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SER.: ELEC. ENERG. vol. 19, no. 3, December 2006, 453-464

Closed-FormVariance Formula of the RPHD Single-Tone
Frequency Estimator

Liviu Toma, Aldo De Sabata, and Septimiu Mischie

Abstract: In this paper, we provide a very convenient, closed-form formula for the
variance of the single tone frequency estimator in the reformed Pisarenko harmonic
decomposer method. Several computer experiments show thatcalculated and mea-
sured variances are in excellent agreement. Our formula is useful when a small num-
ber of signal samples are used for frequency estimation, as asymptotic forms can lead
to important errors.

Keywords: noisy real sinusoid, frequency estimation, RPHD method, variance ana-
lysis

1 Introduction

The problem of the frequency estimation of a single real sinusoid from a finite
number of noisy data samples is relevant for various applications, such as speech
analysis, radar, sonar, communication systems, measurements, and adaptive control
[1–3]. To solve this problem, many frequency estimation techniques have been
proposed and analyzed, for example the modified covariance (MC) method [4, 5]
and the Pisarenko harmonic decomposer (PHD) method [6–8].

In a recently proposed method, called reformed Pisarenko harmonic decom-
poser (RPHD) [9–11], a closed-form, asymptotically unbiased frequency estimator
is proposed and analyzed, based on the linear prediction (LP) property of sinusoidal
signals, and on a modified least-squares (LS) cost function.The same frequency
estimator is derived in [12] from a constrained notch-filterpoint of view.
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In this paper we derive a closed-form expression of the RPHD variance, based
on the same variance analysis technique used in [11,13]. We obtained a much more
convenient formula as compared to [11].

In section 2, the RPHD method for single-tone frequency estimation is re-
viewed based on [9–11]. The variance analysis technique, the main steps and
results of the closed-form formula derivation for RPHD variance are presented in
Section 3. Details of this derivation are developed in the Appendix. Results of com-
puter experiments, presented in Section 4, show that the measured RPHD variance
agrees with the analytical calculations based on the derived formula. Conclusions
are drawn in the last section.

2 RPHD method

In single frequency estimation, the following signal modelis used [11]:

x(n) = s(n)+ q(n) = α cos(ω0n+ φ)+ q(n), n = 0,1,2, ...N (1)

whereα > 0,ω0 ∈ (0,π), andφ are the unknown amplitude, frequency and phase of
the sinusoid, andq(n) is a zero-mean white noise, which we will suppose Gaussian.
The sinusoid is linearly predictable from the past samples:

s(n) = 2cos(ω0)s(n−1)− s(n−2), (2)

a fact that allows to define an error function

e(n) = x(n)−2cos(λ )x(n−1)+ x(n−2), (3)

whereλ is the parameter to be determined.
In order to obtain an asymptotically unbiased frequency estimator, a modified

error function is defined in [11] as follows:

ε(n) =
e(n)

√

2
(

2+cos(2λ )
)

. (4)

The corresponding LS cost function is

JN(λ ) =
N

∑
n=3

e2(n)

2
(

2+cos(2λ )
) . (5)

Solving
dJN(λ )

dλ
= 0 yields [9–11]:

2AN cos2(λ )−BN cos(λ )−AN = 0 (6)
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where

AN =
N

∑
n=3

(

x(n)+ x(n−2)
)

x(n−1) (7)

and

BN =
N

∑
n=3

(

(

x(n)+ x(n−2)
)2−2x2(n−1)

)

. (8)

The root of (6) that provides the estimate is

ρ∗ =
BN +

√

B2
N +8A2

N

4AN
. (9)

The frequency estimate, which is denoted byω̂0, is computed as

ω̂0 = cos−1(ρ∗). (10)

3 RPHD variance development

The variance analysis technique [11] is based on defining a second order polyno-
mial

f (ρ) = 2ANρ2−BNρ −AN (11)

and utilizes the following formulas

var{ρ∗} ≈ E{ f 2(ρ)}
(

E{ f ′(ρ)}
)2

∣

∣

∣

∣

∣

ρ=cos(ω0)

