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Dediscretization of Distributions Arising in
Macroevolution Models
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Abstract: The standard birth-death process with intensities of meteegrowth gen-
erates stationary skewed distributions suitable for modgefrequency distributions
of events arising in large-scale biomolecular systems.

We study a large class of such distributions that can be wsaddel, for instance,
frequency distributions of the number of expressed geneakédrtranscriptome, the
number of protein domain occurrences in the proteomes, etc.

In the present paper a nedediscretizatiorapproach is suggested, discussed and

applied to the chosen class. This approach conservegihigativeproperties of the
original class of distributions.
The advantages of the approach consist in following:

1. It simplifies the form of distributions;

2. It allows simple mathematical analysis of the properti&she original class by
applying the tools mathematical analysis continuous fonst

3. It allows to find out theoptimalform of stationary distributions, i.e. suggests new
classes of distributions for biomolecular applications.

The deviations of the dediscretized continuous distrdntunctions from the original
distribution functions is estimated.

Several typical examples are considered which illustragepossibilities of the
dediscretization approach.

The reverse procedure tediscretizationi.e. the procedure afliscretization
back to discrete distributions is described.
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1 Introduction

The mechanism of the dynamic of a large-scale biomolecystem often is ex-
plained with the help of standard birth-death process wétous specific con-
straints on its intensities (coefficients). The stationdistributions of the process,
which alwayshave a skew to the right, and may be used as frequency disrilsu
of different events taking place in large-scale biomolacuystems. Recently, a
huge class of such distributions withoderategrowth of the intensities of the pro-
cess has been obtained [1]. Moreover, in [2] this class weBedto satisfy willl
known empirical factsin macroevolution of biomolecular systems. As a result of
this,under some very natural assumptions on the processidgities we extracted a
subclassof regularly varyingdistributions. The last class includal well known
and widely used distributions designed to model the engliffequencydistribu-
tion of the number of different type of events arising in kugrale biomolecu-
lar systems, in particular, of the number of expressed gan#se transcriptome
and the number of protein domain occurrences in the proteqse=, for informa-
tion, [3,4]).

1.1 The Description of the Class

In order to define the above mentioned class denotd ltlge class of regularly
varying with exponentr € [1,+) (see, [5]) increasing sequencg®,} with & =1
satisfying following conditions{d,} is

(a) downward convex, i.e. far=1,2,---
On-1+ Ont1 > 26,
(b) log-upward convex, i.e. far=1,2,---
& > &1 Ohi1-

The assumptions (a) and (b) on convexity are necessary mdraanalyzable
class that satisfies empirical facts in [6].
A Specialclass/\q includes increasing sequencgs, } of the type

51:1+£(1+0(1)), N— o, Ac R = (0, +o). (1.1)
In other words, (1.1) means that

oh=n-L(n)+1,n=0,1,2,---,
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where{L(n)} is aslowly varyingsequence satisfying condition

; _ a1
nIﬁmij(n) =A"
The case of sequences of type (1.1) wittt) = 0 in (1.1) orL(n) = A%, n=
0,1,2,---, is called thdinear case.
Now, if {d} € A, then the following limit exists (see, [2])

.n
nILTm 5 0, (1.2)
and then under (1.2) two possibilities exist. Either
Z 1 = +o (then, denot&, =3, ,n=1212---), (1.3)
n>1 5”
or
> 1 < +o (then, denot&, =g, n=1,2,---). (1.4)
n>1 5”

Let the classed\. and/A_ be formed by sequencd®; } and{J; }, respec-
tively. Then,
/\ — /\+ U/\_ and/\+ ﬂ/\_ =0.

For thelinear case we have (1.3) but the condition (1.2) does not hold.
By introducing a sequencgen} € AU /Ao asymptotically equivalerto {&,} ,
i.e.
lim — =1, (1.5)
we are able to write down the distributions in thenterof our attention in the
present paper.

Any {3, } from A_, or from Ag together with{&,} (see, (1.5)) generates a
family of distributions{p;, } of the type

P =1+ (1-b) 3 in|:|l(1——b_))—1, 0<b<1,
n>1 €n m=1 Om (1.6)
- — K-1 .

&k m=1 om

where|‘|9n:1 = 1. Inthis case, the probability; has a simple expression [6],
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_ b
where
&
D= —P, €Ry,
&0 "
and, in particular, whefe,} = {J, }, we haveD = 1 and
b

Any {4, } € A, together with{e,} € A, (see, (1.5)) generatesfamily of
distributions of the type

1nl b
P =00+1+b) ¥ =N A++=)) —1<b< o,
n>1 €n m=1 om (1.9)
. K-1 )
p;:w I 1+£) K=12..

Distributions{p; } and{p;, } vary regularlywith some exponent—p), where
p € [1,+).

Remark 11 et us consider the standard birth-death process with itieeA, and
Unt1, N= 17 27 toe (Seev [1])

The distributions{ p, } and{p} } may be interpreted as stationary distributions
of the standard birth-death process with intensities

AOZ:I-_b7 )\n:£n’(1+£)7 Un = &n, n:1727"'7

5
or b

)\0:l—|—b, )\n:é'n'(l—a), Hn = &n, n:1727"' 3
respectively.

