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Dediscretization of Distributions Arising in
Macroevolution Models
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Abstract: The standard birth-death process with intensities of moderate growth gen-
erates stationary skewed distributions suitable for modelling frequency distributions
of events arising in large-scale biomolecular systems.

We study a large class of such distributions that can be used to model, for instance,
frequency distributions of the number of expressed genes inthe transcriptome, the
number of protein domain occurrences in the proteomes, etc.

In the present paper a newdediscretizationapproach is suggested, discussed and
applied to the chosen class. This approach conserves thequalitativeproperties of the
original class of distributions.

The advantages of the approach consist in following:

1. It simplifies the form of distributions;

2. It allows simple mathematical analysis of the propertiesof the original class by
applying the tools mathematical analysis continuous functions

3. It allows to find out theoptimal form of stationary distributions, i.e. suggests new
classes of distributions for biomolecular applications.

The deviations of the dediscretized continuous distribution functions from the original
distribution functions is estimated.

Several typical examples are considered which illustrate the possibilities of the
dediscretization approach.

The reverse procedure todediscretization, i.e. the procedure ofdiscretization,
back to discrete distributions is described.
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1 Introduction

The mechanism of the dynamic of a large-scale biomolecular system often is ex-
plained with the help of standard birth-death process with various specific con-
straints on its intensities (coefficients). The stationarydistributions of the process,
which alwayshave a skew to the right, and may be used as frequency distributions
of different events taking place in large-scale biomolecular systems. Recently, a
huge class of such distributions withmoderategrowth of the intensities of the pro-
cess has been obtained [1]. Moreover, in [2] this class was verified to satisfy wlll
knownempirical factsin macroevolution of biomolecular systems. As a result of
this,under some very natural assumptions on the process’ intensities we extracted a
subclass, of regularly varyingdistributions. The last class includesall well known
and widely used distributions designed to model the empirical frequencydistribu-
tion of the number of different type of events arising in large-scale biomolecu-
lar systems, in particular, of the number of expressed genesin the transcriptome
and the number of protein domain occurrences in the proteomes (see, for informa-
tion, [3,4]).

1.1 The Description of the Class

In order to define the above mentioned class denote byΛ the class of regularly
varying with exponentα ∈ [1,+∞) (see, [5]) increasing sequences{δn}with δ0 = 1
satisfying following conditions:{δn} is

(a) downward convex, i.e. forn = 1,2, · · ·

δn−1+ δn+1 > 2δn,

(b) log-upward convex, i.e. forn = 1,2, · · ·

δ 2
n > δn−1 ·δn+1.

The assumptions (a) and (b) on convexity are necessary to have an analyzable
class that satisfies empirical facts in [6].

A SpecialclassΛ0 includes increasing sequences{δn} of the type

δn = 1+
n
A

(1+o(1)), n→ +∞, A∈ R+ = (0,+∞). (1.1)

In other words, (1.1) means that

δn = n·L(n)+1, n = 0,1,2, · · · ,
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where{L(n)} is aslowly varyingsequence satisfying condition

lim
n→+∞

L(n) = A−1.

The case of sequences of type (1.1) witho(1) = 0 in (1.1) orL(n) = A−1, n =
0,1,2, · · · , is called thelinear case.

Now, if {δn} ∈ Λ, then the following limit exists (see, [2])

lim
n→+∞

n
δn

= 0, (1.2)

and then under (1.2) two possibilities exist. Either

∑
n≥1

1
δn

= +∞ (then, denoteδn = δ−
n , n = 1,2, · · · ), (1.3)

or

∑
n≥1

1
δn

< +∞ (then, denoteδn = δ+
n , n = 1,2, · · · ). (1.4)

Let the classesΛ+ andΛ− be formed by sequences{δ+
n } and{δ−

n }, respec-
tively. Then,

Λ = Λ+ ∪Λ− andΛ+ ∩Λ− = ø.

For thelinear case we have (1.3) but the condition (1.2) does not hold.

By introducing a sequence{εn} ∈ Λ∪Λ0 asymptotically equivalentto {δn} ,
i.e.

lim
n→+∞

εn

δn
= 1, (1.5)

we are able to write down the distributions in thecenterof our attention in the
present paper.

Any {δ−
n } from Λ−, or from Λ0 together with{εn} (see, (1.5)) generates a

family of distributions{p−n } of the type







p−0 = (1+(1−b) ∑
n≥1

1
εn

n−1
∏

m=1
(1−

b

δ−
m

))−1, 0 < b < 1,

p−K =
p−0 · (1−b)

εK

K−1
∏

m=1
(1−

b

δ−
m

), K = 1,2, · · ·

(1.6)

where∏0
m=1 = 1. In this case, the probabilityp−0 has a simple expression [6],
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p−0 =
b

1−b
D, (1.7)

where

D = ∑
k≥1

εk

δ−
k

p−k , ∈ R+,

and, in particular, when{εn} = {δ−
n }, we haveD = 1 and

p0 =
b

1−b
. (1.8)

Any {δ+
n } ∈ Λ+ together with{εn} ∈ Λ+ (see, (1.5)) generates afamily of

distributions of the type







p+
0 = (1+(1+b) ∑

n≥1

1
εn

n−1
∏

m=1
(1+

b

δ+
m

))−1, −1 < b < +∞,

p+
K =

p−0 · (1+b)

εK

K−1
∏

m=1
(1+

b

δ+
m

), K = 1,2, · · · .

(1.9)

Distributions{p+
n } and{p−n } vary regularlywith some exponent(−ρ), where

ρ ∈ [1,+∞).

Remark 1.Let us consider the standard birth-death process with intensitiesλn and
µn+1, n = 1,2, · · · (see, [1]).

The distributions{p−n } and{p+
n } may be interpreted as stationary distributions

of the standard birth-death process with intensities

λ0 = 1−b, λn = εn · (1+
b

δ−
n

), µn = εn, n = 1,2, · · · ,

or

λ0 = 1+b, λn = εn · (1−
b

δ+
n

), µn = εn, n = 1,2, · · · ,

respectively.

