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The Influence of Semi-Spherical Inhomogenity on the
Linear Grounding System Characteristics

Nenad N. Cvetkovíc and Predrag D. Raňcić

Abstract: The influence of semi-spherical ground inhomogenity on quasistationary
charachteristics of linear grounding systems (LGS) was analyzed. For that purpose,
firstly electric scalar potential (ESP) distribution in thevicinity of wire electrodes
grounding system was determined. Afterwards, corresponding system of integral
equations (SIE) was formed having distribution of leakage current from conductor
surfaces as unknown function. The SIE is solved using Methodof Moments (MoM).
In deriving procedure of quasistationar expressions for ESP, quasistationary image
theory in flat and modified image theory in spherical semi-conducting mirror are
used. The application of proposed model is illustrated withmany different examples
of grounding systems.

Keywords: Quasistationary EM field, linear grounding systems, semi-spherical in-
homogenity, image theory.

1 Introduction

Modelling ground inhomogenity as semi-sphere can be usefulin analysis of differ-
ent grounding system problems. It can be applied to solving e.g. grounding system
in the vicinity of vertical container (silage, reservoir) having semi-spherical bases
with a lower one buried in the ground, or pillar ground electrode, where concrete
foundation is approximated with semi-spherical ground inhomogenity. The model
described and applied in this paper can be used also for analyzing the influence on
grounding system of large holes in the ground (pond, small lake) filled with water.
In this way, those holes are assumed as semi-spherical ground inhomogenities.
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In order to solve above-mentioned problems, general model for calculating ESP
of the point current source (PCS) placed inside or outside semi-sphere inhomogen-
ity is formed. This is carried out by combining quasistationary image theory for
homogeneous ground and spherical inhomogenity. In limit case, when specific con-
ductivity of semi-spherical inhomogenity tends to infinitely large value, the general
model becomes known model for determining conductive semi-sphere influence on
grounding system characteristics.

The analysis of non homogeneous ground on the grounding characteristics
modelled with homogeneous layers or vertical sectors was research subject of many
authors, e.g. [1–4], and also of the authors of this paper , e.g. [5–8].

Concerning spherical inhomogenity, authors could use models for determin-
ing influence of conductive ( [9, 10]), and dielectric spherical bodies ( [11–17]),
on point source electric field distribution. The problem of this kind was solved in
1894 (Böcher) and an overview of the ESP solutions for pointcharge in the pres-
ence of dielectric sphere is given by Stratton in ( [11], pp. 201-205). Stratton in [11]
solved described problem by direct solving of Poisson, i.e.Laplace partial differen-
tial equation using method of separating variables. The obtained solution includes
infinite series needed to be numerically summed. In recent years, many authors
have given solution for the ESP based on the image theory of fictitious sources that
model influence of the spherical inhomogenity. This StrattonXs solution is cited as
exact and referent one.

Hanakkam also analyzed problems of this kind in [12], and obtained general
solution for the ESP expressed in the form that includes class of integrals not having
solution in a closed form.

Using different mathematical procedures Lindell et al. obtained same solution
as in [12]. According to that, cases of point charges outsideand inside inhomogen-
ity are separately analyzed in [13] and [14].

In papers [18] and [19] author deduces the closed form solution for the ESP
of the PCS current in the presence of spherical inhomogenityin two steps. In the
first one, the author assumes a part of the solution that corresponds to images in the
spherical mirror and approximately satisfies boundary conditions on the sphere sur-
face. In the second step, assumed solutions are broadened byinfinite sums that ap-
proximately correspond to the ones that occur as the exact general solution in [11],
i.e. in other words, approximately satisfy the Laplace partial differential equation.
Afterwards, unknown constants in the sum are obtained satisfying the boundary
condition for ESP and for total current density normal component on the sphere
surface. These solutions enable summing of infinite sums andpresenting the ESP
general solution in a closed form. They are confirmed theoretically and illustrated
numerically in [20].
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Finally, in [20] one improved approximate solution is proposed which also in-
cludes the contents presented in this paper. The obtained ESP solution fully sat-
isfies Poisson, i.e. Laplace equation as well as boundary condition for ESP, and
approximately satisfies boundary condition for total current density. In comparison
with approximate solution from [18] and [19], rather betteraccordance is obtained
comparing with the exact solution from [11].