1.2 Particular Cases

The first particular case has been introduced and thoroughkistigated in [6].
The case is the following: fan=1,2,---

& =0, in(1.6) and & =&, in (1.9). (1.10)
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The second particular case is given by equalitiesnfer1,2, - --

1 1 b .
=" b In(1— E) in (1.6), (1.11)
and
1 1 b
& =—= In(1+ ﬁ) in (1.9). (1.12)
The third particular case is given by equalities: foe 1,2, - - -
(
po =1+(1-b) ¥ exp{ b- z —}) O<b<1l
pi ' (1 b) nZl dﬂ 1 1 (113)
=0 " Zexp{—b- y —1, k=12,
kpk 5‘; p{ rréla’ﬁ}
1 n-11
pi =1+ (1+b) ¥ —expfb- ¥ —})! —-1<b<+w
% 1 9m 1.14
P IOg'(1+Io)exp{b kili} k=12 19
k — 5k+ méléﬁﬁ\_ ) — & )

To see the reasons behing these forms note that in order &nalit13) and
(1.14), we represent

n—1 b n—-1 b
nr|;|1( - %) = EXP{ z In(1 a)}
and (1.15)
n-1 b n—1
nr|;|1(1+ %) = exp{ z In(1 )}
in (1.6) and (1.9), respectively.

The reasons for the case (1.11)-(1.12) are clear.
Next, using the expansion

%U

n
Nl-x)=—5 =, xeR = (~1,+1), (1.16)

n>1
the third case is obtained as follows. We take the first terntisearight-hand-sides
of equalities in (1.15) (see, (1.16)) and substitute thetm fihe right-hand-side of
(1.6) and (1.9).

By the L’'Hopital rule
+In(1+X)

lim ————~ =1 1.17
lim — : (1.17)
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S0, in the second case the condition (1.5) is fulfilled.
Similarly, the third particular case may be obtained from second one if we
replace the sequences

i) el )

by the asymptotically equivalent sequences

= and =
& &
respectively. Then, due to (1.17), the condition (1.5) hold
In the nextSectiona newdediscretizatiorapproach is discussed and applied to
the above classes of distributions.

2 The Dediscretization Approach

The method boils down to replacing the sums in (1.6) and (W®)represenf] a,
by expy ,Ina,) by integrals and it will not change ttgualitative behavior of dis-
tribution.

This operation simplifies many formulas and allows to deneevdistributions
with the samequalitative properties as before for biomolecular appidres.

We call this approach Bediscretization Methad

2.1 Dediscretization

Given some class of distributioq$n}.
What doesin general the dediscretization mean fdmp,}?

By our understanding elaborated below, this is some praeedn a class of
distributions leading to aoncreteconstruction of corresponding and in some sense
"close” class of "smooth enough” (for instance, infinitefeientiable)distribution
functions

The constructed class of distribution functions has tosBatiefinite restric-
tions.

Necessarily, it must conserve the majnalitative properties of distributions
of the original class such as: monotonity; convexity; moteeexistence; regular
variation with the same exponent, etc.
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W hat is the reason for dediscretizatidbn

Sometimes the dediscretization leads to more simple esiores for distribu-
tion functions from the obtained class in comparison withdhginal class.

The next advantage presentalivays consists in following. Infinite differ-
entiability, monotonity, convexity, etc., allow to uskeeplydeveloped and well-
understoodools of mathematical analysis.

Finally, it is more convenient to deal with continuous fuons and suggest
interpolations and approximations for them.

The furtherdiscretization(the reverse procedure) does not necessarily produce
the original discrete distribution but a "close” one thatyregain be useful for
applications.

2.2 The First Problem

In Dediscretization the following problemarises. We must replace the regularly
varying sequence$d,} and {&,} by regularly varying functiong(t) and &(t),
respectively. In other words, due to representations

&F =14+nL*(n), n=0,1,2,---, (2.1)
and
&r=1+n0L(n), n=0,1,2,---, (2.2)

where
Jim (L5 (n)/L(m) =1,

a € [1,+0), {L*(n)}, and{L(n)} are slowly varying sequences, we must replace
the sequence$L™(n)} and {L(n)} by slowly varying functionsL*(t) and L(t),
respectively, in order to get, at least, continuous anatég@®.1) and (2.2):

SH(t) =1+t9CE(t) and g(t) =1+t9L(t), teR". (2.3)
In typical existing cases:
either
i +(n) — +
nI_|>rIr100L (n)=ceR", (2.4)
or
lim L*(n) = +oo, (2.5)

n—--o0
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where
{L*(n)} increases and is upward convex (see,.[6]) (2.6)

The "breadth” of the clas# is "so large” and the frequency distributions in
biomolecular systems posses so many "smoothness” prepdhtat the "restrict-
ing” A\ by additional assumptions (2.4)-(2.6) is quite natural easonable.

Theproblemis the same fof ;" } and{en}, so, let us consider it fofen} .

The functionL(t) has to be built in @onstructiveway and to satisfy following
restrictions (if possible):

1. L(n)=L(n), n=21,2,--;

~

2. limp_o(L(n)/L(N)) = 1;

3. L(t) is infinite differentiable;

4. L(t) increases (decreases)lf(n)} increases (decreases);

5. L(t) is convex if{L(n)} is convex

etc.

It is enough to solve thproblemfor the case lim_, 1 L(N) = +. Indeed, if
limp_+wL(n) =ce R, then we take a sequenge(n) - In(n+ 1)}, which is slowly
varying and satisfies condition lin . L(n)In(n+ 1) = 4oc0. It reduces this case

to the previous one.
If lim n— 1 L(N) = O, then we take the sequeng®/L(n)}.