1.2 Particular Cases

The first particular case has been introduced and thoroughlyinvestigated in [6].
The case is the following: forn = 1,2, · · ·

εn = δ−
n in (1.6) and εn = δ+

n in (1.9). (1.10)
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The second particular case is given by equalities: forn = 1,2, · · ·

1
εn

= −
1
b

ln(1−
b

δ−
n

) in (1.6), (1.11)

and

1
εn

= −
1
b

ln(1+
b

δ+
n

) in (1.9). (1.12)

The third particular case is given by equalities: forn = 1,2, · · ·






p−0 = (1+(1−b) ∑
n≥1

1

δ−
n

exp{−b·
n−1
∑

m=1

1

δ−
m
})−1 0 < b < 1.

p−k =
p−0 · (1−b)

δ−
k

exp{−b·
k−1
∑

m=1

1

δ−
m
}, k = 1,2, · · · ,

(1.13)







p+
0 = (1+(1+b) ∑

n≥1

1
δ+

n
exp{b·

n−1
∑

m=1

1
δ+

m
})−1, −1 < b < +∞.

p+
k =

p+
0 · (1+b)

δ+
k

exp{b·
k−1
∑

m=1

1
δ+

m
}, k = 1,2, · · · ,

(1.14)

To see the reasons behing these forms note that in order to obtain (1.13) and
(1.14), we represent

n−1

∏
m=1

(1−
b

δ−
m

) = exp

{
n−1

∑
m=1

ln(1−
b

δ−
m

)

}

and (1.15)
n−1

∏
m=1

(1+
b

δ+
m

) = exp

{
n−1

∑
m=1

ln(1+
b

δ+
m

)

}

in (1.6) and (1.9), respectively.
The reasons for the case (1.11)-(1.12) are clear.
Next, using the expansion

ln(1−x) = − ∑
n≥1

xn

n
, x∈ R1 = (−1,+1), (1.16)

the third case is obtained as follows. We take the first terms at the right-hand-sides
of equalities in (1.15) (see, (1.16)) and substitute them into the right-hand-side of
(1.6) and (1.9).

By the L’Hopital rule

lim
x→0

± ln(1±x)
x

= 1, (1.17)
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so, in the second case the condition (1.5) is fulfilled.
Similarly, the third particular case may be obtained from the second one if we

replace the sequences

{

−
1
b

ln(1−
b

δ−
n

)

}

and

{

−
1
b

ln(1+
b

δ+
n

)

}

by the asymptotically equivalent sequences

1

δ−
n

and
1

δ+
n

,

respectively. Then, due to (1.17), the condition (1.5) holds.
In the nextSectiona newdediscretizationapproach is discussed and applied to

the above classes of distributions.

2 The Dediscretization Approach

The method boils down to replacing the sums in (1.6) and (1.9)(we represent∏an

by exp∑n lnan) by integrals and it will not change thequalitativebehavior of dis-
tribution.

This operation simplifies many formulas and allows to derivenewdistributions
with thesamequalitative properties as before for biomolecular applications.

We call this approach aDediscretization Method.

2.1 Dediscretization

Given some class of distributions{pn}.

What does, in general, the dediscretization mean f or{pn}?

By our understanding elaborated below, this is some procedure on a class of
distributions leading to aconcreteconstruction of corresponding and in some sense
”close” class of ”smooth enough” (for instance, infinite differentiable)distribution
functions.

The constructed class of distribution functions has to satisfy definite restric-
tions.

Necessarily, it must conserve the mainqualitative properties of distributions
of the original class such as: monotonity; convexity; moments’ existence; regular
variation with the same exponent, etc.
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What is the reason f or dediscretization?

Sometimes the dediscretization leads to more simple expressions for distribu-
tion functions from the obtained class in comparison with the original class.

The next advantage presentedalways consists in following. Infinite differ-
entiability, monotonity, convexity, etc., allow to usedeeplydeveloped and well-
understoodtoolsof mathematical analysis.

Finally, it is more convenient to deal with continuous functions and suggest
interpolations and approximations for them.

The furtherdiscretization(the reverse procedure) does not necessarily produce
the original discrete distribution but a ”close” one that may again be useful for
applications.

2.2 The First Problem

In Dediscretization the following problemarises. We must replace the regularly
varying sequences{δn} and {εn} by regularly varying functionsδ (t) and ε(t),
respectively. In other words, due to representations

δ±
n = 1+nαL±(n), n = 0,1,2, · · · , (2.1)

and

εn = 1+nαL(n), n = 0,1,2, · · · , (2.2)

where
lim

n→+∞
(L±(n)/L(n)) = 1,

α ∈ [1,+∞), {L±(n)}, and{L(n)} are slowly varying sequences, we must replace
the sequences{L±(n)} and {L(n)} by slowly varying functionsL̂±(t) and L̂(t),
respectively, in order to get, at least, continuous analogsof (2.1) and (2.2):

δ±(t) = 1+ tα L̂±(t) and ε(t) = 1+ tα L̂(t), t ∈ R+. (2.3)

In typical existing cases:
either

lim
n→+∞

L+(n) = c∈ R+, (2.4)

or

lim
n→+∞

L±(n) = +∞, (2.5)
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where

{L±(n)} increases and is upward convex (see, [6]). (2.6)

The ”breadth” of the classΛ is ”so large” and the frequency distributions in
biomolecular systems posses so many ”smoothness” properties that the ”restrict-
ing” Λ by additional assumptions (2.4)-(2.6) is quite natural andreasonable.

Theproblemis the same for{δ±
n } and{εn}, so, let us consider it for{εn}.

The functionL̂(t) has to be built in aconstructiveway and to satisfy following
restrictions (if possible):

1. L̂(n) = L(n), n = 1,2, · · · ;

2. limn→+∞(L̂(n)/L(n)) = 1;

3. L̂(t) is infinite differentiable;

4. L̂(t) increases (decreases) if{L(n)} increases (decreases);

5. L̂(t) is convex if{L(n)} is convex

etc.

It is enough to solve theproblemfor the case limn→+∞ L(n) = +∞. Indeed, if
limn→+∞ L(n) = c∈R+, then we take a sequence{L(n) · ln(n+1)}, which is slowly
varying and satisfies condition limn→+∞ L(n) ln(n+ 1) = +∞. It reduces this case
to the previous one.

If lim n→+∞ L(n) = 0, then we take the sequence{1/L(n)}.

2.3 The solution of the problem

The functionL̂ may be constructed in various ways. If the form of{L(n)} is known
and given by an elementary formula, replacing the discrete argumentn by the con-
tinuous argumentt ∈ R+ we obtain a function̂L(t) defined onR+, which very often
hasall properties we need.

Let us giveexamples. Denote

e(0) = 1, e(1) = e= lim
n→+∞

(1+
1
n
)n, e(K+1) = exp(e(K)), K = 1,2, · · · .

For any givenK = 1,2, · · · introduce the sequences
{

L(1)
K (n)

}

and
{

L(2)
K (n)

}

defined by following elementary formulas and satisfying restrictions (2.5)-(2.6):

L(1)
K (n) =

K

∏
j=1

ln ln · · · ln
︸ ︷︷ ︸

j

n
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and
L(2)

K (n) = L(1)
K (n) · ln ln · · · ln

︸ ︷︷ ︸

K

n for integersn > e(K).