The model used in this paper is based on the combination of quasistationary
model for EM field of Hertz’s dipole buried in homogeneous ground ( [6], [8]) and
expression for the ESP Green function of the PCS source in thepresence of semi-
conducting sphere proposed in [18] and [19]. Using described models the general
method is developed and expressions for the ESP of LGS in arbitrary ground point
are derived. In order to calculate ESP value, it is necessaryto determine unknown
leakage current distribution (ULCD) from conductor surface in the surrounding
ground. It is carried out with solving the SIE having leakagecurrent distribution
as unknown function. The SIE is formed using condition that electrode surface is
approximately equipotential and it can be numerically solved applying Method of
Moments (MoM, [21]).

The described model has been already applied for analyzing influence of the
semi-spherical semi-conducting inhomogenity on characteristics of point ground
electrode ( [22]), contour circle wire ground electrode ( [23]) as well as of single
wire electrode characteristics ( [24]).

In addition, the model was used for determining grounding characteristics of
thin plate electrode placed outside semi-spherical inhomogenity ( [25]). In last
mentioned case, the SIE was solved combining MoM and Equivalent Electrodes
Method (EEM, [26]).

In this paper, developed model is applied on the analysis of the grounding sys-
tems formed by two ground wire electrodes as two represents of the LGS. The
program package for numerical calculations based on the described procedure is
realized and large number of numerical experiments was performed. Small part of
the results is presented in fourth chapter of the paper.

2 Theoretical Basis of the Model

The non-homogeneous semi – conducting ground approximatedwith two linear,
isotropic and homogeneous semi – conducting domains is considered in the paper.
The first one is semi – sphere of the radiusrs and known electrical parametersσs,
εs = ε0εrs andµs = µ0 (σs – specific conductivity,εs = ε0εrs – permittivity, µs = µ0

– permeability).
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The second domain is homogeneous isotropic semi – conducting semi – space
of known electrical parametersσ1, ε1 = ε0εr1 and µ1 = µ0. In this paper are
also used the following labels:σ i = σi + jωεi – complex conductivities,γ

i
=

(jωµ0σ i)
1/2 – complex propagation constants fori = 0,1,s;ω – angular frequency;

andn1s = γ
1
/γ

s
, ni0 = γ

i
/γ

0
, i = 1,s – refraction coefficients between ground/semi

– sphere, ground/air and semi – sphere/air, respectively. Point ground electrode is
placed in arbitrary pointP′ and fed by current of intensity dI and of very low fre-
quency f . Descartes’ coordinate system having origin at the semi – sphere centre
is associated to the described geometry. Illustrations fortwo of four possible point
ground electrode problem geometries and part of the images are presented in Fig.1.

(a) (b)

Fig. 1. Point current source outside (a) and inside (b) semi-conducting semi-spherical inhomogenity
and part of discrete images for determining potential outside (a) and inside (b) inhomogenity.

Combining image theory models, final approximate expressions for the ESP
Green functions at ground arbitrary point are derived for the PCS placed outside
(r ′ ≥ rs, Fig.1a) and inside semi-spherical inhomogenity (r ′ ≤ rs, Fig.1b). It is car-
ried out with successive application of the image theory in the flat semi – conduct-
ing mirror ( [8]) and Green’s functions for the PCS source placed outside/inside
semi – conducting sphere. The last ones are used in the form that was proposed
for the first time in [18] and [19]. This function satisfies boundary condition for
potential at the boundary surface of spherical inhomogenity

ϕ1(r = rs+0) = ϕs(r = rs−0), (1)

as well as the conduction for normal components of total current densities

σ1
∂ϕ1

∂ r
|r=rs+0 = σ s

∂ϕs

∂ r
|r=rs−0, (2)

and approximately satisfies Poisson, i.e. Laplace equation( [18–20]).
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2.1 The PCS outside semi – sphere