2.3 The solution of the problem

The functionl may be constructed in various ways. If the form{a{n)} is known
and given by an elementary formula, replaging the discneferaentn by the con-
tinuous argumertte R we obtain a functiof.(t) defined orR", which very often
hasall properties we need.

Let us giveexamplesDenote

. 1
€0) = 1, €1 =€= nLIToo(l—’_ ﬁ)n’ €K+1) = exp(e(K)), K=12---.

For any givenK = 1,2, --- introduce the sequence{ﬂ.&l)(n)} and {L,(f)(n)

defined by following elementary formulas and satisfyingnmesons (2.5)-(2.6):

K
L&l)(n) = ﬂ Inln---Inn
=1 i
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and
Lff)(n) = ij)(n) -InIn---Inn for integersn > g.
K

These sequences when suitably definednfer 0,1,- - - [e]] vary slowly It
can be seen by induction ¢husing the following two obvious facts:

1. If {L1} and{L,} vary slowly, then{L; -L,} vary slowly;

2. If {L(n)} vary slowly and lim_, 1. L(n) = +oo, then{InL(n)} vary slowly.

Indeed,
InL(sn) . 1 . L(sn
= | 1 In——=¢=1fors=23,--.
e TnL(n) nl”ﬂoo{ L " L(n) ors=a2
Then, forK =1,2,---; n> ey); i = 1,2 the positive numberérgf})( =1+

nLﬁ)(n) (compare to (2.1)) form for ani sequence{ 5,5'&} of type (1.3) ifi=1
and of type (1.4) if = 2.
Therefore we get the form (2.3) by putting

K
[P () = [1inin--Int
=1 i

and
Lff)(t) = L&l)(t)lnln---lnt forK=1,2,---
K
andt € [e(K),+00).

These functions when suitably defined fear (0, e, ) vary slowlyand increase.
Moreover, they areipward convex Indeed, the multiplication of increasing, up-
ward convex functions leads to increasing, upward convagtfan.

It is easily verify that the restrictions 1-5. for these ftions are fulfilled.

In general, we have the followirigterpolationtheorem

Theorem 1. There is a slowly varying functioin(t) satisfying restrictions 1-5.

Proof. If the form of {L(n)} is not given by elementary formula which itself leads
to desired interpolation, then we proceed as follows. FestquencéL(n)} draw
a piecewise linear curve passing through poifts.(0)), (1,L(1)),(2,L(2)),--- on
the plane. This "broken” line, salyy(t), satisfies conditiongqy(n) = L(n),n =
0,1,2,---.

We say that y(t) is a linear continuous analog of the sequeficén)}.
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For anyt e Rt andn=1,2,---, due to monotonicity o, we have

LK) Lo(n-[t) _ Lo(nt) _ Lo(nlt] +1)
LK+1)  Lo(+D ~ Lo®) — Lo(t)

L(nK+n) L(nK+n) L(nK") ,
L(K) L(K) L(K'+1)’ t)
where([t] denotes the entire part of the positive number
Taking into account that fan=2,3,- - -
. L(K o L(K+1
KILTW% =1 and, as a result of th'?@l'm (L(IJ<F) ) =1,
we conclude that
. Lo(xt)
I =1 2.7
t e Lo(t) @7

forx=nwithn=12,---. Puttingt = (t'/m) with m=1,2,--- we get (2.7) for
x=mtwithm=1,2,---. Combining these two cases we conclude that (2.7) holds
forx="withm=1,2,--- andn=1,2,---, i.e. forall positiverational numbers

X. The set of such numbers &/erywhere densim R". Therefore, byLemma

1, p.275 [7], we see that theontinuous analog 4(t) of {L(n)} varies slowly By
generalization of Adamovic Interpolation Theorem on skpwarying function with
condition lim_, . Lo(t) = 4o, there is aconstructivemethod of building of an
increasing, convex, infinite differentiable, slowly vargi functionE(t) satisfying
restrictions:

L(n)=Lo(n), n=12,2,--- andt Iir+n (L(t)/Lo(t)) =1 (see, [8])
For this function, as we see, conditions 1-5 are fulfilled.

2.4 The procedure

Denote

foE(x) = In(1+ xR,

b
5i—(x))7
whered*(x) is the above describedterpolationof a given sequencgd;} € A,
which together withnterpolatione(x) of a sequencée, } generate one-parametric
family of distributions{ p} = {p:(b)} of types (1.6) and (1.9) with @ b < 1 and
condition (1.3) for sign "-” and with-1 < b < +c and condition (1.4) for sign "+”".



Dediscretization of Distributions Arising in Macroevaiom Models 129

Definition 1. We say that the function

x 1 t
det. i?@em{IWWW%m
Ty .
J s(t)eXp{ff (uyd }dt

defined or{0, +) is a dediscretization of distributiofip: (b)} generated by

({&n}. {O0}).

The reasons behind the forrfs (x,b) andF_(x,b) are elaborated below.

