Transform (FFT) [18].
Simplest and most common form of FFT is the radix-2 ”butterfly” algorithm. Each
butterfly consists of multipliers and adders that accept twoinput points and compute
two output points based on suitably chosen coefficients froma sine table.

2 Digital Filters

Digital filters are typically used to modify attributes of signal in the time or fre-
quency domain trough the process called linear convolution[1]. This process is



Digital Signal Processing Designing for FPGA Architectures 441

formally described by following formula

y[n] = x[n]∗ y[n] = ∑
k

x[k] f [n− k] = ∑
k

x[k]c[k] (1)

where the valuesc[i] 6= 0 are called the filter’s coefficients.
There are only a few applications (e.g. adaptive filters) where general pro-

grammable filter architecture is required. In many cases thecoefficients do not
change over time - linear time-invariant filters (LTI). Digital filters are generally
classified as being finite impulse response (FIR) or infinite impulse response (IIR).
According to the names, an FIR filter consists of a finite number of samples values,
reducing the above presented convolution to a finite sum per output sample. An IIR
filter requires that an infinite sum has to be performed. In this paper implementation
of the LTI FIR filters will be discussed.

The output of an FIR filter of order (length) L, to an input time-samplesx[n], is
given by a finite version of convolution sum

y[n] =
L−1

∑
k=0

x[k]c[k] (2)

TheL-th order LTI FIR filter is schematically presented in Fig. 1.It consists of a
collection of delay line, adders and multipliers.

Fig. 1. Direct form FIR filter.

Available digital filter software allows for very easy computation of coefficients
of given filter. However, the challenge is in mapping the FIR structure into suitable
architecture. Digital filters are typically implemented asmultiply-accumulate al-
gorithms with use of special DSP devices. In case of programmable structures
direct or transposed forms are preferred for maximum speed and lowest resource
utilization. Efficient hardware implementation of filter’sstructure is possible by
optimization of multipliers and adders implementation.

A completely different FIR architecture is based on the distributed arithmetic
concept. In contrast to a conventional sum-of-product architecture, in distributed
arithmetic the sum of product of a specific bit of input sampleover all coefficients
is always computed in one step.



442 M. Rawski, B. Falkowski, and T. Łuba:

3 Fourier Transform

The essence of the Fourier transform of a waveform is to decompose or separate
the waveform into a sum of sinusoids of different frequencies. In other words, the
Fourier transform identifies or distinguishes the different frequency sinusoids, and
their respective amplitudes, which combine to form an arbitrary waveform. The
Fourier transform is then a frequency domain representation of a function. This
transform contains exactly the same information as that of the original function;
they differ only in the manner of presentation of the information [16]. Fourier
analysis allows one to examine a function from another pointof view, the frequency
domain.

The Discrete Fourier Transform (DFT) is described by the following formula:

F(k) =
N−1

∑
n=0

f (n)e− j 2πnk
N , for 0≤ k ≤ N −1 (3)

DFT transforms the sequence ofN complex numbersx0, . . . ,xN−1 (time domain
samples) into the sequence ofN complex numbersX0, . . . ,XN−1 called frequency
domain samples.

If x0, . . . ,xN−1 are real numbers, as they often are in practical applications, then
the DFT obeys the symmetryXk = X∗

N−k, where the∗ denotes complex conjugation
and the subscripts are interpreted moduloN. Therefore, the DFT output for real
inputs is half redundant, and one obtains the complete information by only looking
at roughly half of the outputs.

Computation ofN-point DFT requiresN2 complex valued multiplications (4×
N2 real valued multiplications). Typical case in digital signal processing is trans-
formation of real valued signals, so the DFT needs only 2×N2 real valued multi-
plications. For both cases DFT’s computational complexityis O(N2).

In 1965, IBM researcher Jim Cooley and Princeton faculty member John Tukey
developed what is now known as the Fast Fourier Transform (FFT) [18]. It is
an algorithm for computing DFT where the computational complexity is of order
O(N logN) for certain length inputs. Now when the length of data doubles, the
spectral computational time will not quadruple as with the DFT algorithm; instead,
it approximately doubles. Later research showed that no algorithm for computing
the DFT could have a smaller complexity than the FFT.

The most well-known use of the Cooley-Tukey algorithm is to divide the trans-
form into two pieces of sizeN/2 at each step, and is therefore limited to power-of-
two sizes. It is called the radix-2 algorithm. Radix-2 divides a DFT of sizeN into



Digital Signal Processing Designing for FPGA Architectures 443

two interleaved DFTs of sizeN/2 with each recursive stage.