These sequences when suitably defined forn = 0,1, · · · [e(K)]] vary slowly. It
can be seen by induction onK using the following two obvious facts:

1. If {L1} and{L2} vary slowly, then{L1 ·L2} vary slowly;

2. If {L(n)} vary slowly and limn→+∞ L(n) = +∞, then{lnL(n)} vary slowly.
Indeed,

lim
n→+∞

lnL(sn)
lnL(n)

= lim
n→+∞

{

1+
1

lnL(n)
ln

L(sn)
L(n)

}

= 1 for s= 2,3, · · · .

Then, for K = 1,2, · · · ; n > e(K); i = 1,2 the positive numbersδ (i)
n,K = 1+

nL(i)
K (n) (compare to (2.1)) form for anyK sequences

{

δ (i)
n,K

}

of type (1.3) ifi = 1

and of type (1.4) ifi = 2.
Therefore we get the form (2.3) by putting

L̂(1)
K (t) =

K

∏
j=1

ln ln · · · ln
︸ ︷︷ ︸

j

t

and
L̂(2)

K (t) = L̂(1)
K (t) ln ln · · · ln

︸ ︷︷ ︸

K

t for K = 1,2, · · ·

andt ∈ [e(K),+∞).

These functions when suitably defined fort ∈ (0,e(K)) vary slowlyand increase.
Moreover, they areupward convex. Indeed, the multiplication of increasing, up-
ward convex functions leads to increasing, upward convex function.

It is easily verify that the restrictions 1-5. for these functions are fulfilled.
In general, we have the followinginterpolationtheorem

Theorem 1. There is a slowly varying function̂L(t) satisfying restrictions 1-5.

Proof.If the form of {L(n)} is not given by elementary formula which itself leads
to desired interpolation, then we proceed as follows. For the sequence{L(n)} draw
a piecewise linear curve passing through points(0,L(0)),(1,L(1)),(2,L(2)), · · · on
the plane. This ”broken” line, sayL0(t), satisfies conditionsL0(n) = L(n),n =
0,1,2, · · · .

We say thatL0(t) is a linear continuous analog of the sequence{L(n)}.
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For anyt ∈ R+ andn = 1,2, · · · , due to monotonicity ofL0 we have

L(nK)

L(K +1)
=

L0(n· [t])
L0([t]+1)

≤
L0(nt)
L0(t)

≤
L0(n[t]+1)

L0([t])

=
L(nK+n)

L(K)
=

L(nK+n)

L(K)
=

L(nK′)

L(K′ +1)
, K = K′−1 = [t],

where[t] denotes the entire part of the positive numbert.
Taking into account that forn = 2,3, · · ·

lim
K→+∞

L(Kn)
L(K)

= 1 and, as a result of this, lim
K→+∞

L(K +1)

L(K)
= 1,

we conclude that

lim
t→+∞

L0(xt)
L0(t)

= 1 (2.7)

for x = n with n = 1,2, · · · . Puttingt = (t ′/m) with m= 1,2, · · · we get (2.7) for
x= m−1 with m= 1,2, · · · . Combining these two cases we conclude that (2.7) holds
for x = m

n with m= 1,2, · · · andn = 1,2, · · · , i.e. for all positiverational numbers
x. The set of such numbers iseverywhere densein R+. Therefore, byLemma
1, p.275 [7], we see that thecontinuous analog L0(t) of {L(n)} varies slowly. By
generalization of Adamovic Interpolation Theorem on slowly varying function with
condition limt→+∞ L0(t) = +∞, there is aconstructivemethod of building of an
increasing, convex, infinite differentiable, slowly varying functionL̂(t) satisfying
restrictions:

L̂(n) = L0(n), n = 1,2, · · · and lim
t→+∞

(L̂(t)/L0(t)) = 1 (see, [8])

For this function, as we see, conditions 1-5 are fulfilled.

2.4 The procedure

Denote

f±b (x) = ln(1±
b

δ±(x)
), x∈ R+,

whereδ±(x) is the above describedinterpolationof a given sequence{δ±
n } ∈ Λ±,

which together withinterpolationε(x) of a sequence{εn} generate one-parametric
familyof distributions{p±n }= {p±n (b)} of types (1.6) and (1.9) with 0< b< 1 and
condition (1.3) for sign ”-” and with−1< b< +∞ and condition (1.4) for sign ”+”.
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Definition 1. We say that the function

F̂±(x,b)
de f.
=

x∫

0−

1
ε(t)

exp

{
t∫

0−
f±b (u)du

}

dt

+∞∫

0−

1
ε(t)

exp

{
t∫

0−
f±ε (u)du

}

dt
(2.8)

defined on[0,+∞) is a dediscretization of distribution{p±n (b)} generated by
({εn} ,{δ±

n }).

The reasons behind the formsF̂+(x,b) andF̂−(x,b) are elaborated below.

For a given sequence{δ−
n ∈ Λ−} denotef−n = f−n (b) = ln(1− b

δ−
n

), n = 0,1,2,

· · · , 0 < b < 1. The distribution function F−(x) = F−(x,b),x ∈ [0,+∞), which
corresponds to distribution{p−n (b)} generated by({εn} ,{δ−

n }), takes the form

F−(x) = F−(+0) ·
[x]

∑
n=0

exp

{
n−1

∑
m=0

f−m

}

, (2.9)

where 0< b < 1 and∑−1
m=0 = 0,ε0 = 1. Indeed, putting∏0

m=1 = 1,∑0
m=1 = 0, due

to (1.6), forx∈ R and 0< b < 1 we have

F−(x) = p−0 ·

{

1+(1−b)
[x]

∑
n=1

1
εn

n−1

∑
m=1

(1−
b

δ−
m

)

}

= F−(0)

{

1+(1−b)
[x]

∑
n=1

1
εn

exp(
n−1

∑
m=1

f−m )

}

= F−(+0)

{

1
ε0

exp(
−1

∑
m=0

f−m )+
[x]

∑
n=1

1
εn

exp( f−0 )exp(
n−1

∑
m=1

f−m )

}

= F−(+0)
[x]

∑
n=0

1
εn

exp(
n−1

∑
m=0

f−m ).