F.(x,b) (2.8)

For a given sequencg, € A_} denotef, = f, (b) =In(1— %), n=0,12,
, 0< b < 1. Thedistribution function E(x) = F_(x,b),x € [0,4), which
corresponds to distributiofip;, (b)} generated by{en}, {9, }), takes the form

X
F_(x) =F_(+0)- %exp{ Z f } (2.9)

where 0< b < 1 andy .}, =0,& = 1. Indeed, putting]%_, =1,5%_, =0, due
to (1.6), forx € Rand 0< b < 1 we have

F()p{l—l—l bzlnzl }

=1 nWl

X
:F_(O){l+(1—b) 3 iexp(z - }

—1 n

_ n—1
—F (+0) {g—loexp( > )+ zlg—lnexq f9)ens fr;)}
%

n—1
_F_(+0) ZJg—lnexp( > fn)

n—=

By (2.9), forxe R+ afunctiongg (x) ‘€ (F_(x)/F_(+0)),0< b< 1,g; (~0) =
0, represents finite, positive, discreteneasure, and takes the form

X
g, (X) = F.(+0) Z)iexp{ z fm } (2.10)
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Similarly, thedistribution function E (x) = F,(x,b),x € [0,+), which corre-
sponds to distributiod pf (b)} generated by{e,},{d, }), takes the form

i n—1
F. (X) = F.(+0) ;E_ln exp{ Zo f;q} (2.11)
b

(F; andF_ have jumpspj andp, at zero), wheref, = f/ (b) =In(14+ =), n=
0,1,2,---,—1<b< 4w, and

“én

X 1 n-1
gy () = (FL(x)/F4(+0)) = Zo—exp{ > fnﬁ}, g (-0)=0, (2.12)
n= m=0
is afinite, positive, discreteneasure.

The form (2.10) and (2.12) @, andggr is suitablefor dediscretizatiorproce-
dure. Namely, measures

X 1 t
At o - +
g°(x) = /_ £ exp{/o_ fo (u)du} dt
with 0 < b < 1 for sign "-” and—1 < b < +oo for sign "+, absolutely continuous
onR*, afternormalizationgive F, andF_.

2.5 Justification
The justification ofdediscretizatiorprocedure is based on
Theorem 2. F, (x,b) andF_(x,b) are distribution functions.
Proof.Due to (2.8), we have to prove
0 < g (400) < oo, (2.13)

where the first inequality is obvious.
The cases: (a) with sign "+" and (b) with sign ”-" are consigigérseparately.
By (1.5) and limit equality Iimﬂw(éil/dni) = 1for € € (0,1) starting from
some indexg simultaneously
1- 1 1 1- 1 1
£ ~te ¢ jforn:no,n(-_>+1,-~- (2.14)

— < —< and—— < —<
+ + + + +
on €n On 5n+1 on 6n+1

(a) Here there is a simple subcase 0:F..(x,0) = (g £(fy)/(Jo ™ & ): X€ [0, +00).
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By (1.4) and (2.14),

o dt n+1 dt 1 1
O</ — = / — < —<(1+¢)- — < +o.
o B0 2 0 e T2 E
Thus,gg (+) < 4.
If —1<b<0,theng; (+) < g (+e0) < +oo.
Let 0< b < +o. In accordance with the inequalities (2.14) and

)= fi (t), te[0,+w),
we have

N N n+1 1 t
6 () - g o= 5 [ o] [ )
<n;0?/ exp{/ fo (U du}dt
ex f(u du}dt
no 5['—1:-1/ p{ b ( )

< (1+e)? z/n 5 exp{/otf;(u)du}dt
Xp

<(1+¢)?
(2.15)

n>np

<(1";£)2/n+mfg‘(t)e { tftjf(u)du}dt
b

2
— (1—:)8) (exp(/OJr fo (u

By L’'Hopital rule

)
0
)du) — exp /O ® fi (ua)).

[ £ (u)du N
lim = lim fi (X =1
x—>+ooa Jf" du Xtoo &
x 37 (U) ()
But, by (1.4),
+00
0< du du

n+1 <1 1
= + < +oo.
Jo— ot (u) n;/” ot (u) & &

Therefore,

+o0
/ £ (u)du < 4o, (2.16)
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and, due to (2.15), (2.13) holds in this case.
(b) In accordance with the inequalities (2.14) and

b 1 b

fo (t) < O +§(5_(t))2, 0<b< 1, tel0,+w),

we have similarly to (2.15)

n+1
Gy (+90) — G (o) < (1+¢€)? 2/5 exp{/f du}dt

<(14¢)? /5 exp(—b- /60'“ 2.17)

L g [ e [

where

2 T

c(b) = exp(% du 5)- (2.18)

(6= (u))

Taking into account that for anfd,, } € A_, due tod, = 1 and{J, } is down-
ward convex with lim_.,«(n/d; ) = 0, we have

1 1
5 <pn=l2-- (2.19)
Now, with the help of (1.3) and (2.19) we obtain
oo +1 1
= +oo,

0 / dq

% n>1 ) . (2-20)
0 </ / ——< — < o0,
- % nZl (50 )2 ngl n2

Therefore, from (2.17)-(2.18) we conclude that (2.13) bdld this case too.
Theorem 4s proved.

Now, we may say tha. (x,b) is strictly increasing. IrBection 4he properties
of distribution functionsF, and F_ are investigated. In the neSectionsome
typical examples are considered.
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3 Typical Examples

The structure of stochastic birth-death process is contigaha complicated from
the point of view of computations stationary distributioff$is structure automat-
ically transforms also odediscretization Thus, if we change nothing besides in
some sense replace the discrete argument by a continuoushemewe can not
expect to get angssentialsimplification in the formin general However, there
are possibilities to apply theols of mathematical analysis (no only for proofs of
statements, but also in order to get simplifications in paldr cases).

In the presenSectionwe consider somgypical examples of distribution§pn }
of forms (1.6) and (1.9), respectively.