F(k) =

N
2 −1

∑
n=0

f (2n)e− j 2π(2n)k
N +

N
2 −1

∑
n=0

f (2n+1)e− j 2π(2n+1)k
N

=

N
2 −1

∑
n=0

f (2n)W (2n)k
N +

N
2 −1

∑
n=0

f (2n+1)W (2n+1)k
N

=

N
2 −1

∑
n=0

f (2n)W nk
N/2 +

N
2 −1

∑
n=0

f (2n+1)W nk
N/2W k

N

=Feven(k)+ Fodd(k)W
k

N

(4)

Radix-2 first computes the Fourier transforms of the even-indexed input samples
and of the odd-indexed input samples, and then combines those two results to pro-
duce the Fourier transform of the whole sequence. This idea can then be performed
recursively to reduce the overall runtime toO(N logN). This simplified form as-
sumes thatN is a power of two; since the number of sample pointsN can usually
be chosen freely by the application, this is often not an important restriction.

Fig. 2. Schematic diagram of but-
terfly operation.

Fig. 3. Simplified butterfly operation.

Basic operation in radix-2 algorithm is called butterfly dueto the shape of the
dataflow diagram (Fig. 2). Butterfly operation requires two complex multiplica-
tions. SinceW N/2+k

N = −W k
N , by replacing one addition with subtraction only one

complex valued multiplication need to be performed. The simplified butterfly op-
eration is shown in Figure 3.

Figure 4 shows the diagram of an 8-point DFT. In the diagram, the radix-2
decimation-in-time algorithm is used. In the algorithm, the input samples are per-
muted so that they follow the so called bit-reversed order [19].



444 M. Rawski, B. Falkowski, and T. Łuba:

Fig. 4. Schematic diagram of 8-point DFT.

4 Distributed Arithmetic

Distributed arithmetic is a method of computing the sum of products. In many
DSP applications, a general purpose multiplication is not required. In case of filter
implementation, if filter coefficients are constant in time,then the partial product
termx[n]c[n] becomes multiplication with a constant. Then taking into account the
fact that the input variable is a binary number:

x[n] =
B−1

∑
b=0

xb[n] ·2b, where xb[n] ∈ [0,1] (5)

the whole convolution sum can be described as shown below.

y[n] =
B−1

∑
b=0

2b ·
L−1

∑
k=0

xb[k] · c[k] =
B−1

∑
b=0

2b ·
L−1

∑
k=0

f (xb[k],c[k]). (6)

The efficiency of filter implementation based on this conceptstrongly depends
on implementation of the functionf (xb[k],c[k]). The preferred implementation
method is to realize the mappingf (xb[k],c[k]) as the combinational module withL
inputs. The schematic representation of such implementation is shown in Fig. 5,



Digital Signal Processing Designing for FPGA Architectures 445

where the mappingf is presented as a lookup table that includes all the possible
linear combinations of the filter coefficients and the bits ofthe incoming data sam-
ples [1]. The utility programs that generate the lookup tables for filters with given
coefficients can be found in the literature.

Fig. 5. DA architecture with lookup table.

The hardware description language (HDL) specification of the lookup table
can be easily obtained for filter described by itsc[i] coefficients. Since the size
of lookup tables grows exponentially with the number of inputs the efficient im-
plementation of these blocks becomes crucial to final resource utilization of filter
implementation. In the approach presented in this paper, the balanced decompo-
sition has been successfully applied for technology mapping of DA circuits onto
FPGA logic cells.

5 Balanced Functional Decomposition

There are several approaches to FPGA-based logic synthesis. The most common
approach relies on breaking of the synthesis process into two phases: a technology
independent one, and a technology mapping phase. The technology independent
phase attempts to generate an optimal abstract representation of the logic circuit.
For the combinational logic, the abstract representation is a Boolean network, i.e. a
structure of a directed acyclic graphG(V,E) where each nodev ∈V represents an
arbitrarily complex single-output logic function.

The second phase of logic synthesis maps the design onto cells of a user spec-
ified target library, and performs technology dependent optimizations taking the
given constraints into account. For FPGAs the constraints are specific because
their structures differ from the structures of the standardASIC technologies. The
architecture based on LUTs is the prevalent one among many FPGA architectures.



446 M. Rawski, B. Falkowski, and T. Łuba:

LUT-based FPGAs consist of an array of LUTs, each of which canimplement any
Boolean function with up tok (typically 4 or 5) inputs. A Boolean network can be
directly realized by a one-to-one mapping between nodes andLUTs if every node
in the network is feasible, i.e. has up tok input variables. Thus in FPGA-based
technology mapping the functional decomposition algorithm is usually applied to
multi-output functions which result from a node clusteringprocess in a Boolean
network [8].

A serial decomposition of the Boolean functionF(X) = Y is defined as follows
(Fig. 6). LetX = A∪B be the set of input variables,Y the set of output variables and
C ⊆ A. There exists a serial decomposition ofF if F = H(A,G(B,C)) = H(A,Z),
whereG andH denote functional dependenciesG(B,C) = Z andH(A,Z) = Y , and
Z is the set of output variables ofG. If, in addition, C = Φ, thenH is called a
disjoint decomposition ofF.