By (2.9), forx∈R+ a functiong−b (x)
de f.
= (F−(x)/F−(+0)), 0< b< 1,g−b (−0)=

0, represents afinite, positive, discretemeasure, and takes the form

g−b (x) = F+(+0)
[x]

∑
n=0

1
εn

exp

{
n−1

∑
m=0

f−m

}

. (2.10)
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Similarly, thedistribution function F+(x) = F+(x,b),x∈ [0,+∞), which corre-
sponds to distribution{p+

n (b)} generated by({εn} ,{δ+
n }), takes the form

F+(x) = F+(+0)
[x]

∑
n=0

1
εn

exp

{
n−1

∑
m=0

f +
m

}

(2.11)

(F+ andF− have jumpsp+
0 andp−0 at zero), wheref +

n = f +
n (b) = ln(1+ b

δ+
n

), n =
0,1,2, · · · ,−1 < b < +∞, and

g+
b (x) = (F+(x)/F+(+0)) =

[x]

∑
n=0

1
εn

exp

{
n−1

∑
m=0

f +
m

}

, g+
b (−0) = 0, (2.12)

is afinite, positive, discretemeasure.

The form (2.10) and (2.12) ofg−b andg+
b is suitablefor dediscretizationproce-

dure. Namely, measures

ĝ±(x) =

∫ x

0−

1
ε(t)

exp

{∫ t

0−
f±b (u)du

}

dt

with 0 < b < 1 for sign ”-” and−1 < b < +∞ for sign ”+”, absolutely continuous
on R+, afternormalizationgive F̂+ andF̂−.

2.5 Justification

The justification ofdediscretizationprocedure is based on

Theorem 2. F̂+(x,b) andF̂−(x,b) are distribution functions.

Proof.Due to (2.8), we have to prove

0 < g±b (+∞) < +∞, (2.13)

where the first inequality is obvious.
The cases: (a) with sign ”+” and (b) with sign ”-” are considered separately.
By (1.5) and limit equality limn→+∞(δ±

n+1/δ±
n ) = 1 for ε ∈ (0,1) starting from

some indexn0 simultaneously

1− ε
δ±

n
<

1
εn

<
1+ ε
δ±

n
and

1− ε
δ±

n+1

<
1

δ±
n

<
1+ ε
δ±

n+1

for n = n0,n0 +1, · · · (2.14)

(a) Here there is a simple subcaseb= 0 : F̂+(x,0)= (
∫ x

0
dt

ε(t))/(
∫ +∞

0
dt

ε(t)), x∈ [0,+∞).
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By (1.4) and (2.14),

0 <

∫ +∞

n0

dt
ε(t)

= ∑
n≥n0

∫ n+1

n

dt
ε(t)

< ∑
n≥n0

1
εn

< (1+ ε) · ∑
n≥n0

1

δ+
n

< +∞.

Thus,g+
0 (+∞) < +∞.

If −1 < b < 0, theng+
b (+∞) < g+

0 (+∞) < +∞.
Let 0< b < +∞. In accordance with the inequalities (2.14) and

b
δ+(t)

≤ ln(1+
b

δ+(t)
) = f +

b (t), t ∈ [0,+∞),

we have

ĝ+
b (+∞)− ĝ+

b (n0)= ∑
n≥n0

∫ n+1

n

1
ε+(t)

exp

{∫ t

0−
f +
b (u)du

}

dt

< ∑
n≥n0

1+ ε
δ+

n

∫ n+1

n
exp

{∫ t

0−
f +
b (u)du

}

dt

< (1+ ε)2 · ∑
n≥n0

1
δ+

n+1

∫ n+1

n
exp

{∫ t

0−
f +
b (u)du

}

dt

< (1+ ε)2 · ∑
n≥n0

∫ n+1

n

1
δ+(t)

exp

{∫ t

0−
f +
b (u)du

}

dt

<
(1+ ε)2

b

∫ +∞

n
f +
b (t)exp

{∫ t

0−
f +
b (u)du

}

dt

=
(1+ ε)2

b
(exp(

∫ +∞

0−
f +
b (u)du)−exp(

∫ n0

0−
f +
b (u)du)).

(2.15)

By L’Hopital rule

lim
x→+∞

+∞∫

x
f +
b (u)du

a·
+∞∫

x

du
δ+(u)

= lim
x→+∞

f +
b (x)
a

δ+(x)

= 1.

But, by (1.4),

0≤

∫ +∞

0−

du
δ+(u)

= ∑
n≥0

∫ n+1

n

du
δ+(u)

< 1+ ∑
n≥1

1

δ+
n

< +∞.

Therefore,
∫ +∞

0−
f +
b (u)du < +∞, (2.16)



132 J. Astola and E. Danielian:

and, due to (2.15), (2.13) holds in this case.
(b) In accordance with the inequalities (2.14) and

f−b (t) ≤−
b

δ−(t)
+

1
2
(

b
δ−(t)

)2, 0 < b < 1, t ∈ [0,+∞),

we have similarly to (2.15)

ĝ−b (+∞)− ĝ−b (n0) < (1+ ε)2 · ∑
n≥n0

n+1∫

n

1
δ−(t)

exp







t∫

0−

f−b (u)du






dt

< (1+ ε)2 ·c(b) ·

+∞∫

n0

1
δ−(t)

exp(−b·

t∫

0−

du
δ−(u)

)dt (2.17)

=
(1+ ε)2 ·c(b)

b
(−exp(−

+∞∫

0−

du
δ−(u)

)+exp(−

n0∫

0−

du
δ−(u)

)),

where

c(b) = exp(
b2

2

+∞∫

0−

du
(δ−(u))2 ). (2.18)

Taking into account that for any{δ−
n } ∈ Λ−, due toδ−

0 = 1 and{δ−
n } is down-

ward convex with limn→+∞(n/δ−
n ) = 0, we have

1

δ−
n

<
1
n
, n = 1,2, · · · . (2.19)

Now, with the help of (1.3) and (2.19) we obtain

∫ +∞

0−

du
δ−(u)

= ∑
n≥0

∫ n+1

n

du
δ−(u)

> ∑
n≥1

1

δ−
n

= +∞,

0≤
∫ +∞

0−

du
(δ−(u))2 = ∑

n≥0

∫ n+1

n

du
(δ−(u))2 < ∑

n≥1

1

(δ−
n )2

< ∑
n≥1

1
n2 < +∞.

(2.20)

Therefore, from (2.17)-(2.18) we conclude that (2.13) holds in this case too.
Theorem 2is proved.

Now, we may say that̂F±(x,b) is strictly increasing. InSection 4the properties
of distribution functionsF̂+ and F̂− are investigated. In the nextSectionsome
typical examples are considered.
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3 Typical Examples

The structure of stochastic birth-death process is comparatively complicated from
the point of view of computations stationary distributions. This structure automat-
ically transforms also ondediscretization. Thus, if we change nothing besides in
some sense replace the discrete argument by a continuous one, then we can not
expect to get anyessentialsimplification in the formin general. However, there
are possibilities to apply thetoolsof mathematical analysis (no only for proofs of
statements, but also in order to get simplifications in particular cases).