3.1 Ondistributions {pn}

It is possible to write the distributiongpn} in one unified symmetric form, which
depends on two parametgosaandq satisfying condition

. 1
O<p<qg<+omw if ZZ—:_Foo,
n

n>1

. 1
0<p<+0,0<qg<+o if ¥ = < 4o,
nlen

(3.1)

The form uses sequencéé,} and{A,} instead of{ &, } and{&,}, respectively,
where

2= 8—1 “hn=&—1 N=012-. (3.2)
q q
Distributions{p,} take the form

n—1 p_|_Zm -1
=(1+p- 7

m= (1 n§1q+AnwD1q+Zm) (3.3)

. K-1 '

Pk = P-Po p+zm,K:l,2,~'.

T g+ A me19+dm

The corresponding distribution function is

[X] l n-1 p+ Zm
Fpo(X) =Fna(+0)- S —— ex In , X€[0,+00);
pa(X) = Fpq(+0) n:E at A, &P NZO 9+ Zm [0, +e0)

the dediscretizatiorof distribution functionF 4(X) is

Fpa(¥) = c(p,q) /OX q—i—iﬁ\(t) exp{ Ot |n(21§§3§ )du} dt (3.4)
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with normalizationfactor

cpa) = ([ oy [ s haba L

Here

é((t)=5(t)—1a é)\(t):e(t)—l, t € [0, +),

whered(t) ande(t) are already obtained interpolations {a%,} and{&}, respec-
tively.

The form (3.3) with restrictions (3.1) of distributioq9,} is chosen because
exactly this form foretalon linear casé\, = ¢, = n implies thetraditional form of
afamily of Waring Distributions(WD)

_ S L et pAEmy o
po=(1+p 3 gt M o)+ O<P<a<to o5
o= PPo & pEm K_12
K CH-szch-m’ 9Ly et
3.2 Typical examples
Denote
P+ (1)
f(t) =1 ).
(t) n(qH(t)), t € [0,+)
Then, fort € [0, +) we have
t t
/f(x)dx:t-f(t)—/xdf(x)
0- 0-
p+It), |
=tIn(E )~ [ Xan(p+2(0) ~In(a+ () 36)

t t

_t. - (X {(x)dx x- ' (x)dx
=t-In(p+¢(t)) —tin(a+¢ (1)) lﬂp+ZW)+l"q+Zu)'

If there is a simple relationship betweéiix) and{’(x), then integrals in (3.6)
can be evaluated, and in (3.4) we may get rid of the inner iate@he two typical
examples considered below are based onitiga
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1. Let us considelinear {{n}: {(rh=n,n=0,1,2,.... For this case we get two-
parametridamily of WD (3.5). By (3.6), taking{ (t) =t,t € [0,+), we obtain

t t xdx t xdx
f(xX)dx=t-In(p+t) —tin(q+t _/ __/ =
I (x) (p+t) (q+t) o Dix Jo aix

= (t+p)In(t+p)—(g+t)In(g+t) — plnp+qing (3.7)
(p+t)P* o

:In(m ﬁ).

Substituting the last expression into (3.4) we have

. e 1 )P+t o
Fpq(X) =c(p,q) '/o— m .exp{ln(% . %)}dt

(3.8)
soq. [ PEOP 1
=¢&(p,q)- . dt, xe |0, ,
(0.9 |, o grap® *€0+
where thenormalizationfactor takes the form
~ to (p4-t)PHt 1 1
¢ = . d)—-.
Note that the limit exists (the asymptotical equivalency\ @f) andt)
lim w =1 (3.9
t—4o t

Let us present twaorollaries of the obtained result (3.8).
First of all, from (3.8) we are able to figure out the tail's amgytotic

. * (PPt dt

1- Fp,q(x) = C(p,Q) /x (q_|_t)Q+t q—i—)\(t)

o [P (PHDP (L (p/)
¢(p.q) / (@+1)9 (1+(a/t)' g+A(t)
s (@) [T (PHDP
C(p,C{)e 9P /X (q_|_t)q q—l—)\(t)

é(p7 q)e*(q*p) . /oot*(CH‘l*p)dt
X
1

Q

%

& e (@P_~ y(@p , 1o
&(p.q X , X — oo,
(p.9) a-p

It means that the tail + Foq(X), X € [0,40) (Fpq(—X) = 0) of distribution
function Fp  varies regularlywith exponent{—(q— p)) and in representation

1-Fpg(x) =xP.L(x), xeR",
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of the tail theslowly varyingfunctionL(x) satisfies condition

i —¢ —q-p) . _—
Jim L(x) =¢(p,a)e —p
Secondly, the evaluations carry to the enddsymptotically linear (t) (see,
(3.9)) of aspecialform

At) = |np( +?) g te 0, +o). (3.10)
g+

Let us show that the form (3.10) indeed presents an asyroaligtiinearA (t).
Due to L'Hopital rule,
in(1— =P,
oo QP
g+t

=1

Therefore, from (3.10) we have
P—Q —q~ P—q
In(1— ﬂ) _a-p
q+t q+t

At) = —q=t, t— +o.

Thus, (3.10) represents asymptotically linear (etakoft).

Substituting (3.10) into (3.4) witf(t) =t,t € [0,+), we obtain

Foat) =2 [ jin B jexp{ - [ inE it -
_ c(p.q) Pty
= exp{ / gy \du}), (3.11)

where we took into account that

p+u
q+u

p+u
)= -lIn(E

)| for0< p<g< +wanducR".