The electrical scalar potential at the point P in the surrounding of the PCS located
outside semi-spherical inhomogenity, Fig.1(a) ( [18–20,22]), is expressed as

dϕ11(~r ,~r
′)∼= dI

4πσ1

{[ 1
r1

+R1s
rs

r ′

( 1
r2

− 1
r

)

+
T1sR1s

2
1
r ′

ln
r −Dcosα + r2

2r

]

+
[ 1

r1i
+R1s

rs

r ′

( 1
r2i

− 1
r

)

+
T1sR1s

2
1
r ′

ln
r −Dcosαi + r2i

2r

]}

, r ≥ rs,

(3)

dϕs1(~r ,~r
′) ∼= dI

4πσ1

{[T1s

r1
− R1s

r ′
+

T1sR1s

2
1
r ′

ln
r ′− r cosα + r1

2r ′

]

+
[T1s

r1i
−R1s

1
r ′

+
T1sR1s

2
1
r ′

ln
r ′− r cosαi + r1i

2r ′

]}

, r ≤ rs,

(4)

where: dI – leakage current from the point ground electrode;R1s andT1s – quasi –
stationary reflection and transmission coefficients,R1s= T1s−1= (n2

1s−1)/(n2
1s+

1); ~r ′ and~r ′i are position vectors of the PCS and its image in the flat mirror,
respectively; r1 =

√
r2 + r ′2−2rr ′ cosα , r2 =

√
r2 +D2−2rD cosα , and r1i =

√

r2 + r ′2−2rr ′ cosαi , r2i =
√

r2 +D2−2rD cosαi , cosα = (r̂ · r̂ ′), cosαi = (r̂ · r̂ ′i)
– distances denoted in Fig.1; andD = r2

s/r ′ Kelvin inversion factor. The rest of the
parameters in the expressions (3) and (4) can be noticed in Fig.1a. Reflection and
transmission coefficients in the application of semi – conducting flat mirror image
theory,Ri0 = Ti0−1 = (n2

i0−1)/(n2
i0 + 1) ∼= 1, i = 1,s are approximately equal to

one, becausen10,ns0 >> 1. This allows us to express ESP with finite number of
images in spherical mirror.

Two indexes are used to label the potential. The first one denotes the medium
in which potential is determined and the second one, the medium where the PCS is
placed.

2.2 The PCS inside semi – sphere

In the way similar to those ones described in the previous chapter, the expressions
for the ESP at the pointP in the surroundings of the PCS located inside semi –
spherical inhomogenity are derived, Fig.1b ( [18–20]). Those expressions have the
following form:

dϕ1s(~r,~r
′) ∼= dI

4πσ1

{[T1s

r1
− R1s

r
+

T1sR1s

2
1
rs

ln
r − r ′ cosα + r1

2r

]

+
[T1s

r1i
− R1s

r
+

T1sR1s

2
1
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ln
r − r ′ cosαi + r1i

2r

]}

, r ≥ rs,

(5)
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dϕss(~r ,~r
′)∼= dI

4πσ1
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(6)

The labels used in expressions (5)–(6) correspond to those used in expressions (3)–
(4) and can be noticed from Fig. 1b. In the text that follows, corresponding Green’s
functions ,Gi j (~r ,~r ′), i, j = 1,s, defined on the basis of expressions (3)–(6) will be
used,

dϕij (~r,~r
′) = dIGi j (~r ,~r

′), i, j = 1,s. (7)

2.3 Accuracy of the proposed ESP expression

As it has been already explained in previous text, ESP Green’s function for PCS
outside/inside semi-spherical inhomogenity (expressions (3)–(6)) are derived by
approximate expressions for ESP Green’s function of the PCSlocalized outside
/inside spherical inhomogenity (proposed in [18,19]) and using semi – conducting
flat mirror image theory ( [5–8]).

The exact ESP Green’s function for the same problem can be also derived us-
ing exact solution for Green’s functions of the PCS placed outside/inside spherical
inhomogenity. These solutions satisfy boundary conditions (1) and (2) as well as
Poisson, i.e. Laplace differential equation ( [11], [20]) and for system shown in
Fig.1a is given with two following expressions:

dϕ11(~r ,~r
′) =
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The exact ESP Green’s function are for the point source inside inhomogenity,
Fig.1b,

dϕ1s(~r,~r
′) =
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(11)

As it can be noticed from the exact expressions for ESP Green’s function, cal-
culating of those functions is ballasted with infinite sums,which can present sig-
nificant and complex numerical problem in the case of linear ground electrodes.