In the presentSectionwe consider sometypical examples of distributions{pn}
of forms (1.6) and (1.9), respectively.

3.1 On distributions {pn}

It is possible to write the distributions{pn} in one unified symmetric form, which
depends on two parametersp andq satisfying condition







0 < p < q < +∞ if ∑
n≥1

1
ζn

= +∞,

0 < p < +∞,0 < q < +∞ if ∑
n≥1

1
ζn

< +∞.
(3.1)

The form uses sequences{ζn} and{λn} instead of{δn} and{εn}, respectively,
where

1
q

ζn = δn−1,
1
q

λn = εn−1, n = 0,1,2, · · · . (3.2)

Distributions{pn} take the form






p0 =
(

1+ p· ∑
n≥1

1
q+ λn

n−1
∏

m=1

p+ ζm

q+ ζm

)−1
,

pK =
p· p0

q+ λK
·

K−1
∏

m=1

p+ ζm

q+ ζm
,K = 1,2, · · · .

(3.3)

The corresponding distribution function is

Fp,q(x) = Fp,q(+0) ·
[x]

∑
n=0

1
q+ λn

exp

{
n−1

∑
m=0

ln
p+ ζm

q+ ζm

}

, x∈ [0,+∞);

thedediscretizationof distribution functionFp,q(x) is

F̂p,q(x) = c(p,q)

∫ x

0−

1
q+ λ (t)

exp

{∫ t

0−
ln(

p+ ζ (u)

q+ ζ (u)
)du

}

dt (3.4)
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with normalizationfactor

c(p,q) = (

∫ +∞

0−

1
q+ λ (t)

exp

{∫ t

0−
ln(

p+ ζ (u)

q+ ζ (u)
)du

}

dt)−1.

Here
1
q

ζ (t) = δ (t)−1,
1
q

λ (t) = ε(t)−1, t ∈ [0,+∞),

whereδ (t) andε(t) are already obtained interpolations of{δn} and{εn}, respec-
tively.

The form (3.3) with restrictions (3.1) of distributions{pn} is chosen because
exactly this form foretalon linear caseλn = ζn = n implies thetraditional form of
a family of Waring Distributions(WD)







p0 =
(

1+ p· ∑
n≥1

1
q+n

n−1
∏

m=1

p+m
q+m

)−1
, 0 < p < q < +∞,

pK =
p· p0

q+K

K
∏

m=1

p+m
q+m

, K = 1,2, . . .

(3.5)

3.2 Typical examples

Denote

f (t) = ln(
p+ ζ (t)
q+ ζ (t)

), t ∈ [0,+∞).

Then, fort ∈ [0,+∞) we have

t∫

0−

f (x)dx = t · f (t)−

t∫

0−

xd f (x)

=t · ln(
p+ ζ (t)
q+ ζ (t)

)−

t∫

0−

xd{ln(p+ ζ (t))− ln(q+ ζ (t))}

=t · ln(p+ ζ (t))− t ln(q+ ζ (t))−

t∫

0−

x·ζ ′(x)dx
p+ ζ (x)

+

t∫

0−

x·ζ ′(x)dx
q+ ζ (x)

.

(3.6)

If there is a simple relationship betweenζ (x) andζ ′(x), then integrals in (3.6)
can be evaluated, and in (3.4) we may get rid of the inner integral. The two typical
examples considered below are based on thisidea.
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1. Let us considerlinear {ζn}: ζn = n,n = 0,1,2, . . .. For this case we get two-
parametricfamily of WD (3.5). By (3.6), takingζ (t) = t, t ∈ [0,+∞), we obtain

∫ t

0−
f (x)dx = t · ln(p+ t)− t ln(q+ t)−

∫ t

0−

xdx
p+x

−
∫ t

0−

xdx
q+x

= (t + p) ln(t + p)− (q+ t) ln(q+ t)− pln p+qlnq

= ln(
(p+ t)p+t

(q+ t)q+t ·
qq

pp).

(3.7)

Substituting the last expression into (3.4) we have

F̂p,q(x) = c(p,q) ·
∫ x

0−

1
q+ λ (t)

·exp

{

ln(
(p+ t)p+t

(q+ t)q+t
·

qq

pp
)

}

dt

= ĉ(p,q) ·
∫ x

0−

(p+ t)p+t

(q+ t)q+t ·
1

q+ λ (t)
dt, x∈ [0,+∞),

(3.8)

where thenormalizationfactor takes the form

ĉ(p,q) = (

∫ +∞

0−

(p+ t)p+t

(q+ t)q+t ·
1

q+ λ (t)
dt)−1.

Note that the limit exists (the asymptotical equivalency ofλ (t) andt)

lim
t→+∞

λ (t)
t

= 1. (3.9)

Let us present twocorollariesof the obtained result (3.8).
First of all, from (3.8) we are able to figure out the tail’s asymptotic

1− F̂p,q(x) = ĉ(p,q) ·
∫ ∞

x

(p+ t)p+t

(q+ t)q+t

dt
q+ λ (t)

= ĉ(p,q) ·
∫ ∞

x

(p+ t)p

(q+ t)q

(1+(p/t))t

(1+(q/t))t

dt
q+ λ (t)

≈ ĉ(p,q)e−(q−p) ·
∫ ∞

x

(p+ t)p

(q+ t)q

dt
q+ λ (t)

≈ ĉ(p,q)e−(q−p) ·
∫ ∞

x
t−(q+1−p)dt

= ĉ(p,q)e−(q−p) 1
q− p

x−(q−p), x→ +∞.

It means that the tail 1− F̂p,q(x), x ∈ [0,+∞) (F̂p,q(−x) = 0) of distribution
function F̂p,q varies regularlywith exponent(−(q− p)) and in representation

1− F̂p,q(x) = x−(q−p) ·L(x), x∈ R+,
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of the tail theslowly varyingfunctionL(x) satisfies condition

lim
x→+∞

L(x) = ĉ(p,q)e−q−p) ·
1

q− p
.

Secondly, the evaluations carry to the end forasymptotically linearλ (t) (see,
(3.9)) of aspecialform

λ (t) =
p−q

ln( p+t
q+t )

−q, t ∈ [0,+∞). (3.10)

Let us show that the form (3.10) indeed presents an asymptotically linearλ (t).
Due to L’Hopital rule,

lim
t→+∞

ln(1−
q− p
q+ t

)

−
q− p
q+ t

= 1.

Therefore, from (3.10) we have

λ (t) =
p−q

ln(1−
q− p
q+ t

)
−q≈

p−q

−
q− p
q+ t

−q = t, t → +∞.

Thus, (3.10) represents asymptotically linear (etalon)λ (t).