In(——
Evaluations may be carried out with the help of (3.7). By )3.7

/ |In(er )|du =+, so, in (3. 11)wehave(% 1.

q+u
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It means that (3.11) may be rewritten in the form (see, (3.7))

(P+1)P o }_1_Q_q (p+X)P™

o f =1 e G4

Foq(¥) =1— exp{ln(
The expression at the right-hand-side of (3.12) gives fetdli’s asymptgtic the
final result. In this case the slowly varying function in repentation of - F, g(x)
asx — +oo tends to the following constant

jim Lxan, PEXPE @ (A (PSP o q-p)
X~ pP (@+x)9 pPxie (14(g/x))*4 - pP

The applieddea to choose an asymptotically equivalent(tt) function A (t)
which allows to evaluate arising integrals is vényitful in order to find the most
simple stationary distributions generated by the birthtbegrocess with conserv-
ing thequalitative properties of distributions.

2. Forpoweform of {{,},i.e. 3 =n"n=0,1,2,...,1 < a < +oo, the first
ideadoes not work. By (3.6), taking(t) =t%,t € [0,+), we proceed

t ! t
X dx x% dx
— 1. ay _ . @y —
0<O/1‘(X)dX—t In(p+1t%) —t-In(q+t) oro/ p+x"+a./(1+x“

(3.13)
p+te

t t
dx dx
— t _
=In((; ) >+apd/ — aqo-/q““ <t

The last inequality is clear because the integrals at the-hHgnd-side of (3.13)
converge as — +o and are finite for finita € R™.
Substituting the last expression into (3.4) we find out aithistion function

X

t t
~ 4 p+t?, 1 / dx B / dx
Fp.a(X) —c(p,Q)/(qHG) RESYO) exp{ar; Y aqd I dt(3.14)

0—

0< X< +0o,

with the correspondingormalizationfactorc(p, q).
Note that the limit exists (the asymptotical equivalency @) andt®)

lim AD)

t—+o td

=1 (3.15)

Let us present twaorollaries of formula (3.14).
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¢From (3.14) we may figure out the tail's asymptotic. Denote
® dx
la(2) :a-z-/ ——,1<a <+, 0<Z< 40,
0_ Z+ X9

We have

+o0 t t
e A p+t¥, 1 / dx / dx
1 Fp7q(X) _C(p’q)/(q-i-ta) q—l—A(t) exp{apo p+Xa aqo q+xa dt

(1+(p/t) 1
J @+ @) arA®
dt

8

a+A(D) g+t
A 1 -
1
A la () =g
~ &(p,q)ee® (q)a TaT X te

It means that the tail & Fpq(x),x € Rt of distribution functionF,q varies
regularly with exponen{—(a — 1)) and in representation

1-Fpg(x) =x @ IL(x), xe R

of the tail theslowly varyingfunctionL;(X) satisfies condition

1
i — @ la (P)—la(0)
Jim L1(x) = &(p.a)e a1

The seconddeabeing used for etalon linear case works in the present case.
Indeed, let

At) = % —q, te0,+w). (3.16)
In (

Due to L'Hopital rule,
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Therefore, similarly to the etalon linear cadét) ~t% t — +o, so, (3.15)
holds.
Substituting (3.16) into (3.4) wit (t) =tY,1 < a < +oo,t € [0, +), we ob-

tain
q)/ p+t° p+u’
In(q+ta)e p{ O_In(quuD()du dt

q
Z exp{/ In( P a)du} 1), x € [0, 400).

Note that% is positiveif 0 < g < p < +o and isnegativeif 0 < p < q < +oo.
By (3.13), the integral

Foq(X) =

(3.17)

c(p,
p—
_ o(p,
p—

p+t. o p q
.O_I () _x-{ln(l+x—a)—ln(l+x—a)} 10
X dt )

X dt
+orp~/0_ p+to _aq'./o_ q+to

is positiveif 0 < g < p < +o and isnegativeif 0 < p < q< 4. Since

im x- {in(1+ Xﬂa) “In(1+ X%)} —0,

X— 00

[ =1a(p) - @

therefore,

It means that

c(p.9) e pru? B o) —
ﬁ(exp{/_ (e g )du} —1) = Fpg(+%) = 1,

and, as a result of this,

c(p, _
D _ (expla(p)~la(@)} ~1)
p—q
Finally, note that in casp = g, even in general situation, from (3.4) we come
to the following formula
Xt
J

o == T2 0 1)

§ aTA©
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4 On the Class of Distribution Functions

In Section 2wvith the help oDediscretization Approacive constructed a wide class
of infinite differentiable orR" distribution functions defined 0@, +) with jumps
at zero. Considering this class agrari given (we forget how it was obtained) with
definiterestrictions, itdiscretization(procedure reverse to dediscretization proce-
dure and more simple) includedl distributions generated by birth-death process
with regularly varying intensities. By the way, now, we da needTheorem 1

In the presenSectionthis class is defined, discussed and investigated.

4.1 The description of the class

The description of the class. Denote Qythe class of regularly varying with ex-
ponenta € [1,+), increasing, infinite differentiable oR™ functions d(t) with
0(0) = 1, satisfying following conditionsd(t) is

2
(a) downward convex, |ed(3tﬂ >0 and%g.t) >0fort € R,
2
(b) log-upward convex, |ed|nT5(t) >0 and%f(t) <0forteR".