(12)

var(ω̂0) ≈
var(ρ∗)

sin2(ω0)
. (13)

By using
ρ = cos(ω0) (14)

and (11) there results

f 2(ρ)
∣

∣

∣

ρ=cos(ω0)
= cos2(2ω0)A

2
N −2cos(ω0)cos(2ω0)ANBN +cos2(ω0)B

2
N (15)

f ′(ρ)|ρ=cos(ω0) = 4cos(ω0)AN −BN. (16)

In order to compute the variance ofω̂0 using (12) and (13), the values ofE{AN},
E{BN}, E{A2

N}, E{B2
N}, andE{ANBN} are required. The main steps that we fol-

lowed in computing these terms are presented in the Appendix. We obtained:
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E{AN} = α2(N −2+ β (2,N −1)
)

cos(ω0) (17)

E{BN} = α2(N −2+ β (2,N −1)
)

cos(2ω0) (18)

E{A2
N} = α4(N −2+ β (2,N −1)

)2
cos2(ω0)

+α2σ2
q

[

4N −10+(4N −12)cos(2ω0)+ β (2,N −1)
(

2+cos(2ω0)
)

+2β (2,N −2)+2β (3,N −1)+ β (3,N −2)
]

+ σ4
q (4N −10) (19)

E{B2
N} = α4(N −2+ β (2,N −1)

)2
cos2(2ω0)

+α2σ2
q

[

4N +4(N −4)cos(4ω0)+8β (2,N −1)
(

2+cos(2ω0)
)

−16β (2,N −2)−16β (3,N −1)+8β (3,N −2)
(

1+cos(2ω0)
)]

+σ4
q (4N −8) (20)

E{ANBN} = α4(N −2+ β (2,N −1)
)2

cos(ω0)cos2(2ω0)

+α2σ2
q

[

(4N −14)
(

cos(ω0)+cos(3ω0)
)

+2
(

β (2,N −2)+ β (3,N −1)
)cos(2ω0)

cos(ω0)
+4β (3,N −2)cos(ω0)

]

(21)

where

β (k1,k2) =
k2

∑
n=k1

cos
(

2(ω0n+ φ)
)

=
sin

(

ω0(k2− k1 +1)
)

cos
(

ω0(k2 + k1)+2φ
)

sin(ω0)

(22)

By using (12)...(21), and after denoting the signal-to-noise ratio

SNR =
α2

2σ2
q
, (23)

we obtained the closed-form variance formula of the RPHD single-tone frequency
estimator as

var{ω̂0}

≈ 2+2
(

2+cos(2ω0)
)

β (2,N −1)−2β (2,N −2)−2β (3,N −1)+ β (3,N −2)

2SNR
(

N −2+ β (2,N −1)
)2

sin2(ω0)

+
(2N −5)cos2(2ω0)+ (2N −4)cos2(ω0)

2SNR2
(

N −2+ β (2,N −1)
)2(

2+cos(2ω0)
)2

sin2(ω0)
.

(24)
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The shape of the variance in (24) is more convenient and it hasa simpler struc-
ture when compared to the original results presented in [11]. In that paper, an
asymptotic form of the variance is also considered. That form can be approached
by makingβ = 0 in (24):

varasympt{ω̂0} ≈
1

SNR(N −2)2 sin2(ω0)

+
(2N −5)cos2(2ω0)+ (2N −4)cos2(ω0)

2SNR2(N −2)2
(

2+cos(2ω0)
)2

sin2(ω0)

(25)

Minor differences are probably caused by small calculationerrors in the original
work.

4 Numerical examples

In order to confirm the expression (24) for the variance, and to evaluate its asymp-
totic form (25), we have performed some computer experiments. RPHD variances
have been measured for data sequences we have generated using (1), withα =

√
2,

and several values forσ2
q . In every experiment we computed the frequency esti-

mate using (9) and (10) for 500 independent runs, and we evaluated the measured
frequency variance of the RPHD method in terms of the mean square frequency
errors.

