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Dynamics of a Three Parameters Family of Piecewise
Maps

Illhem Djellit and Boukemara Ibtissem

Abstract: We study the behavior under iteration of a three parameters family of piece-
wise linear maps of the plane. Our purpose is to study a particular kind of bifurcation
for this kind of maps. We wish to show that this family possesses interesting prop-
erties. Coexistence of several attractors, and characteristics of intermingled basins of
different attractors are obtained.

Keywords: Piecewise linear map, attractor, nonconservative system,intermingled
basins.

1 Introduction

The purpose of this article is to illustrate the beauty and complexity of a family of
piecewise linear maps and describe its behavior for some choices of parameter val-
ues. In parameter space and phase space, we examine some simple but nonetheless
typical cases of such maps. However, we find an interesting pattern of multiply
Arnold tongues with a weak dependence on parameters. Since linerarity on inter-
vals enables effective and simple calculations, piecewiselinear maps remain the
favorite maps to study and to apply various developments of the different notions
of dynamical systems. The present work has as aim to make see another side of the
former study done by [1] where the island structure has been finely detailed. In sev-
eral papers Devaney chooses this map for its area-preserving property and showed
a very rich and interesting structure associated with this map, which demonstrates
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many aspects of this kind of maps. There are many intriguing open problems relat-
ing to these mappings, for instance with regard to the existence of global attractors
and aperiodic solutions. We consider then this map with coexisting attractors, and
we analyze the problem of the structure of the boundaries that separate their basins
of attraction, this may become particularly challenging since the system is rep-
resented by the iteration of a piecewise map, because in thiscase nonconnected
basins can be obtained, formed by several portions. Our system possesses a large
number of coexisting periodic attractors and intermingledbasins of attraction. Re-
cently, it has been shown that, when restricted attractors are also attractors for the
full system, under certain conditions, their basins of attraction are intermingled[4].
By this we mean that the basins are so finely mixed that the basin of one attractor
has points from the basin of other attractor arbitrarily nearby, and vice versa. It is
further pointed in[3] that when this type of basin structure occurs, the dynamics
becomes qualitatively undecidable. It is the case where thesystem has invariant
submanifolds of lower dimension with respect to the state space, where chaotic
Milnor attractors are embedded. We also show how such particular dynamic situa-
tions arise in this model, and we analyze the related phenomena of riddled basins
and intermingled basins.

In [1], the area preserving map

{

x′ = f (x,y)
y′ = g(x,y)

with
f (x,y) = 1−y+ |x| ,g(x,y) = x

is described in details. This system contains an absolute value with

J( f ,g) = (
∂ f
∂x

)(
∂g
∂y

)− (
∂ f
∂y

)(
∂g
∂x

) = 1

This is a conservative system with a very rich and interesting structure, which
demonstrates many aspects of iterated maps.

In our work we replace this map by the discontinuous piecewise mapT depend-
ing on three parameters:

T =

{

x′ = 1−ax−by, y′ = x i f x > 0
x′ = 1+ax−by+c, y′ = x i f x < 0

(1)

defined by linear functions, wherea,b,c are real parameters, this map will be
treated by numerical methods. In our work we chooseb 6= 1 to complete the former
study.
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In this model with evolutive mechanism, a situation denotedas multistability is
present, i.e. several attractors exist, each with its own basin of attraction. This leads
to the question of the delimitation of the basins of attraction and their changes as the
parameters vary. This issue cannot be studied by local methods but through a global
study of the map, often requiring an interplay among geometric and numerical
methods. Moreover the complexity related to the structure of the basins is not
related, in general, to the existence of chaotic attractingsets, in the sense that simple
attractors may have basins with a complicated topological structure whereas strange
attractors, may exist whose basins have simple boundaries.

2 Presentation of Main Results

We consider the piecewise linear map(1), a meaningful characterization ofT con-
sists in the identification of its singularities, and the behavior of the latter as the
parameters varies. First, we obtain the bifurcation diagram shown in Fig. 1, which
presents information on stability region for the fixed point(blue domain), and the
existence region for attracting cycles of orderk exists(k≤ 14). The black regions
(k = 15) corresponds to the existence of bounded iterated sequences. Consecutive
narrow Arnold tongues of period 4, 6, 8, 10, 12, 14 appear (see for details[7]). We
notice that we have a succession of cycles of even period.

 

Fig. 1. Bifurcation diagram for mapT in (a,b) plane withc = −1.

We identify existence of bifurcation organization called “boxes in files” a bifur-
cation structure which corresponds to an ordering of the farey sequence of fractions
in their lowest terms. It was elaborated from Leonov’s results on the bifurcations
of one-dimensional piecewise continuous, piecewise linear maps (see[5] and[7]).
We consider an extension of the notion of attractor, known asMilnor attractor[6],
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whose basin of attraction may assume a structure, calledriddled basin, charac-
terized by an extreme form of complexity, according to the following definitions
(see [2]). The more general notion of Milnor attractor has been introduced to evi-
dence the existence of invariant sets which attract many points even if they are not
attractors in the usual topological sense. Bischi and Gardini give evidence that the
change from hard to soft blowout is caused by a collision between the basin bound-
ary and the absorbing area containing the attractor. More recently, they show that
this can only be the case ifA is an invariant absorbing area, as an absorbing area for
whichT(A)⊆A is a proper containment will have transient points on the boundary.
Moreover, they indicate that their arguments in[3] go through if we consider ab-
sorbing area of mixed type (these have boundaries that consist not only of segments
of critical curves). We would like to emphasize and indicatehere that their results
can be understood in the general setting of weak attractors;the precise form of the
boundary of a weak attractor appears to be unimportant. The minimal invariant
absorbing area is the smallest absorbing area that includesthe Milnor attractor on
which the synchronized dynamics occur. Its delimitation isimportant in order to
characterize the global properties which influence the qualitative effects of riddling
bifurcations. In fact, a minimal invariant absorbing area that surrounds a Milnor
attractor defines a compact region of the phase plane that acts as a bounded set in-
side which the trajectories starting near are confined. Moreover, contacts between
the portions of critical curves bounding the minimal absorbing area surrounding a
Milnor attractor and the basin boundaries may mark the transition between local
and global riddling phenomena, as it will be shown here. A closed invariant set
A is said to be a weak attractor in Milnor sense (or simply Milnor attractor ) if its
basinB (A), i.e. the set of points whoseω-limit sets ofx belongs toA has positive
Lebesgue measure.

