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Critical Curves and 2D Coupled Maps

Brahim Kilani, Mohamed Lamine Sahari, and llhem Djellit

Abstract: The theory of critical curves for maps of the plane providewerful tools
for locating the chief characteristic features of a diser@ynamical system in two
dimensions: the location of its chaotic attractors, itdtAsundaries, and the mecha-
nisms of its bifurcations. Nowadays one begins to recoghieeole played by critical
curves of maps in the analysis, in the understanding andigésa of the bifurca-
tions, and transition to chaotic behavior in coupled mapsthis paper we consider
some properties of such maps, which possess a chaotictatir&ome examples are
considered in this paper in which we can see the effectiveptalyed by such curves
in bifurcation theory.

Keywords: Homoclinic points, critical curves, bifurcations in endorphisms, two-
dimensional maps.

1 Introduction

We deal with noninvertible two-dimensional maps, definedcbwptinuous func-
tions, piecewise continuously differentiable, which msses a chaotic set or area,
and whose dynamics are considered as a function of a reahptea Such behav-
iors have been studied extensively, particularly in theliadplynamics literature.

The critical curve notion is an important mathematical tiidlused to study
bifurcations, that take place in invariant areas of two-elsional endomorphisms,
for either invariant absorbing areas or chaotic areas. €ma ©f critical curve
was first introduced in 1964 by Mira who provides an entry io&stain areas of
current research on noninvertible maps and the role of suckedn bifurcations
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basin. It is a natural generalization R? of the notion of critical points of one-
dimensional endomorphisms. We define the critical cw@ef an endomorphism
T in the planeR? (in means of Mira [2]) as the geometrical locus of poixtsaving

at least two coincident preimages of first rank. One detesmthis locus denoted
by LC_1, whenT is differentiable, by taking the Jacobianbfequal to zeroJ =
detDT(x,y)) = 0). A critical line LC is constituted of one or several branches.
These branches separate the plane in open regions, whegeiral of a region
have the same number of first rank antecedents.

Several autors have investigated and have shown the inmgertaf critical
curves in the bifurcations specially Gumowski and Mira [flavhave developed
the role of critical curves in bifurcations, and Gardini$%, As in one-dimensional
endomorphisms, where critical points define the boundarghsrbing intervals
and invariant intervals, and characterize the global bétions leading to chaotic
dynamics, also in two-dimensional endomorphisms critazalve play the useful
role to determine the boundary of trapping areas or of iavdrareas, at least in the
simplest cases, and thus to characterize the global bifansaof invariant sets.

We consider two examples, the first is a two coupled 1D mapsraedtigate
critical curves. We also investigate the effect of asymgnefr coupling on the
bifurcation mechanism for the loss of synchronous chaosthénsecond exam-
ple, a coupled chaotic systems with symmetry is considdrert absorbing areas
surround the synchronized chaotic attractor on the didggrax after riddling
bifurcations.

The main purpose of this work is that of stressing the cruci of the critical
curves in the characterization of the global propertiehefrhap considered in this
paper, and, in particular, their role in the occurrence @& different dynamical
behaviors.

2 Preliminary Considerations

The endomorphisrit considered here defines a discrete dynamical systd® in
(X1, Yni1) = T (%, Yn)
= (f(X,¥n:4),9(Xn, Yn; A))

wheref(x,y,A) etg(x,y,A) are continuous functions with respect to real variables
X, y and to the real parametar.

(1)

Definition 1 An absorbing area E is a closed and bounded subset as:

() T(E)CE
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(i) its frontier, JE is made up of a finite or infinite number of critical arcs of LC,
LCy,LCy,...,LCy, such that LC= T(LC_4); LC; = T/(LC) fori > 1.

(iii) A neighborhood UE) exists, such that images of finite rank of its points are
in interior of E.

Definition 2 A chaotic area A, is an invariant absorbing area(@) = A)), the
points of which give rise to iterated sequences having tbpgaty of sensitivity to
initial conditions.