The functional decomposition algorithms are usually incorporated into a mul-
tilevel synthesis environment [8], where the nodes are created and then, each of the
nodes is treated as a Boolean function to be decomposed. In other words, each such
node then constitutes an input to the decomposition algorithm.

A completely different approach to FPGA-based technology mapping was in-
troduced by Łuba and Selvaraj [20], where the concept of parallel decomposition
was introduced and effectively applied in the so called balanced decomposition
method. Based on redundant variable analysis of each outputof a multi-output
function, parallel decomposition separatesF into two or more functions, each of
which has as its inputs and outputs a subset of the original inputs and outputs. Al-
though in their method (recently improved in [21]), the crucial point of the whole
mapping process is again created by the serial decomposition algorithm, the paral-
lel decomposition based on argument reduction process plays a very important role.
Thanks to this algorithm the functional decomposition procedure can start directly
with a two-level, espresso based specification. Thus the method itself allows to
develop a uniform, autonomous tool for decomposition basedtechnology mapping
of FPGAs. The influence of these improvements which partly rely on application
of argument reduction algorithm mentioned above on the results of FPGA-based
technology mapping will be shortly described below.

Consider a multi-output functionF. Assume thatF has to be decomposed into
two components,G andH, with disjoint setsYG andYH of output variables (Fig.
7). This problem occurs, for example, when we want to implement a large func-
tion using components with a limited number of outputs. Notethat such a parallel
decomposition can also alleviate the problem of an excessive number of inputs of
f . This is because, for typical functions, most outputs do notdepend on all input
variables. Therefore, the setXG of input variables on which the outputs ofYG de-
pend, may be smaller thanX . Similarly, the setXH of input variables on which the



Digital Signal Processing Designing for FPGA Architectures 447

outputs ofYH depend may be smaller thanX . As a result, componentsG andH
have not only fewer outputs, but also fewer inputs thanF. The exact formulation of
the parallel decomposition problem depends on the constraints imposed by the im-
plementation style. One possibility is to find setsYG andYH such that the combined
cardinality ofXG andXH is minimal. Partitioning the set of outputs into only two
disjoint subsets is not an important limitation of the method, because the procedure
can be applied again for componentsG andH.

Fig. 6. Schematic representation of serial de-
composition.

Fig. 7. Schematic representation of
parallel decomposition.

Example 1. The influence of the parallel decomposition on the final result of
the FPGA-based mapping process will be explained with the function F given in
Table 1, for which cells with 4 inputs and 1 output are assumed(this is the size of
Altera’s FLEX FPGAs).

Table 1. Truth table of functionsF

.type fr 0001001110 01

.i 10 0110000110 01

.o 2 1110110010 10

.p 25 0111100000 00
0101000000 00 0100011011 00
1110100100 00 0010111010 01
0010110000 10 0110001110 00
0101001000 10 0110110111 11
1110101101 01 0001001011 11
0100010101 01 1110001110 10
1100010001 00 0011001011 10
0011101110 01 0010011010 01



448 M. Rawski, B. Falkowski, and T. Łuba:

As F is a ten-input, two-output function, in the first step of the decomposition
either parallel or serial decomposition can be applied. If we first apply serial de-
composition (Fig. 8), then the algorithm extracts functiong with inputsx1,x3,x4,
andx6, thus the next step deals with seven-input functionh, for which again serial
decomposition is assumed, now resulting in blockg, with 4 inputs and 2 outputs
(implemented by 2 Logic Cells -LC). It is worth noting that the obtained block g
takes as its input variablesx0,x2,x5, andx7, which, fortunately, belong to primary
variables, and therefore the number of levels is not increased in this step. In the
next step we apply parallel decomposition. Parallel decomposition generates two
components, both with one output but 4 and 5 inputs, respectively. The first one
forms a logic cell. The second component is subject to two-stage serial decompo-
sition shown in Fig. 8. The obtained network can be built of 7 (4 to 1) cells, where
the number of levels in the critical path is 3.

Fig. 8. Decomposition of function
F where serial decomposition is per-
formed first.

Fig. 9. Decomposition of functionF
where parallel decomposition is per-
formed at first.

Decomposition of the same function such that the parallel decomposition is
applied in the first step leads to completely different structure (Fig. 9). Parallel
decomposition applied directly to functionF , generates two components both with
6 inputs and one output. Each of them is subject to two-stage serial decomposi-
tion. For the first component, a disjoint serial decomposition with four inputs and
one output can be applied. The second component can be decomposed serially
as well, however with the number of outputs of the extracted block G equals to
two. Therefore, to minimize the total number of components,a non-disjoint de-
composition strategy can be applied. The truth tables of thedecomposed functions
G1,H1,G2,H2, are shown in Table 2. The columns in the table denote variables in



Digital Signal Processing Designing for FPGA Architectures 449

the order shown in Fig. 9. For example, the first left hand sidecolumn in Table 2b
denotes variablex4, the second variablex6, and the third denotes variableg1 (output
of G1). The above considerable impact on the structure results from the fact that
the parallel decomposition simultaneously reduces the number of inputs to both re-
sulting components, leading to additional improvement of the final representation.