The parameters in expressions (8)–(11) correspond to thoseones used in ex-
pressions (3)–(6). Real part of the normalized values of theGreen’s functions
Gi j (~r ,~r ′), i, j = 1,s, at the ground surface for the system from Fig.1 are presented in
Fig.2a, for the PCS is outside, and in Fig.2b for the PCS inside semi – spherical in-
homogenity. Parameter values arers = 1m,θ = 450, σ1 = 0.01S/m, εr1 = εrs = 10,
ps = σ1/σs = 0.1 andr ′ = 1.1m (Fig.2a), i.e. r ′ = 0.9m (Fig.2b). Good agree-
ment can be noticed between the results obtained using approximate expressions
(3)–(6) and exact expressions (8)–(11). Very detailed analysis of described Green’s
function can be found in [20].

3 Model Application on Grounding Systems

The described model can be applied for analysis of two grounding systems made
of linear conductors, one placed inside and the second outside sphere. In the limit
cases of homogeneous or sectoral ground very good result andsatisfactory agree-
ment is obtained. It is explained in detail e.g. in [24].
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(a) (b)

Fig. 2. ESP distribution at the ground surface for the point source outside (a) and inside (b) semi-
spherical inhomogenity.

3.1 The LGS formed by two wire straight electrodes

Grounding system formed by two wire electrodes, or two grounding systems, one
placed inside and the other outside inhomogenity is observed (Fig.3). Assuming
electrodes as clusters of point sources, and superposing their influence, the ESP in
the surroundings of the system can be expressed as

ϕ1(~r) =

∫

l1

dI(~r ′1)G11(~r,~r
′
1)+

∫

l2

dI(~r ′2)G1s(~r ,~r
′
2), (12a)

ϕs(~r) =
∫

l1

dI(~r ′1)Gs1(~r ,~r
′
1)+

∫

l2

dI(~r ′2)Gss(~r ,~r
′
2), (12b)

where: dI(~r ′k) = I f (~r ′k)dlk, I f (~r ′k), k = 1,2, – leakage current density per unit
length ofk-th wire electrode, dlk – corresponding differential length element and
Gi j (~r ,~r ′), i, j = 1,s – the ESP Green functions given with (3)–(6). The expressions
(12a)–(12b) are valid for the observed points placed outside, ϕ1(~r), i.e. inside in-
homogenityϕs(~r).

After applying expressions (12a)–(12b) for determining potential at the con-
ductor surfaces, the SIE is formed, sinceϕ1

∼= U1, i.e. ϕs
∼= U2 at the electrodes 1

and 2 surfaces, respectively. WithU1 andU2 are denoted feeding voltages.

For numerical solving of obtained SIE the MoM is used. The conductor 1 is
divided inN segments of length△1 and conductor 2 inM segments having length
△2. Potential valuesϕ1 = U1, andϕs = U2 given by (12a)–(12b) are matched in
the points at the surface of conductor 1 and conductor 2, respectively. In this way
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Fig. 3. Illustration of grounding system formed by two wire electrodes placed
inside and outside inhomogenity.

N equations are formed having form

U1 =
N

∑
n=1

I1n

∆1

∫

∆1

G11(~rpm1,~r
′
1)dl1 +

M

∑
m=1

I2m

∆2

∫

∆2

G1s(~rpm1,~r
′
2)dl2, (13a)

andM equations of the following form

U2 =
N

∑
n=1

I1n

∆1

∫

∆1

Gs1(~rpm2,~r
′
1)dl1 +

M

∑
m=1

I2m

∆2

∫

∆2

Gss(~rpm2,~r
′
2)dl2, (13b)