A SpecialclassQg includes increasing functiornd(t),t € [0,+), of the type
5(t) :1+%(1+0(1)), t 4o ACR". (4.1)

We single out thdéinear case:o(1) = 0.
Now, if 8(t) € Q, then weassumethat the limit exists

t

M5 = © (4.2)

and in accordance with (4.2) two situations arise: either
& e (then, denote(t) = 5~ (1), t € RY), (4.3)

o+ O(t)
or
© dt + +
0<ci= [ —— <+ (then, denotd(t)=05"(t),teR"). (4.4)
Jor O(t)

In both situations (4.3) and (4.4), due to (4.2), we have

occ= [ X e n=23
n_ 0+6(t) ) _— ) DI
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Denote Q. ={d"(t)}, Q_={o0 (1)}

Then, Q=0,UQ_andQ,NQ_=ga.

For thelinear case we are in situation (4.3), but the condition (4.2) dags n
hold.

Introducingasymptotically equivalertb d(t) functione(t) € Q, or g(t) € Q-
we are able to describe the required class of distributimctions.

Any pairs (3 (t), &(t)) and(d™ (1), (1)), t e R,
generates &amily of distribution functions

F_(x,b)withO<b<1 and F,(x,b) with —1<b < +oo

given by formula (2.8), where

b

f£ () =1+ 5o

), t€[0,+00).

4.2 Particular cases

1. g(t) =0 (t) ande(t) = 0" (t).

A thorough investigation for the class of stationary disitions generated by
standard birth-death process with special restrictiongherprocess’ intensities has
been done in [6]. The dediscretization of this class leadxtgx to the present
particular case.

Let us write down the expansions

1 Db

fo (X) =—[f, ¥)| = zl(—l)n- ﬁ(éf(x) Y XeERT, —1l<b< 4w, (4.5)
and
00 = 100l = 3 = D yeR", 0<b<l (4.6)
b b nzln 5+(X) ) )

The partial sums of the right-hand-side expressions in (4.5) and (4e6ptd
by

- s n 1 b n
[y 0O = 3 (-1 2(G=)
and N
[fJ(X)]N:n_1%(5+t)(X))n forN=1,2,....
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Then, we have following inequalities

()L < [fEla < - < [FEX)ak 1 < - < FEX) < -
< [y (] < - < [fy (W]a < [fy (02 (4.7)

for sign "+” with 0 < b < 1 and for sign "-” with—1 < b < 0.
Similarly, for sign "+” with 0 < b < +eo the following inequalities hold

[fo (]2 < [fy (¥)]2 < <[fy Y]k <+ < fy (%). (4.8)
Easily seen that

b
55 (%)

b 1 b
= T2 5w

[fo (W] =+ , [fe (]2==+ (4.9)
Lemma 1.The functions{f;=(X)]n for anyN = 1,2,... and f;*(x) are asymptoti-

cally equivalent.

Proof.Due to (4.5)-(4.9) and lig., . 65 (X) = +, it is enough to prove that

jim —_6

Jm 75t 1. (4.10)

But (4.10) follows from the L'Hopital rule.

In accordance with.emma 1the following sequence of examples, particular
cases, arises. Instead &f (t) we take([f ]y, /b) for some N=1,2,..., and put
g(t) = ([f"]n,/b) for some N=1,2,.... The casé = 0 is excluded.

The following subsequence is of interest. We take instead¢f) the function
([fIn/b) and pute(t) = ([f7]n/b) for N=1,2,....

Then, for the corresponding distribution functions we abtae following ex-
pressions

F.(x,b) :ci(b)-/ox[f%exp{/ot[fgt(u)]Ndu}dt:

]
¢ (b)- {exp%/{l\:x[fi(u)],\ldu} - 1} EN (x b).

Note that the conditions (4.3) and (4.4) are equivalent éddfiowing ones

o0

/m[fb(t)]th = 4o and [ [fy(t)]ndt < +oo
JO+ 0—

forany (someN =1,2,..., respectively.
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The constant, (b) is evaluated. Indeed, for sign "-” with & b < 1 and for
sign "+” with —1 < b < 0 the function[f"(x)n is negative In the first case
Jo_[fy (u)]ndu = —a. Therefore,

FN(xb) = l—exlo{—/oX |[fb(U)]N|dU}> andc- (b) = 1.

In the second case

2(N)(x. b) = ¢_(b) {1 exp{ /\ N\du}}

e-(0) = (1—exp{ = [ 1 Wi 2},

where

For the sign "+” with 0< b < +c0 we getpositive[f," (x)]n and because of this

="xb) =c.(0)-(exp{ = [ 1y Wleu} -1

o) = (exp{+ [ 11 N|du} )L

The consideration above shows that the particular caseah.upperbound for
distribution functionF_ when(t) is chosen among introduced particular cases.
The same is true fofF, (x,b)/c, (b)) in situations withc.(b) # 1. Anyway, we
have to indicate two particular cases.

where

1 1 b 1 1 b
2'%__Bln(l—5_—(,[)),0<b<1and%_B _9o

—1<b< +o0,b#0.
3. We taked™ (t) instead of(+b/In(1+

4.3 Theresult
Now we have

Theorem 3.

1. F_(x,b) andF, (x,b) with —1 < b < 0 are upward convex onR
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2. ForF,(x,b) with 0 < b < 4+ there is a point ¥ € R* such that~, is down-
ward convex in0,xg) and upward convex ifxg, +);

3. 1—F.(x,b) varies regularly with exponerft-(a — 1+ bA)).