Table 2. Truth tables of decomposition components.

a) functionG1 b) functionH1 c) functionG2 d) functionH2

0110 1 −01 0 0110 1 10−1 0
1101 1 011 1 0011 1 −101 1
1000 1 111 0 0100 1 −111 1
0010 1 100 1 1000 1 0011 0
0000 0 0−0 0 0101 1 0001 1
0101 0 110 0 1100 0 1−00 0
1100 0 0010 0 0000 0
0100 0 1010 0 1110 1
0011 0 1110 0 1010 0
1011 0 0001 0 0100 1
1111 0 0111 0 0010 1

1111 0

It is worth noticing that the same function synthesized directly by commercial
tool, e.g. Quartus can be mapped onto 32 logic cells.

The serial and parallel decompositions are intertwined in atop-down synthesis
process to obtain the required topology. At each step, either parallel or serial de-
composition is performed, both characterized by operationinput parameters. In the
case of serial decomposition the related parameterGin andGout denotes the number
of G block inputs and outputs, respectively. In the case of parallel decomposition
the related parameterGout represents the number ofG block outputs. Intertwining
of serial and parallel decomposition strategies opens up several interesting possibil-
ities in multilevel decomposition. Experimental results show that the right balance
between the two strategies and the choice of operation parameters severely influ-
ence the area and depth of the resultant network.

Example 2.The influence of the right balance on the final result of the FPGA-
based mapping process will be explained with the functionF representing DA logic
of a certain wavelet filter with the following filter coefficients [1495,−943,−9687,
18270,−9687,−943, 1495].

As F is a seven-input, sixteen-output function, in the first stepof the decom-
position both the parallel and serial decomposition can be applied. Let us apply
parallel decomposition at first (Fig.10). Parallel decomposition with Gout = 1 gen-
erates two components: the first one with 6 inputs and 1 output, and the second



450 M. Rawski, B. Falkowski, and T. Łuba:

with 7 inputs and 15 outputs. This is illustrated by two arrowmarks with the com-
mon starting point going to different directions. The smaller component is subject
to two-stage serial decomposition resulting in blockG with 4 inputs and 1 output
and blockH with 3 inputs and 1 output (bothG andH blocks are implemented by
2 cells). Two brackets (4,1), (3,1), which are given on the bottom side of the arrow
mark, show the number of inputs and outputs for functionsG(4,1) and H(3,1),
respectively. The second component is again decomposed in parallel yielding (7,7)
and (7,8) components. For the (7,8) component serial decomposition is assumed,
now resulting in blockG with 4 inputs and 2 outputs (implemented by 2 logic
cells), thus the next step deals with six-input function H, which can be directly im-
plemented in ROM. In the next iterative step parallel decomposition is applied to
split the (7,7) component into (7,3) and (7,4) blocks. It is sensible to implement
the (7,4) block in ROM. The second block is decomposed serially yielding G(4,3)
andH(6,3). As G block can be implemented by 3 logic cells, the next step deals
with functionH. Parallel decomposition applied to functionH generates two com-
ponents. Each of them is subject to two-stage serial decomposition. The obtained
network can be built of 14 logic cells and 2 M512 ROMs.

Fig. 10. Decomposition process for the ahp
(7,16) filter.

Fig. 11. Decomposition process for the ahp
(7,16) filter.

If we change the size of smaller component in the first step of parallel decom-
position, i.e. (7,4) instead of (6,1) as in Fig.10, then the implementation needs 3
M512 ROMs and 9 LCs. The structure is shown in Fig.11. However, if we decide
on serial decomposition to decompose (7,16), instead of parallel decomposition as



Digital Signal Processing Designing for FPGA Architectures 451

in Fig.10 and 11, the implementation needs only 3 ROMs. The structure is shown
in Fig.12.

Fig. 12. Decomposition process for the ahp (7,16) filter.

Balanced decomposition was implemented as software package called DE-
MAIN [12]. Recently the package was improved to help designers to deal with
large truth tables. All described methods of truth tables transformations can be per-
formed easily, and results are shown immediately on the screen for further work. It
is designed for performing manual operations on functions,and therefore is meant
to be highly user friendly, as well as cross-platform compatible. After choosing
the operation, a dialog pops up which can be used to input the parameters of the
operation. After the actual operation is performed, its results are displayed in the
project window.

6 Synthesis of FIR Filters

Below the experimental results of FIR filter implementationwith different design
methodologies are presented. For experiments, filter foundin [22] as well as
Daubechies’ dbN, coifN, symN and 9/7-tap bio-orthogonal filters have been cho-
sen.