where~rpm1 and~rpm2 are position vectors of points matched on the first, i.e. of the
second conductor, respectively, andI1n, n = 1,2, . . . ,N andI2m, m= 1,2, . . . ,M are
unknown leakage currents of then-th i.e. m-th segment. The last ones are obtained
as solutions of the system (13a)–(13b). The SIE is solved fortwo regimes, so-called
symmetric (U1 = U2 = Us = 1V) and asymmetric (U1 = −U2 = Ua = 1V) regime
of feeding ( [27]). Using the same procedure as in [27], afterdetermining “Y”
parameters, corresponding “Z” parameters of LGS can be obtained. “Y” and “Z”
parameters represent integral LGS characteristics. Its analysis provides reliable
estimation of the validity of the model and used methods, as well as estimation
of accuracy of numerically determined leakage current in the system. The total
leakage currents from conductors 1 and 2 areIs/a

g1 = ∑N
n=1 I1n andIs/a

g2 = ∑M
m=1 I2m,

respectively. Labels “s/a” denote solution for the currents corresponding to the
supplying potentialUs – symmetric, i.e.Ua – asymmetric. In the general case the
known following relations between electrodes voltage and their feeding currents
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are,

U1 = Z11Ig1 +Z12Ig2, (14a)

U2 = Z21Ig1 +Z22Ig2, (14b)

whereZ11 andZ22 are self-impedances of LGS–1 (conductor 1) and LGS–2 (con-
ductor 2), whileZ12 = Z21 are mutual-impedances between LGSs, i.e. electrodes 1
and 2. If conductors in Fig.3 form the unique LGS, substitutingU1 =U2 =Us = 1V
in (14), grounding impedance can be determined as

Zg = Rg + jXg =
1

(Is
g1 + Is

g2)
. (15)

3.2 The LGS formed by contour electrode and wire conductor

The procedure described in previous chapter can be applied for solving of the LGS
formed by wire electrode placed inside semi – conducting semi – spherical in-
homogenity (e.g. armature in concrete foundation) and contour circle conductor
placed outside inhomogenity, as shown in Fig.4. The ESP of this system can be
determined using expression (13a)–(13b). Integration in the first addenda of the ex-
pressions given with (13a)–(13b) is done along the contour electrode length. Wire
conductor and contour electrode are divided in theN andM segments and when
procedure completely analogue to the one described in 3.1 isapplied, the “Z” –
parameters of observed grounding system are also determined.

Fig. 4. Illustration of the tower grounding system modelledby wire conductor placed in
semi-spherical foundation and contour electrode feeding with isolated earthing conductor.
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4 Numerical Results

4.1 The LGS formed by two wire ground electrodes

The “Z” – parameters of the grounding system formed by two wire electrodes,
Fig.3, are determined applying procedure from 3.1.

(a) (b)

Fig. 5. Real parts of grounding impedanceZ11 and mutual impedanceZ12 = Z21 of the system shown
in Fig.3, versus angleθ1 for ratio ps = σ1/σs as parameter.

Fig. 6. Real part of the impedanceZg of the system from Fig.3,
versus ratiops = σ1/σs for angleθ1 as parameter.

Real parts of self – impedanceZ11 and mutual impedanceZ12 value of the
grounding system from Fig.3, versus angleθ1, for ratio ps = σ1/σs, are shown in
Fig.5. The parameter values arers = 1m, h = 0.7m, l1 = 2m, l2 = 0.9m, x0 =
1.5m, σ1 = 0.01S/m andεr1 = εr2 = 10. The circle cross-section radius of both
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conductors isr0 = 25mm, while procedure explained in 3.1 is applied forN = 10
andM = 10 segments.

If grounding system from Fig.3 is treated as unique electrode, its impedance
can be obtained from the expression (15). Real part of the total impedanceZg of
the system, versus ratiops = σ1/σs, for angleθ1 as parameter is shown in Fig.6.
System parameters arers = 1m, h = 0.7m, l1 = 2m, l2 = 0.9m, x0 = 1.5m, σ1 =
0.01S/m andεr1 = εr2 = 10. The circle cross – section radius of both conductors
is , while procedure explained in 3.1 is applied forN = 10 andM = 10 segments.

4.2 The LGS formed by contour electrode and wire conductor

TheZ – parameters of the grounding system formed by wire electrode placed inside
and contour electrode placed outside inhomogenity, as it isshown in Fig.4, are
determined applying procedure from 3.2.