Definition 3 A closed invariant set A is said to be a weak attractor in Milsense
(or simply Milnor attractor [6, 7]) if its basin B(A), i.e. the set of points whose
w-limit sets of x belongs to A has positive Lebesgue measure.

Definition 4 The basin of attraction 8\) of an attractor A is riddled if its comple-
ment intersects every disk in a set of positive measure.

Remark 1 If A is a Milnor attractor, then its basin B\) is called riddled basin if
it is such that any neighborhood of it contains points whoagttory converge to
another attractor. In other words, a riddled basin does mmiude any open subset,
S0 it corresponds to an extreme form of uncertainty, we usevttrd "riddled” to
denote a basin which is full of holes.

To describe how riddling can possibly arise as a system petemchanges :
the key point is that the chaotic attrac#in the invariant subspace has embedded
within itself an infinite number of unstable periodic orbitsd they constitute the
skeleton of the attractor. Depending on the parameterethesodic orbits can be
stable or unstable with respect to perturbations traneverthe invariant subspace.
Riddling occurs when an unstable periodic orbit, typicallylow period , first
becomes transversely unstable. When this occurs, a seistingsof an infinite
number of tonguelike structures is open at the location efatbriodic orbit and the
locations of all its preimages. The roots of these strustame thus dense in this
subspace, and have a Lebesgue measure zero. The compldrtenset of these
roots thus assumes the full measure in this subspace. Bwaiiptin the vicinity
of the subspace, the complement of the set of tongues, whitteibasin of the
attractor in the subspace.

Definition 5 The basins of attraction ) and BB) of the attractors A and B are
intermingled if each disk which intersects one of the bagina set of positive
measure also intersects the other basin in a set of positeasore.
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3 Examples of Maps and Critical Curves

Example 1 In our first example we consider the map defined by the folgwgair
of equations

Th: { Xns1=1-ax 1)

Ynr1=1—aya+b[X —yn|+C

Herex,y represent dynamical variablesis the control parameter of the uncoupled
one-dimensional maf, the coupling parameter, armch third real parameter.

First, we are concerned about global behavior in this twtsmlichaotic sys-
tems without symmetry. By varying the coupling parameteg, imvestigate the
stability of the synchronized chaotic attractor. When &lipdic saddles embed-
ded in the synchronized chaotic attractor are transversiagle, we have strong
synchronization without any burstings from the diagonal.

The stability of fixed points is ruled by the equatigh— Al| = 0, whereA is
the eigenvalud, is the identity matrix and is the Jacobian matrix of the mapping,
which is non constand = 2ax(2ay —b) if x >y andJ = 2ax(2ay+b) if x <.
SinceT is noninvertible, so global analysis which use the theoryrifcal lines
cited above apply. Noninvertibility means that there exigtset in phase plane
where the Jacobian determinant of the map vanishes. Theafdrimage of this
set is called lind.C. The existence of such a set brings a specific character into
bifurcation scenarios, shapes of attracting sets and lasins of attraction, etc.,
different from those known for invertible maps.

We also note that the Jacobian determindrtiecomes zero on the critical
curves:LC_; = {(xy) e R :x=0;y=x andy=+2 if x=y}.

A finite number of segments of image€y = [TX(LC_1)(k = 1;2;...)] of the
critical curvesLC_; can be used to define the boundary of a compact absorbing
area.