In the first experiment filter with length (order) 15 has been chosen. It has 8-bit
signed input samples and its coefficients can be found in [22]. For the comparison
the filter has been implemented in Stratix EP1S10F484C5, Cyclone EP1C3T100C6
and CycloneII EP2C5T144C6 structures with use of Altera QuartusII v5.1 SP0.15.

Table 3 presents the comparison of implementation results for different design
methodologies. Column falling under the “MAC” label present the results obtained
by implementing multiply-and-accumulate strategy with use of logic cell resources,
without utilization of embedded DSP blocks. Multipliers, as well as accumulator
were implemented in logic cells of circuit. This implementation, due to its serial
character, requires 15 clock cycle to compute the result. Itrequires relatively large



452 M. Rawski, B. Falkowski, and T. Łuba:

amount of resources, while delivering the worst performance in comparison to other
implementations.

Table 3. Implementation results for different design methodologies. Chip: S - Stratix
EP1S10F484C5, C - Cyclone EP1C3T100C6, CII - CycloneII EP2C5T144C6.

Chip MAC
MULT DSP

Parallel DA
DA

block block decomposed

S
LC 421 287 247 402 1013 569
DSP 0 2 4 30 0 0
Fmax[MHz] 80.44 86.01 105.34 58.97 87.6 84.86

C
LC 421 421 421 2226 1013 569
DSPa − − − − − −

Fmax[MHz] 77.03 77.03 77.03 61.0 80.4 78.37

CII
LC 403 271 271 637 1014 569
DSP 0 2 2 26 0 0
Fmax[MHz] 89.92 102.43 102.43 76.49 84.11 82.61

aDSP blocks are not present in this device family

Next column - “MULT block” - holds the implementation results of method
similar to “MAC” with such difference that multipliers wereimplemented in ded-
icated DSP embedded blocks. It can be noticed that the performance of the filter
increased at the cost of utilization of additional resources in form of DSP embedded
blocks. Results in column falling under “DSP block” were obtained by implement-
ing the whole MAC unit in embedded DSP block. Further increase in performance
could be noticed, but still 15 clock cycles have to be used to compute the result.

Results given in “Parallel” column were obtained by implementing filter in par-
allel manner. In this case results are obtained in single clock cycle. Even though
the maximal frequency of this implementation is less than inprevious ones, it out-
performs these implementations due to its parallel character.

Application of DA technique results in increase of performance since maximal
frequency has increased. However in this approach more logic cell resources have
been used, since multipliers have been replaced by large combinational blocks and
no DSP embedded modules ware utilized.

Finally results presented in column under “DA decomposed” label demonstrate
that application of DA technique combined with advanced synthesis method based
on balanced decomposition allows obtaining the circuit that not only outperforms
any other implemented circuit but also reduces the necessary logic resources. The
balanced decomposition was applied to decomposed combinational blocks of DA
implementation.

In Table 4, the experimental results of Daubechies’ dbN, coifN, symN and 9/7-
tap bio-orthogonal filter banks are presented. Filters 9/7 are in two versions: (a)



Digital Signal Processing Designing for FPGA Architectures 453

analysis filter and (s) synthesis filter. Filters dbN, coifN,symN are similar for
analysis and synthesis (a/s). All filters have 16 bit signed samples and have been
implemented with the use of DA concept in the fully parallel way. Balanced de-
composition software was also added to increase efficiency of the DA tables’ im-
plementations.

Table 4. Implementation results of filters with and without decomposition.

Filter Order
Without decomposition With decomposition

LC Fmax[MHz] LC Fmax[MHz]
db3, a/s low-pass 6 1596 278.63 1345 254.26
db4, a/s low-pass 8 3747 212.9 2891 201,73
db5, a/s low-pass 10 10057 169.81 7377 119.39
db6, a/s low-pass 12 −a − 31153 −b

9/7, a low-pass 9 3406 206.61 1505 212.86
9/7, s low-pass 7 1483 273.37 881 263.5
9/7, a high-pass 7 2027 253.29 1229 223.16
9/7, s high-pass 9 4071 180.93 1616 189.47
coif6, a/s low-pass 6 1133 283.45 1041 260.62
coif12, a/s low-pass 12 −a − 1614 196.85
sym8, a/s low-pass 8 3663 212.72 2249 197.94
sym12, a/s low-pass 12 −a − 2313 198.61
sym14, a/s low-pass 14 −a − 2345 200.24
sym16, a/s low-pass 16 −a − 2377 206.83

aToo long compilation time (more than 24 hours)
bDoes not fit in EP1S10F484C5

Table 4 presents the result for filter implementations usingStratix EP1S10F484C5
device, with a total count 10570 of logic cells. In the implementation without de-
composing the filters, the new method was modeled in AHDL and Quartus2v6.0SP1
was used to map the model into the target structure. In the implementation using
decomposition, the DA tables were first decomposed using automatic software.
Quartus system was then applied to map the filters into FPGA.