Substituting (3.10) into (3.4) withζ (t) = t, t ∈ [0,+∞), we obtain

F̂p,q(x) =
c(p,q)

q− p

∫ x

0−
| ln(

p+ t
q+ t

)|exp

{

−
∫ t

0−
| ln(

p+u
q+u

)|du

}

dt =

=
c(p,q)

q− p
(1−exp

{

−
∫ x

0−
| ln(

p+u
q+u

)|du

}

), (3.11)

where we took into account that

ln(
p+u
q+u

) = −| ln(
p+u
q+u

)| for 0 < p < q < +∞ andu∈ R+.

Evaluations may be carried out with the help of (3.7). By (3.7),

∫ +∞

0−
| ln(

p+u
q+u

)|du = +∞, so, in (3.11) we have
c(p,q)

q− p
= 1.
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It means that (3.11) may be rewritten in the form (see, (3.7))

F̂p,q(x) = 1−exp

{

ln(
(p+ t)p+t

(q+ t)q+t

qq

pp)

}

= 1−
qq

pp ·
(p+x)p+x

(q+x)q+x . (3.12)

The expression at the right-hand-side of (3.12) gives for the tail’s asymptotic the
final result. In this case the slowly varying function in representation of 1− F̂p,q(x)
asx→ +∞ tends to the following constant

lim
x→+∞

qq

pp x(q−p) ·
(p+x)p+x

(q+x)q+x =
qq

pp lim
x→+∞

(1+(p/x))x+p

(1+(q/x))x+q =
qq

pp ·e
−(q−p).

The appliedidea: to choose an asymptotically equivalent toζ (t) functionλ (t)
which allows to evaluate arising integrals is veryfruitful in order to find the most
simple stationary distributions generated by the birth-death process with conserv-
ing thequalitativeproperties of distributions.

2. Forpowerform of {ζn}, i.e. ζn = nα ,n = 0,1,2, . . . ,1 < α < +∞, the first
ideadoes not work. By (3.6), takingζ (t) = tα , t ∈ [0,+∞), we proceed

0 <

t∫

0−

f (x)dx = t · ln(p+ tα)− t · ln(q+ tα)−α
t∫

0−

xαdx
p+xα + α

t∫

0−

xα dx
q+xα

= ln((
p+ tα

q+ tα )t)+ α p

t∫

0−

dx
p+xα −αq

t∫

0−

dx
q+xα < +∞.

(3.13)

The last inequality is clear because the integrals at the right-hand-side of (3.13)
converge ast → +∞ and are finite for finitet ∈ R+.

Substituting the last expression into (3.4) we find out a distribution function

F̂p,q(x) = ĉ(p,q)

x∫

0−

(
p+ tα

q+ tα )t 1
q+ λ (t)

exp






α p

t∫

0−

dx
p+xα −αq

t∫

0−

dx
q+xα






dt,(3.14)

0≤ x < +∞,

with the correspondingnormalizationfactor ĉ(p,q).
Note that the limit exists (the asymptotical equivalency ofλ (t) andtα )

lim
t→+∞

λ (t)
tα = 1. (3.15)

Let us present twocorollariesof formula (3.14).



138 J. Astola and E. Danielian:

¿From (3.14) we may figure out the tail’s asymptotic. Denote

Iα(z) = α ·z·
∫ ∞

0−

dx
z+xα , 1 < α < +∞, 0 < z< +∞.

We have

1− F̂p,q(x) = ĉ(p,q)

+∞∫

x

(
p+ tα

q+ tα )t 1
q+ λ (t)

exp






α p

t∫

0−

dx
p+xα −αq

t∫

0−

dx
q+xα






dt

≈ ĉ(p,q)eIα (p)−Iα(q)

∞∫

x

(1+(p/tα))t

(1+(q/tα ))t

1
q+ λ (t)

dt

≈ ĉ(p,q)eIα (p)−Iα(q)

∞∫

x

dt
q+ λ (t)

≈ ĉ(p,q)eIα (p)−Iα(q)

∞∫

x

dt
q+ tα

= ĉ(p,q)eIα (p)−Iα(q) 1
α −1

(x+q)−(α−1),

≈ ĉ(p,q)eIα (t)−Iα(q)
1

α −1
1

xα−1 , x→ +∞.

It means that the tail 1− F̂p,q(x),x ∈ R+ of distribution functionF̂p,q varies
regularly with exponent(−(α −1)) and in representation

1− F̂p,q(x) = x−(α−1)L1(x), x∈ R+

of the tail theslowly varyingfunctionL1(x) satisfies condition

lim
x→+∞

L1(x) = ĉ(p,q)eIα (p)−Iα(q) 1
α −1

.

The secondideabeing used for etalon linear case works in the present case.
Indeed, let

λ (t) =
p−q

ln
( p+ tα

q+ tα

)
−q, t ∈ [0,+∞). (3.16)

Due to L’Hopital rule,

lim
t→+∞

ln
(
1−

p−q
q+ tα

)

−
q− p
q+ tα

= 1.
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Therefore, similarly to the etalon linear caseλ (t) ≈ tα , t → +∞, so, (3.15)
holds.

Substituting (3.16) into (3.4) withζ (t) = tα ,1 < α < +∞, t ∈ [0,+∞), we ob-
tain

F̂p,q(x) =
c(p,q)

p−q

∫ x

0−
ln(

p+ tα

q+ tα )exp

{∫ x

0−
ln(

p+uα

q+uα )du

}

dt

=
c(p,q)

p−q
(exp

{∫ x

0−
ln(

p+uα

q+uα )du

}

−1), x∈ [0,+∞).

(3.17)

Note thatc(p,q)
p−q is positiveif 0 < q< p< +∞ and isnegativeif 0 < p< q< +∞.

By (3.13), the integral

∫ x

0−
ln(

p+ tα

q+ tα )dt =x·
{

ln(1+
p

xα )− ln(1+
q
xα )

}

+ α p·
∫ x

0−

dt
p+ tα −αq·

∫ x

0−

dt
q+ tα

(3.18)

is positiveif 0 < q < p < +∞ and isnegativeif 0 < p < q < +∞. Since

lim
x→+∞

x·
{

ln(1+
p

xα )− ln(1+
q
xα )

}

= 0,

therefore,
∫ ∞

0−
ln(

p+ tα

q+ tα )dt = Iα(p)− Iα(q).

It means that

c(p,q)

p−q
(exp

{∫ +∞

0−
ln(

p+uα

q+uα )du

}

−1) = F̂p,q(+∞) = 1,

and, as a result of this,

c(p,q)

p−q
= (exp{Iα(p)− Iα(q)}−1)−1.