It is known that basins generated by two-dimensional naitible maps may
be either simply connected, or multiply connected, or nonneeted, depending
on the situation of their boundary with respect to the ciitisetLC. The critical
curves have been used to obtain the boundary of a compaptricagegion, called
absorbing area following many authors (see [2, 8]). In paldr, in Gardini [5],
the concept of minimal invariant absorbing area is defineatder to give a global
characterization of the different dynamical scenarioatesl to riddling bifurcation.
The minimal invariant absorbing area is the smallest alisgrarea that includes
the Milnor attractor [6] on which the synchronized dynamazur. Its delimita-
tion is important in order to characterize the global préisrwhich influence the
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gualitative effects of riddling bifurcation. In fact, a niimal invariant absorbing
area that surrounds a Milnor attractor defines a compacbmegfi the phase plane
that acts as a trapping bounded set inside which the trajeststarting near are
confined. Moreover, contacts between the portions of atittcirves bounding the
minimal absorbing area surrounding a Milnor attractor amel basin boundaries
may mark the transition between local and global riddlingqdmena, as it will be
shown here.

As the control parameteat is increased, the coupled mdpexhibits an in-
finite sequence of period-doubling bifurcations of attoastwith period 2 (n =
0;1;2...) on the invariany = x line, accumulating at a finite poiat, (= 1.401155.
Beyond the accumulation poist,, chaotic attractors exist on tlye= x line for the
a values in a positive measure set. When crossing "a cfitlcad in the (a,b)
plane, a transition from periodic to chaotic synchronmatoccurs see figures 1and
2. Bifurcation effects appear in this coupled system on vayyiarameters; notably
the route to creation of riddled basins via a riddling bifatron is put in evidence.

Fig. 1. A mixed absorbing area, surrounding theFig. 2. The repeller approaches the saddle
synchronized attractor in which the saddle (blugisaddle-node bifurcation), basin globally rid-
cross) and the repellor (red cross are embeddegied.a = 1.47,b=1.4,c=0.

a=162 b=23.635c=00.

The synchronized chaotic attractor continues to contadbaisin boundary at
a new repelling fixed point giving other situation : since fiyachronized chaotic
attractor is touching its basin boundary at the saddle psith a riddling bifurca-
tion induces a contact bifurcation between the synchrahizeotic attractor and
its basin boundary. Note also that an infinitely narrow t@gjiemanating from the
saddle point and its preimages, as shown in the inset of thigé:

Here, we are concerned about a piecewise character of thasaitlaout sym-
metry. By varying a coupling parameter, the stability of #y@mchronized chaotic
attractor changes with respect to a perturbation traneviershe synchronization
subspace. As the coupling parameter varies and passesshdluteralue, a sad-
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dle fixed point is found to first become transversely unstéireugh a transcritical
bifurcation.

Then we have a weak synchronization. For this case, the ba#le synchro-
nized chaotic attractor becomes riddled with a dense setlegh

2. LS. Lo@). a= 1.470 b= 2.e235

STawN

3000 o 3.00

Fig. 3. LCy curves in asymmetric case.

Example 2. The second example is inspired from works investigated by [9
to study the sudden destruction of hyperchaotic attractbesauthors have shown
that an asynchronous hyperchaotic attractor may appearghra blowout bifurca-
tion, where the synchronous chaotic attractor on the iawérsynchronization line
becomes unstable with respect to perturbations transvertee synchronization
line. It is a symmetrically coupled systef consisting of two identical @ maps,
given by

T,: { Xn+1=1—ax +b(y3 — x4

)
Vo1 =1 aye +bOE — y2) @

Our inspired example is as follows

b
1= 1=+ sin2nE )

27 (3)
Vi1 =1—ay + ErsinZH(xﬁ -3

The mapTl; has a symmetry property that implies the invariance of thgainal
X =Y, so that synchronized dynamics is possible. Interestirenpimena are ob-
served in [9] such that this sudden destruction of the hyetic attractor occurs
without any contact with its basin boundary. In this work,aatgular dynamic is
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considered for which the local study of the transverse Btghkin a neighborhood

of the invariant submanifold in which synchronized dynasrtiakes place, is com-
bined with a study of the global behavior of the mBp This global behavior is
investigated by studying of the critical manifolds of thepn#&lobal bifurcations

of the basins of attraction are evidenced through contastisd®en critical curves
and basin boundaries.