The application of the balanced decomposition concept significantly decreased
the logic cell resource utilization and at the same time increased the speed of the
implementation.

FPLD devices have very complex structure. They combine PLA-like structures
as well as FPGA’s and even memory-based structures. In many cases designers
cannot utilize all of these possibilities such as complex architectures provide due to
the lack of appropriate synthesis methods. Embedded memoryarrays make possi-
ble an implementation of memory like blocks such as large registers, FIFO’s, RAM
or ROM modules [1].

These memory resources make up considerably large part of the devices. For



454 M. Rawski, B. Falkowski, and T. Łuba:

example, EP20K1500E devices provide 51 840 logic cells and 442 Kbit of SRAM.
Taking under consideration the conversion factors of logicelements and memory
bits to logic gates (12 gates/logic element and 4 gates/memory bit) it turns out that
embedded memory arrays make up over 70% of all logic resources. Since not every
design consists of such modules as RAM or ROM, in many cases these resources
are not utilized. However, such embedded memory blocks can be used for imple-
mentation of DA blocks in a way that requires less resources than the traditional
cell-based implementation. This may be used to implement “non-vital” sequen-
tial parts of the design, saving logic cell resources for more important sections.
Since the size of embedded memory blocks is limited, such an implementation
may require more memory than is available in a device. To reduce a memory usage
in ROM-based DA implementations, astructure with combinational logic partially
implemented in the ROM and partially implemented in logic cells was proposed.

In Table 5, the experimental results of Daubechies’ 9/7-tapbio-orthogonal filter
banks are presented. All filters have 16 bit signed samples and have been imple-
mented with the use of DA concept. Balanced decomposition software was also
added to increase efficiency of the DA tables’ implementations.

Table 5. Implementation results of 9/7 filters.

Filter Order LC ROM FF bits Fmax

alp 9 236 7xM512, 1xM4K 181 8192 133.51
alp dec 9 248 1xM4K 181 4096 140.51
ahp 7 204 4xM512 149 2048 155.04
ahp dec 7 210 2xM512 153 1024 157.53
slp 7 204 4xM512 149 2048 155.04
slp dec 7 211 2xM512 153 1024 161.21
shp 9 236 7xM512, 1xM4K 181 8192 133.51
shp dec 9 246 1xM4K 181 4096 134.25

Table 5 presents the results for filter implementations using Stratix EP1S10F484C5
device. In the implementation without decomposing the filters, the method was
modeled in AHDL and Quartus2v6.0SP1 was used to map the modelinto the tar-
get structure. In the implementation using decomposition (denoted dec), DEMAIN
software was used to initially decompose DA tables and then Quartus system was
applied to map the filters into FPGA.

Filters 9/7 are in two versions: (a) analysis filter and (s) synthesis filter. Low
pass and high pass filters are denoted as lp and hp, respectively. The implementa-
tion of filters is characterized by the number of logic cells (LC) and Flip-Flops (FF),
memory bits, the number of memory modules (ROM) and operating frequency. In
all cases, decomposition reduces the sizes of memory and thenumber of memory
modules. For example, implementation of ahp filter requires204 LCs and 4 M512



Digital Signal Processing Designing for FPGA Architectures 455

embedded memories if performed by Quartus software. Application of DEMAIN
tool allows DA logic of this filter to be implemented with 2 M512 memories and
11 LCs. This allows implementing the whole filter with 210 LCsand 2 M512
memories.

7 Synthesis of DFT

It has been shown that no algorithm for computing the DFT can have a smaller com-
plexity than the FFT. Thus most FPGA implementations are based on this approach.
With the introduction of specialized DSP blocks embedded into programmable ar-
chitectures the efficiency of FFT is limited by the speed of hardware multipliers of
DSP modules.

However, programmable architectures provide possibilityto increase the per-
formance of digital system by exploiting the parallelism ofthe implemented algo-
rithms. DFT transforms the sequence ofN complex numbersx0, . . . ,xN−1 into the
sequence ofN complex numbersX0, . . . ,XN−1. Each output sample is computed
as sum of products of input samples with constant coefficients. Implementation of
DFT based on DA concept in FPGA structure requires computation of each output
sample with the DA unit presented in Fig. 5. Since in practical applications most
frequently DFT of real valued input samples is required, theimplementation can
benefit from the symmetryXk = X∗

N−k. Therefore, the DFT output for real inputs
can be obtained by only looking at roughly half of the outputs.

Each DA unit contains a number of DA tables, which are combinational cir-
cuits, and an adder tree. Since adder tree can be efficiently implemented using low-
latency carry-chain-routing lines of the FPGA device, the implementation quality
of DA unit (and the whole DFT) mostly depends on the quality ofDA tables’ im-
plementation.