Proof.F.(x,b) has adensityon R*.

d(xb) = dFid(:((’ b) _ 6:(()3) exp{/oX fgt(u)du}, (4.11)

& (b) = (/omﬁlt)e)‘p{/ot fgt(u)du}dt -

Forx € R", due to (4.11), we have fore R"

%((ﬁi(x, b) — 6:(()3) exp{ /o i fgt(u)du} . { FE(x) — T];()%(s(x)}. (4.12)

For sign "-" with 0 < b < 1, and for the sign "+” with—1 < b < 0 we have
fo5(X) < 0, and, therefore, because of (4.1@)¢.. (x,b) /dx) < 0, which proves the
statement 1. withp £ 0. The casd = 0 is obvious.

For sign "+” with 0 < b < +o the limit exists Iim(ﬂw(fgf(x)/(é%(x))) =1
and $&(x) > 0,limy_ 1 & &(x) = +o0. Due to asymptotical equivalency efx)
andd™(x), and tocontinuityof terms at the right-hand-side of (4.12), we conclude
that there isq € R* such thatd ¢ (x,b) > 0 for x € (0,%) and & . (x,b) < O for
X € (Xp,+). It proves the statement 2.

where

For 1< s< + let us evaluate the limit

i 1-Fi(sxb) Jox 505y exP{ Jo_ Ty (u)du} ct

x—+eo 1 —Fy(x,b)  x—te [ 0] exp{fO fo(u)du} dt
£(s ) -

=( lim —) -S-exp Xlnjm :

X— 400 )

SX

fgt(u)du} if exists,

where the L'Hopital rule is applied.
Let us show that i\ = 0, then lim ;. [ f5"(u)du = 0. Indeed, if (4.4) holds
then limc..ve f 595 = 0. I (4. 3) holds andA = 0, then fore < (0,1) starting

from somexy we haveé_(x) < &-1for x € (Xo,+), and [*5° d“ ; <&-Ins. So,
letting € | O we obtain

i X du
e Jy 5 (U)




Dediscretization of Distributions Arising in Macroevaiom Models 145

But, due to the L'Hopital rulef* f5"(u)du and£b- [~ d‘(J) are equivalent as
X — +00. Thus, the statement for these cases is established.

Since lim_. .« (£(sX) /€(x)) = s*, therefore from (4.13) we get statement 3. for
A=0. (If 0 < s< 1 we overturn the ratio at the left-hand-side in (4.13)).

The remaining case is€ A < 4. Now, the problem consists of evaluation of
the limit

SX

X|II’E fy (U)du, Xo < X< oo, (4.13)
Since " (x) and (—b/d~(x)), (—b/d~(x)) and (—bA/x) are asymptotically
equivalent, therefore fag € (0, 1) starting from some > 0 the inequalities hold

bA bA
(1 £) < \b‘(x)|<7(1+£), Xg < X < 00,

Thus, for 1< s < 40 we obtain
b-A(lns)(1—¢) < I|m /|f |du< I|m /|f u)|du<b-A(lns)(1+¢).

Letting € | 0 we come to the relationship

SX

lim fy (U)du= —b-Alns, 1<s< 4. (4.14)

X—>+oo

Finally, (4.13) and (4.15) imply the statement 3. for:(A < +oo.

Theorem 3 is proved.

5 Conclusion

The standard birth-death process with intensities of metdegrowth generates
stationary skewed distributions suitable for modellinggnency distributions of
events arising in large-scale biomolecular systems.

We studied a large class of distributions that can be usedtteimfor instance,
frequency distributions of the number of expressed gendéseitranscriptome, the
number of protein domain occurrences in the proteomes, etc.

In particular, a newdediscretizationapproach was suggested, discussed and
applied to the chosen class. This approach conserveguhlitative properties
of the original class of distributions. The obtained disitions are often simpler
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in form and also often easily analyzed by the tools of mathEmaanalysis that
have been developed for continuous functions. We also edusieveral typical
examples which illustrate the possibilities of the deditigation approach. The
reverse procedure afediscretizationi.e. the procedure dfiscretizationwas also

studied.

References

[1] E. Danielian and J. Astola, “On the steady-state of bi#ath process with
coefficients’ moderate growthPacta Univ., Ser.: Elec. and Energol. 17, no. 3, pp.
405-419, Dec. 2004. [Online]. Available: factaee.elfalmyu/fu2k43/Astola.pdf

[2] J. Astola and E. Danielian, “On regularly varying dibutions generated by
birth-death processFacta Univ., Ser.: Elec. and Energol. 19, no. 3, pp. 109-131,
Apr. 2004. [Online]. Available: factaee.elfak.ni.ac fuzk61/astola.pdf

[3] V. A. Kuznetsov, “Family of skewed distributions assateid with the gene expression
and prometome evolutionSignal Processingvol. 83, no. 4, pp. 889-910, 2003.

[4] —, “Distributions associated with stochastic proasef gene expression in a single
eukaryotic cell'/EURASIP Journal on Applied Signal processing. 4, pp. 258-296,
2001.

[5] E. SenetaRegularly Varying Functions: Lecture Notes in MathematicSpringer-
Verlag, 1976.

[6] J.Astolaand E. Danielian, “Regularly varying skewesitdbutions generated by birth-
death processTampere, TICSP Serids 2004.

[7] W. Feller, An Introduction to Probability Theory and Its Applicatiqgri&nd ed.  John
Wiley and Sons, 1971, vol. II.

[8] E. Danielian, “Regularly varying functionsTampere, TICSP Series 18001.