Definition 1 The basin of attraction B(A) of an attractor A is riddled if its comple-
ment intersects every disk in a set of positive measure.

If A is a Milnor attractor, then its basinB(A) is calledriddled basinif it is such
that any neighborhood of it contains points whose trajectory converge to another
attractor. In other words, a riddled basin does not include any open subset, so it
corresponds to an extreme form of uncertainty, we use the word ”riddled” to denote
a basin which is full of holes, and we use the word”intermingled” to denote several
basins which are dense in each other.

Definition 2 The basins of attraction B(A) and B(B) of the attractors A and B are
intermingled if each disk which intersects one of the basinsin a set of positive
measure also intersects the other basin in a set of positive measure.
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Note that an attractor in the usual (topological) sense is also a Milnor attractor,
but the converse is not true. In fact, a topological attractor is such that its basin
B(A) contains an open neighborhood ofA, whereas for a Milnor attractor initial
conditions arbitrarily close toA can generate trajectories that are locally repelled
out fromA. In this caseB(A) is called realm of attraction reserving the term basin
whenB(A) is an open set. However, since the term basin is more standardin the
literature, we shall use such term even whenA is a Milnor (but not topological)
attractor, for whichB(A) is not, in general, an open set. Results on transverse
stability have mainly been studied when the dynamics restricted to the invariant
submanifold are chaotic. In this case the question of transverse stability is related to
the phenomenon of chaos synchronization. The particular feature of the invariance
of a submanifold of lower dimension is a standard occurrenceif the mapT has
some symmetry property, a situation that often occurs in applications. Not stable in
Lyapunov sense, attractors appear quite naturally in this context, together with new
and striking phenomena, like riddled basins and intermingled basins. We choose
parameter valuesa = −1.3,b = 0.92 andc = −1, numerically computed basins of
attraction of cycles of period 1,6,11 are shown in Fig. 2.

 

Fig. 2. The basin structures for the map (1) with the parameters a = −1.3, b = 0.92,
c = −1 : in green period-1 basin, in pink period-6 basin, in gray basin of cycle 11.

This figure show that the structure may be quite different as the values of pa-
rameters vary, and we try to understand the basic mechanismsthat cause such qual-
itative changes. In order to understand how complex basin structures are obtained,
we start from a situation in which periodic points of these cycles are represented in
Fig. 2, their basins of attraction are shown, represented bydifferent colors. Numer-
ical basin results strongly suggests that basins of attraction are intermingled.
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Again for the same value ofc and a = −0.5, b = 0.92, we have plotted the
different attractors and their basins (fig. 3). The basin structure in this case roughly
resembles to Fig. 2.

 

Fig. 3. Basins of attraction for the map(1) with the parametersa = −0.5, b = 0.96,
c=−5 : in green period-6 chaotic attractor basin, in pink period-5 cycle basin, in grey
basin of fixed point.We have a multistability and coexistence of several attractors.

These numerical basin results strongly suggests that basins of attraction are
intermingled. Further evidence of intermingling is provided by examining the dy-
namics of map (1).

 

Fig. 4. Riddled Basins of attraction for the map(1). A chaotic attractor coexists
with an attractive cycle of period 2.

For c = 4, and different values fora and b. Specifically, whena = 1.28,
b = −0.89 , we observe riddled basins of a chaotic attractor confinedin a minimal
absorbing area and a cycle of period 2 (Fig.4). When the valueof the parameter
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a = 1.0

 a = 0.8

Fig. 5. The different changes for basins of attraction fora = 1.0 anda = 0.8.

a decreases the chaotic attractor disappears by a contact bifurcation with its basin
boundary. Fora = 1.15, b = −0.89 the map(1) has two cycles of periods 2, and
8, their basins are intermingled. Such contact bifurcations can only be revealed
numerically, since the equations of the curves involved in the contact cannot be
analytically expressed in terms of elementary functions. This happens frequently
in nonlinear dynamical systems of dimension greater than one, where the study
of global bifurcations is generally obtained through an interplay between theoret-
ical and numerical methods, and the occurrence of these bifurcations is shown by
computer-assisted proofs, based on the knowledge of the properties of the map.

In Fig. 5 and 6, we give different changes of attractor’s basins by varying
parametera, whereb = −0.98, andc = 4.0.

 a = 0.3
 

a = 0.15

Fig. 6. The different changes for basins of attraction fora = 0.3 anda = 0.15.

The occurrence of the bifurcation which transforms the basins from simply con-
nected to nonconnected causes a loss of predictability about the long-run evolution
of the map.
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The presence of the infinitely many components of both basinscauses a sort of
sensitivity with respect to these initial conditions.

3 Conclusion

In this paper we investigate bifurcations associated with two-dimensional piecewise
linear map in the parameter space. Our principal results areon intermingled basins,
it seems that they appear for a very large region of phase space.
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