Below the implementations’ comparison of 16-points DFT of real valued 12
bits input samples are presented. For comparison three design methodologies were
chosen:

• FFT−LC − radix-2 FFT; implementation in logic cell resources (LC) only,

• FFT−DSP− radix-2 FFT; implementation with use of logic cell resources,
as well as embedded DSP modules for fast hardware multiplication,

• DFT−DA − distributed arithmetic based implementation.

For the implementations, device EP2C35F672C6 from Altera’s CycloneII fam-
ily was chosen. The implementations were performed using Quartus 6.0 SP1 sys-
tem. To efficiently utilize possibilities provided by DSP embedded blocks of Cy-
cloneII device Library Parameterized Modules (LPM) were used in HDL descrip-
tion of FFT−LC and FFT−DSP algorithms.



456 M. Rawski, B. Falkowski, and T. Łuba:

Logic synthesis methods implemented in Quartus CAD system do not allow
efficient mapping of DA tables into logic cells. Compilationof large DA tables of
DA implementation of DFT required to much time and resulted in large logic cell
resource utilization. Thus decomposition based methods, which are best suited for
FPGA architectures, were used to optimize DA table implementation.

Table 6 presents the results of DFT implementation using FFTradix-2 algo-
rithm in logic cells only (row labeled FFT−LC) and with utilization of embedded
DSP blocks (row labeled FFT−DSP). Row labeled DFT−DA presents the result of
DFT implementation based on DA concept. Columns of Table 6 present the logic
cell resource and embedded DSP blocks usage. Numbers in brackets show the per-
centage of total chip resources utilization. In the table the maximal frequency and
achieved throughput are also presented.

Table 6. Implementation results of DFT.

Resource usage Clock Throughput

[#LC] [#DSP]
frequency [Mbit/s]

[MHz]

FFT−LC
4723

− 43.51 522.12
(14%)

FFT−DSP
1554

70(100%) 48.93 587.16
(5%)

DFT−DA
7222

− 74.36 892.32
(22%)

The classical implementation of FFT required 4723 logic cells, which consti-
tutes 14% of total logic cells available. The throughput of this implementation
is 522.12 Mbit/s. It can be noticed that the utilization of embedded DSP blocks
in FFT−DSP implementation decreased the number of needed logic cell, and at
the same time increasing the throughput to 587.16 Mbit/s. Utilization of 70 DSP
blocks, which is 100% of available blocks, reduced the logiccell utilization from
14% to 5%.

However the best performance of 892.32 Mbit/s is achieved when DA concept
is used. This DFT realization required 53% more logic cells in comparison to
FFT−LC implementation but the performance was increased by as much as 71%.

The efficiency of DA based implementation strongly depends on logic synthesis
quality. In the paper decomposition based synthesis methods developed by authors
were used to implement DA tables, since Quartus CAD system was unable to map
them in reasonable time. Development of more sophisticatedsynthesis methods
directed to DA implementation may give much more efficient DFT modules.



Digital Signal Processing Designing for FPGA Architectures 457

8 Conclusions

The modern programmable structures deliver the possibilities to implement DSP
algorithms in dedicated embedded blocks. This makes designing of such algo-
rithm an easy task. However the flexibility of programmable structures enables
more advanced implementation methods to be used. In particular, exploitation of
parallelism in the algorithm to be implemented may yield very good results. Ad-
ditionally, the application of advanced logic synthesis methods based on balanced
decomposition, which is suitable for FPGA structure leads to results that can not
be achieved with any other method.

The presented results lead to the conclusion that if the designer decides to use
the methodology known from DSP processor application, the implementation qual-
ity will benefit from the utilization of specialized DSP modules embedded in the
programmable chip. However, best results can be obtained byutilizing the par-
allelism in implemented algorithms and by applying advanced synthesis methods
based on decomposition. Influence of the design methodologyand the balanced
decomposition synthesis method on the efficiency of practical digital filter imple-
mentation is particularly significant, when the designed circuit contains complex
combinational blocks. This is a typical situation when implementing digital filters
using the DA concept.

The most efficient approach to logic synthesis of FIR filter algorithms discussed
in this paper relies on the effectiveness of the functional decomposition synthesis
method. These methods were already used in decomposition algorithms; how-
ever they were never applied together in a technology specific mapper targeted at
a lookup table FPGA structure. This paper shows that it is possible to apply the
balanced decomposition method for the synthesis of FPGA-based circuits directed
towards area or delay optimization.

Acknowledgements

This paper was supported by Ministry of Science and Higher Education financial
grant for years 2006-2009 (Grant No. SINGAPUR/31/2006) as well as Agency for
Science, Technology and Research in Singapore (Grant No.0621200011).