Finally, note that in casep = q, even in general situation, from (3.4) we come
to the following formula

F̂p,q(x) =

x∫

0−

dt
q+ λ (t)

∞∫

0−

dt
q+ λ (t)

, x∈ [0,+∞).
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4 On the Class of Distribution Functions

In Section 2with the help ofDediscretization Approachwe constructed a wide class
of infinite differentiable onR+ distribution functions defined on[0,+∞) with jumps
at zero. Considering this class as apriori given(we forget how it was obtained) with
definiterestrictions, itsdiscretization(procedure reverse to dediscretization proce-
dure and more simple) includesall distributions generated by birth-death process
with regularly varying intensities. By the way, now, we do not needTheorem 1.

In the presentSectionthis class is defined, discussed and investigated.

4.1 The description of the class

The description of the class. Denote byΩ the class of regularly varying with ex-
ponentα ∈ [1,+∞), increasing, infinite differentiable onR+ functionsδ (t) with
δ (0) = 1, satisfying following conditions:δ (t) is

(a) downward convex, i.e.
dδ (t)

dt
> 0 and

d2δ (t)
dt2 > 0 for t ∈ R+,

(b) log-upward convex, i.e.
d lnδ (t)

dt
> 0 and

d2 lnδ (t)
dt2 < 0 for t ∈ R+.

A SpecialclassΩ0 includes increasing functionsδ (t), t ∈ [0,+∞), of the type

δ (t) = 1+
t
A

(1+o(1)), t → +∞, A∈ R+. (4.1)

We single out thelinear case:o(1) ≡ 0.
Now, if δ (t) ∈ Ω, then weassumethat the limit exists

lim
t→+∞

t
δ (t)

= 0, (4.2)

and in accordance with (4.2) two situations arise: either
∫ ∞

0+

dt
δ (t)

= +∞ (then, denoteδ (t) = δ−(t), t ∈ R+), (4.3)

or

0 < c1 =
∫ ∞

0+

dt
δ (t)

< +∞ (then, denoteδ (t) = δ+(t), t ∈ R+). (4.4)

In both situations (4.3) and (4.4), due to (4.2), we have

0 < cn =
∫ n

0+

dt
δ (t)

< +∞, n = 2,3, . . . .



Dediscretization of Distributions Arising in Macroevolution Models 141

Denote Ω+ = {δ+(t)} , Ω− = {δ−(t)}.
Then, Ω = Ω+∪Ω− andΩ+∩Ω− = ø.
For the linear case we are in situation (4.3), but the condition (4.2) does not

hold.

Introducingasymptotically equivalentto δ (t) function ε(t) ∈ Ω, or ε(t) ∈ Ω?

we are able to describe the required class of distribution functions.
Any pairs (δ−(t), ε(t)) and(δ+(t), ε(t)), t ∈ R+,

generates afamily of distribution functions

F̂−(x,b) with 0 < b < 1 and F̂+(x,b) with −1 < b < +∞

given by formula (2.8), where

f±b (t) = ln(1±
b

δ±(t)
), t ∈ [0,+∞).

4.2 Particular cases

1. ε(t) = δ−(t) andε(t) = δ+(t).
A thorough investigation for the class of stationary distributions generated by

standard birth-death process with special restrictions onthe process’ intensities has
been done in [6]. The dediscretization of this class leads exactly to the present
particular case.

Let us write down the expansions

f−b (x) = −| f−b (x)| = ∑
n≥1

(−1)n ·
1
n
(

b
δ−(x)

)n, x∈ R+, −1 < b < +∞, (4.5)

and

f +
b (x) = | f +

b (x)| = ∑
n≥1

1
n
(

b
δ+(x)

)n, x∈ R+, 0 < b < 1. (4.6)

The partial sums of the right-hand-side expressions in (4.5) and (4.6) denote
by

[ f−b (x)]N =
N

∑
n=1

(−1)n ·
1
n
(

b
δ−(x)

)n

and

[ f +
b (x)]N =

N

∑
n=1

1
n
(

b
δ+(x)

)n for N = 1,2, . . . .
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Then, we have following inequalities

[ f±b (x)]1 < [ f±b ]3 < · · · < [ f±b (x)]2K−1 < · · · < f±b (x) < · · ·

· · · < [ f±b (x)]2K < · · · < [ f±b (x)]4 < [ f±b (x)]2 (4.7)

for sign ”+” with 0 < b < 1 and for sign ”-” with−1 < b < 0.
Similarly, for sign ”+” with 0< b < +∞ the following inequalities hold

[ f +
b (x)]1 < [ f +

b (x)]2 < · · · < [ f +
b (x)]K < · · · < f +

b (x). (4.8)

Easily seen that

[ f±b (x)]1 = ±
b

δ±(x)
, [ f±b (x)]2 = ±

b
δ±(x)

+
1
2
(

b
δ±(x)

)2. (4.9)

Lemma 1.The functions[ f±b (x)]N for anyN = 1,2, . . . and f±b (x) are asymptoti-
cally equivalent.

Proof.Due to (4.5)-(4.9) and limx→+∞ δ±(x) = +∞, it is enough to prove that

lim
x→+∞

f±b (x)

±(b/δ±(x))
= 1. (4.10)

But (4.10) follows from the L’Hopital rule.
In accordance withLemma 1the following sequence of examples, particular

cases, arises. Instead ofδ±(t) we take([ f±b ]N1/b) for some N1 = 1,2, . . ., and put
ε(t) = ([ f±b ]N2/b) for some N2 = 1,2, . . .. The caseb = 0 is excluded.

The following subsequence is of interest. We take instead ofδ±(t) the function
([ f±b ]N/b) and putε(t) = ([ f±b ]N/b) for N = 1,2, . . ..

Then, for the corresponding distribution functions we obtain the following ex-
pressions

F̂±(x,b) = c±(b) ·

∫ x

0−

b

[ f±b ]N
exp

{∫ t

0−
[ f±b (u)]Ndu

}

dt =

= c±(b) ·

{

exp

{∫ x

0−
[ f±b (u)]Ndu

}

−1

}

F̂(N)
± (x,b).

Note that the conditions (4.3) and (4.4) are equivalent to the following ones
∫ ∞

0+
[ fb(t)]Ndt = +∞ and

∫ ∞

0−
[ fb(t)]Ndt < +∞

for any (some)N = 1,2, . . ., respectively.
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The constantc+(b) is evaluated. Indeed, for sign ”-” with 0< b < 1 and for
sign ”+” with −1 < b < 0 the function[ f±b (x)]N is negative. In the first case
∫ ∞

0−[ f−b (u)]Ndu = −α . Therefore,

F̂(N)
− (x,b) = 1−exp

{

−
∫ x

0−
|[ f−b (u)]N|du

}

, andc−(b) = 1.