(a) (b)

Fig. 7. Real parts of self-impedanceZ11 and mutual impedanceZ12 = Z21 of the system from Fig.4
versus depthh, for ratio ps = σ1/σs as parameter.

Real part of self – impedanceZ11 and mutual impedanceZ12 for the system in
Fig.3 versus depthh of buried contour conductor is shown in Fig.7. In this example
arers = 1m, rk = 2m, l2 = 0.9m, σ1 = 0.01S/m, εr1 = εr2 = 10 andθ2 = 0, while
ratio ps = σ1/σs is parameter. The radius of circle cross-section of wire conductor
is r0 = 25mm and equivalent radius of conductor strip used for contour electrode
is r i = 8.34mm. The procedure described in 3.2 is applied forN = 10 andM = 10
segments on wire conductor and contour electrode, respectively.
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5 Conclusion

The general method for determining influence of the semi – conducting semi –
spherical inhomogenity on grounding systems characteristics is proposed for ana-
lyzing and solving different types of the LGS. The analytical part of the presented
method is based on quasistationary image theories for plateand spherical semi –
conducting mirror. The solution of SIE formed in that way is leakage current dis-
tribution from the electrodes surface. After that, SIE for the ULCD is created and
numerically solved using Method of Moments. After that, allother parameters
(grounding impedance andZ – parameters) are determined using usual procedures.
The method has been already applied for the limit cases, as for the LGS in the pres-
ence of homogeneous and sectoral ground inhomogenity. The presented results
indicate the good validity of the method.

The grounding system formed by two wire straight conductorsor contour elec-
trode are observed as a two coupled LGSs. The influence of the semi-sphere electri-
cal parameters as well as system geometry on grounding characteristics is analyzed.

Using developed model of the LGS in the presence of semi – spherical semi
– conducting ground inhomogenity, characteristics of few practical problems can
be theoretically and numerically modeled. It is realized bysimple choice of the
semi – sphere and ground electrical parameters and illustrated geometry. Practical
problems of this kind are, for example:

• Arbitrary configuration for the grounding system where electrode is placed at
the coast or sunked in the semi – sphere which approximates pound or lake;

• Ferro concrete foundation grounding system of the pillar approximated with
semi – sphere with, or without especially placed electrodesin the foundation
surrounding.

• Ground electrode in the presence of ideal conducting semi-sphere (σs → ∞),
or in the presence of the semi – spherical cavity (σs = 0 andεs = ε0);

• In the limit case of geometry model forx0 − rs << rs, when rs → ∞, the
model can be used for solving problems of grounding systems in the inho-
mogenity of sectoral type ( [5,7]); etc.

Described methodology can be also applied on the problems ofsemi – spheri-
cal geometries on the flat ground surface, and supplying conductors can be in the
ground or in semi – sphere or in the air.
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Vrnjačka Banja, Yugoslavia, May 22-27, 1995, pp. R23–13/1–8.
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[22] N. N. Cvetković and P. D. Rančić, “The point ground electrode in vicinity of the semi-
spherical inhomogenity,”Serbian Journal of Electrical Engineering, vol. 2, no. 2, pp.
163–172, Nov. 2005.

[23] ——, “Influence of the semi-spherical pillar foundationon the electrical charachter-
istics of contour circular linear conductor,” inProc. 50th Conf. ETRAN06, vol. 2,
Belgrade, Serbia, June 6-8, 2006, pp. 251–254, (in Serbian).

[24] ——, “Single wire grounding electrode in the presence ofsemi-spherical inhomogen-
ity,” in Proc. Int. PhD Seminar Computational Electromagnetics andTechnical
Applications, Banja Luka, B&H, Aug. 28-Sept. 01, 2006, pp. 57–63. [Online].
Available: http://www.phd.etfbl.net/files/Works-PDF/Cvetkovic,20Nenad.pdf

[25] ——, “Influence of the semi-spherical semi-conducting ground inhomogenity on the
grounding characteristics,” inProc. VII International Symposium on Electromagnetic
Compatibility-EMC BARCELONA ’06, Sept. 05-09, 2006, pp. 918–923.
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