References

[1] U. Meyer-Baese,Digital Signal Processing with Field Programmable Gate Arrays.
Berlin: Springer-Verlag, 2004.

[2] A. Peled and B. Liu, “A new realization of digital filters,” IEEE Trans. on Acoustics,
Speech and Signal Processing, vol. 22, no. 6, pp. 456–462, June 1974.



458 M. Rawski, B. Falkowski, and T. Łuba:

[3] M. Rawski, P. Tomaszewicz, H. Selvaraj, and T. Łuba, “Efficient implementation of
digital filters with use of advanced synthesis methods targeted fpga architectures,” in
Proc. of Eighth Euromicro Conference on Digital System Design (DSD 2005), Porto,
Portugal, Aug. 2005, pp. 460–466.

[4] M. Rawski, P. Tomaszewicz, and T. Łuba, “Logic synthesisimportance in fpga-based
designing of information and signal processing systems,” in Proc. of International
Conference on Signal and Electronics Systems, Poznań, Poland, 2004, pp. 425–428.

[5] T. Sasao, Y. Iguchi, and T. Suzuki, “On lut cascade realizations of fir filters,” in
Proc. of Eighth Euromicro Conference on Digital System Design (DSD 2005), Porto,
Portugal, Aug. 2005, pp. 467–474.

[6] J. T. Astola and R. S. Stanković,Fundamentals of Switching Theory and Logic De-
sign. Dordrecht: Springer, 2006.

[7] J. A. Brzozowski and T. Łuba, “Decomposition of boolean functions specified by
cubes,”Journal of Multiple-Valued Logic and Soft Computing, vol. 9, pp. 377–417,
2003.

[8] S. C. Chang, M. Marek-Sadowska, and T. T. Hwang, “Technology mapping for tlu
fpgas based on decomposition of binary decision diagrams,”IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 10, pp.
1226–1236, Oct. 1996.

[9] M. Rawski, L. Jóźwiak, and T. Łuba, “Functional decomposition with an efficient in-
put support selection for sub-functions based on information relationship measures,”
Journal of Systems Architecture, vol. 47, pp. 137–155, 2001.

[10] C. Scholl,Functional Decomposition with Application to FPGA Synthesis. Kluwer:
Academic Publishers, 2001.

[11] T. Łuba, H. Selvaraj, M. Nowicka, and A. Kraśniewski, “Balanced multilevel de-
composition and its applications in fpga-based synthesis,” in Logic and Architecture
Synthesis, G. Saucier and A. Mignotte, Eds., 1995.

[12] M. Nowicka, T. Łuba, and M. Rawski, “Fpga-based decomposition of boolean func-
tions: Algorithms and implementation,” inProc. of Sixth International Conference
on Advanced Computer Systems, Szczecin, Poland, 1999, pp. 502–509.

[13] B. J. Falkowski, “Haar transform: Calculation, generalizations, and applications in
logic design and signal processing,” inProc. of International Workshop on Trans-
forms and Filter Banks (2nd IWTFB), Brandenburg, Germany, Mar. 1999, pp. 101–
120.

[14] ——, “Compact representations of logic functions for lossless compression of grey
scale images,”IEE Proc., Computers and Digital Techniques, United Kingdom, vol.
151, no. 3, pp. 221–230, May 2004.

[15] R. M. Rao and A. S. Bopardikar,Wavelet Transform: Introduction to Theory and
Applications. Addison-Wesley, 1998.

[16] O. Rioul and M. Vetterli, “Wavelets and signal processing,” IEEE Signal Processing
Magazine, vol. 8, no. 4, pp. 14–38, Oct. 1991.

[17] C. M. Brislawn, C. B. J. Bradley, R. Onyshczak, and H. T.,“The fbi compression
standard for digitized fingerprint images,” inProc. of SPIE Conference 2847, Denver,
USA, 1996, pp. 344–355.

[18] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex
fourier series,”Mathematics of Computation, vol. 19, pp. 297–301, 1965.

[19] R. G. Lyons,Understanding Digital Signal Processing. Upper Saddle River: Pren-
tice Hall, 2004.



Digital Signal Processing Designing for FPGA Architectures 459

[20] T. Łuba and H. Selvaraj, “A general approach to boolean function decomposition and
its applications in fpga-based synthesis,”VLSI Design, vol. 3, no. 3-4, pp. 289–300,
1995.

[21] P. Tomaszewicz, M. Nowicka, B. J. Falkowski, and T. Łuba, “Logic synthesis impor-
tance in fpga-based designing of image signal processing systems,” inProc. of the
14th International Conference on Mixed Design of Integrated Circuits and Systems
(MIXDES 2007), Ciechocinek, Poland, June 2007, pp. 141–146.

[22] D. J. Goodman and M. J. Carey, “Nine digital filters for decimation and interpola-
tion,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 25, no. 2,
pp. 121–126, 1977.