In the second case

F̂ (N)
+ (x,b) = c−(b) ·

{

1−exp

{

−

∫ x

0−
|[ f +

b (u)]N|du

}}

,

where

c−(b) = (1−exp

{

−

∫ ∞

0
|[ f +

b (u)]N|du)−1
}

.

For the sign ”+” with 0< b < +∞ we getpositive[ f +
b (x)]N and because of this

F̂ (N)
+ (x,b) = c+(b) · (exp

{

−

∫ x

0−
|[ f +

b (u)]N|du

}

−1),

where

c+(b) = (exp

{

+
∫ ∞

0+
|[ f +

b (u)]N|du

}−1

)−1.

The consideration above shows that the particular case 1. isanupperbound for
distribution functionF̂− when ε(t) is chosen among introduced particular cases.
The same is true for(F̂+(x,b)/c+(b)) in situations withc±(b) 6= 1. Anyway, we
have to indicate two particular cases.

2.
1

ε(t)
= −

1
b

ln(1−
b

δ−(t)
),0 < b < 1 and

1
ε(t)

=
1
b

ln(1+
b

δ+(t)
),

−1 < b < +∞,b 6= 0.

3. We takeδ±(t) instead of(±b/ ln(1±
b

δ±(t)
)) and putε(t) = δ±(t).

4.3 The result

Now we have

Theorem 3.

1. F̂−(x,b) andF̂+(x,b) with−1 < b≤ 0 are upward convex on R+;
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2. For F̂+(x,b) with 0 < b < +∞ there is a point x0 ∈ R+ such thatF̂+ is down-
ward convex in(0,x0) and upward convex in(x0,+∞);

3. 1− F̂±(x,b) varies regularly with exponent(−(α −1+bA)).

Proof.F̂±(x,b) has adensityonR+.

ϕ̂±(x,b) =
dF̂±(x,b)

dx
=

c̃±(b)

ε(x)
exp

{∫ x

0−
f±b (u)du

}

, (4.11)

where

c̃±(b) = (
∫ ∞

0−

1
ε(t)

exp

{∫ t

0−
f±b (u)du

}

dt)−1.

For x∈ R+, due to (4.11), we have forx∈ R+

d
dx

ϕ̂±(x,b) =
c̃±(b)

ε(x)
exp

{∫ x

0−
f±b (u)du

}

·

{

f±b (x)−
1

ε(x)
d
dx

ε(x)

}

. (4.12)

For sign ”-” with 0 < b < 1, and for the sign ”+” with−1 < b < 0 we have
f±b (x) < 0, and, therefore, because of (4.12),(dϕ̂±(x,b)/dx) < 0, which proves the
statement 1. withb 6= 0. The caseb = 0 is obvious.

For sign ”+” with 0 < b < +∞ the limit exists limx→+∞( f +
b (x)/( a

δ+(x))) = 1

and d
dxε(x) > 0, limx→+∞

d
dxε(x) = +∞. Due to asymptotical equivalency ofε(x)

andδ+(x), and tocontinuityof terms at the right-hand-side of (4.12), we conclude
that there isx0 ∈ R+ such thatd

dxϕ̂+(x,b) > 0 for x∈ (0,x0) and d
dxϕ̂+(x,b) < 0 for

x∈ (x0,+∞). It proves the statement 2.

For 1< s< +∞ let us evaluate the limit

lim
x→+∞

1− F̂±(sx,b)

1− F̂±(x,b)
= lim

x→+∞

∫ ∞
sx

1
ε(t) exp

{∫ t
0− f±b (u)du

}
dt

∫ ∞
x

1
ε(t) exp

{∫ t
0− f±b (u)du

}
dt

=( lim
x→+∞

ε(sx)
ε(x)

)−1 ·s·exp

{

lim
x→+∞

∫ sx

x
f±b (u)du

}

if exists,

where the L’Hopital rule is applied.
Let us show that ifA = 0, then limx→+∞

∫ sx
x f±b (u)du = 0. Indeed, if (4.4) holds

then limx→+∞
∫ sx

x
du

δ+(u) = 0. If (4.3) holds andA = 0, then forε ∈ (0,1) starting

from somex0 we have 1
δ−(x) < ε · 1

x for x ∈ (x0,+∞), and
∫ sx

x
du

δ−(u) < ε · lns. So,
letting ε ↓ 0 we obtain

lim
x→+∞

∫ sx

x

du
δ−(u)

= 0.
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But, due to the L’Hopital rule
∫ sx

x f±b (u)du and±b ·
∫ sx

x
du

δ±(u) are equivalent as
x→ +∞. Thus, the statement for these cases is established.

Since limx→+∞(ε(sx)/ε(x)) = sα , therefore from (4.13) we get statement 3. for
A = 0. (If 0 < s< 1 we overturn the ratio at the left-hand-side in (4.13)).

The remaining case is 0< A< +∞. Now, the problem consists of evaluation of
the limit

lim
x→+∞

∫ sx

x
f−b (u)du, x0 ≤ x < +∞. (4.13)

Since f−b (x) and (−b/δ−(x)), (−b/δ−(x)) and (−bA/x) are asymptotically
equivalent, therefore forε ∈ (0,1) starting from somex0 > 0 the inequalities hold

bA
x

(1− ε) < | f−b (x)| <
bA
x

(1+ ε), x0 ≤ x < +∞.

Thus, for 1< s< +∞ we obtain

b·A(lns)(1− ε) ≤ lim
x→+∞

sx∫

x

| f−b (u)|du≤ lim
x→+∞

sx∫

x

| f−b (u)|du≤ b·A(lns)(1+ ε).

Letting ε ↓ 0 we come to the relationship

lim
x→+∞

∫ sx

x
f−b (u)du = −b·Alns, 1 < s< +∞. (4.14)

Finally, (4.13) and (4.15) imply the statement 3. for 0< A < +∞.

Theorem 3 is proved.

5 Conclusion

The standard birth-death process with intensities of moderate growth generates
stationary skewed distributions suitable for modelling frequency distributions of
events arising in large-scale biomolecular systems.

We studied a large class of distributions that can be used to model, for instance,
frequency distributions of the number of expressed genes inthe transcriptome, the
number of protein domain occurrences in the proteomes, etc.

In particular, a newdediscretizationapproach was suggested, discussed and
applied to the chosen class. This approach conserves thequalitative properties
of the original class of distributions. The obtained distributions are often simpler
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in form and also often easily analyzed by the tools of mathematical analysis that
have been developed for continuous functions. We also studied several typical
examples which illustrate the possibilities of the dediscretization approach. The
reverse procedure ofdediscretization, i.e. the procedure ofdiscretizationwas also
studied.
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