In this example, some global bifurcations are described: that changes the
structure of the basins, one that causes the disappearatioe invariant area de-
scribed and one causing the disappearance of any boundact@tt Such global
bifurcations are characterized as contact bifurcatiaglated to tangencies between
critical curves and basin boundaries see Figures 4and 5

Lo, Lo@). == 1.200 b= 0.400

2.500

Fig. 5. Attraction basin and Absorbing area in
yellow for T

,,,,,

2.600

Fig. 4. Portions of critical curves of increasing
rank of T,.

From [9], concrete analysis is presented, &ef 1.84, a synchronous attractor
with a single band exists on the synchronization diagonkis @ittractor is strongly
stable in the region db (= —1.406419< b < —0.433579. A riddling bifurcation
occurs wherb passes the right endpoint of this region, and then the diresigble
synchronous attractor becomes weakly stable. For this ¢thseperiod-1 saddle
embedded in the attractor becomes transversely unstabbestipercritical period-
doubling bifurcation, leading to the birth of a new asynciuos period-2 saddle.

Further increase in the coupling parameter, the synchmm@timactor loses its
transverse stability through a blowout bifurcation foe= —0.35809, and then an
asynchronous attractor bounded to the mixed absorbingea@aars. The symmet-
ric period-2 saddle becomes stabilized by emitting a passyimmetric period-2
saddles through a subcritical pitchfork bifurcation. Thiabilization of the sym-
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metric period-2 attractor leads to the sudden destructidghechyperchaotic attrac-
tor without any collision with its basin.

Global bifurcations, that change the structure of the lsasinattraction and
cause the destruction of the bounded attracting sets, amatlrized as contact
bifurcations due to tangencies between critical curvestasin boundaries. The
effects of such global bifurcations are evidenced both lier thanges induced in
the basins structure and for the different cases, usualigriteed in the literature,
that characterize the possible behaviors of the locallelteg trajectories start-
ing close to the invariant manifold which contains a Milndtractor which is not
asymptotically stable.

L. Lo@). a= 1.840 b= -2.000

Fig. 6. Synchronous; attractor far=1.84, b/ =
-2.

,,,,,,

nnnnn o 2800

Fig. 7. Portions of critical curves of increasing
rank bound an attractor of Milnor.

Weakly stable synchronous attractor on the main diagoma 01,84 andy’ =
—2 (see Figure § which is surrounded by a mixed absorbing area, boundedéy th
union of segments of the unstable manifolds of the symmp#i®d-2 saddle.We
have the same behavior in Figure 8

The models used to interpret the results on critical curvesaher complex
to illustrate, they represent structures that provide blo¢ghasymmetry for the first
(see Figure 3 and the symmetry for the second example (with Figures 7and 9
and the nonlinearity required to produce chaotic states.

4 Conclusion

The main results of the paper concern the global behaviav@htaps. Such global
behavior is characterized by the properties of the criticaes of the noninvertible
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1. LS@©). LS. Lo@). a= 1.200 b= 2.080

2.500

Fig. 8. Attraction basin and Absorbing area in _
yellow bounded by critical curves fof;, a =

s00

1.2,/ =205. Fig. 9. Portions of critical curves of increasing
rank bound an attractor of Milna= 1.2, b’ =
2.05.

map. Portions of critical curves of increasing rank boundrsariant asymptoti-
cally attracting twodimensional set that includes a Miliadiractor to which the
synchronized trajectories converge. Such a two-dimeas$iwapping region gives
an upper bound to the intermittency phenomena and becomeesnt attractor
when the Milnor attractor is transformed into a chaotic $adde show that the
folding action of the critical curves places an upper boundcow the trajectories
starting near the invariant submanifold can get away framntother words, the
study of the critical curves leads to an estimate of the aoug#i of the ‘bursts’
transverse to the diagonal and synchronized behaviors.
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