We used for evaluation purposes the Cramer-Rao lower bound (CRLB) for the
frequency estimator of a single sinusoid [3]

CRLB =
24σ2

q

N(N 2−1)α2 . (26)

The measured frequency variances with the RPHD method, the theoretical fre-
quency variances calculated with (24), the asymptotic forms calculated with (25),
and the CRLB are shown in every figure that illustrates the experimental results.

In Fig. 1 and Fig. 2, the frequency variances versusω0 are represented, for
N = 20, SNR = 20 dB,φ = 0, andφ = π/4 respectively. The measured variances
are very close to the variances calculated with (24), and fluctuate in function of
frequency and phase around the curve representing the asymptotic variance (they
are not always symmetric aroundω0 = π/2; β (k1,k2) is symmetric aroundω0 =
π/2 for φ = 0, but it is not forφ = π/4).

In Fig. 3 and Fig. 4, the frequency variances versus SNR are represented, at
ω0 = 0.2π, N = 20, φ = 0, andφ = π/4 respectively. It can be noticed that, like
for all methods, errors increase at low values of theSNR.
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Fig. 1. Frequency variances versusω0 atSNR =
20 dB,N = 20 andφ = 0.
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Fig. 2. Frequency variances versusω0 atSNR =
20 dB,N = 20 andφ = π/4.
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Fig. 3. Frequency variances versusSNR atω0 =
0.2π, N = 20 andφ = 0.
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Fig. 4. Frequency variances versusSNR atω0 =
0.2π, N = 20 andφ = π/4.

Fig. 5 and Fig. 6 show the frequency variances in function ofN for ω0 = 0.2π,
SNR = 20 dB, φ = 0, andφ = π/4 respectively. The coincidence between the
measured and the calculated variances is remarkable again.It can be seen from
(24) and (25) that, while the calculated variance depends onφ , its asymptotic form
does not. Figures 5 and 6 show that important differences between the two can
occur in function ofφ , for the small values ofN that are used in practice and in our
experiments, and attenuate relatively whenN becomes large.

5 Conclusions

In this contribution we provided a very convenient, closed-form expression for the
variance of the frequency estimator in the RPHD method of single-tone frequency
estimation from a finite set of data samples. The signal modelconsisted in a sam-
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Fig. 5. Frequency variances versusN at ω0 =
0.2π, SNR = 20 dB andφ = 0.
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Fig. 6. Frequency variances versusN at ω0 =
0.2π, SNR = 20 dB andφ = π/4.

pled sinusoid, embedded in white, gaussian noise. We also derived an asymptotic
form of the variance, which agreed with previously published results. We validated
our results by means of several computer experiments. Coincidence between the
experimental variances and those calculated with our formula (24) was remarkable
in all cases, except for very low signal-to-noise ratios. According to the experi-
mental results, the fact that the asymptotic variance (25) does not depend on the
phase of the sampled sinusoid, while (24) does, can be a serious drawback, so that
quite large errors are possible in the case of a small number of samples. This is
an argument for the usefulness of our closed-form formula (24) as, in common
applications, a number as small as possible of signal samples is desired.

Appendix

The main steps that are necessary for computing the values ofE{AN}, E{BN},
E{A2

N}, E{B2
N}, andE{ANBN} are presented in this Appendix.

We use (1), (2) , (7), and (22) in order to get

AN = TA1+ TA2+ TA3, (A1)

where

TA1 =
N

∑
n=3

2α2 cos(ω0)cos2
(

ω0(n−1)+ φ
)

= α2(N −2+ β (2,N −1)
)

cos(ω0), (A2)

TA2 =
N

∑
n=3

α cos
(

ω0(n−1)+ φ
)(

2cos(ω0)q(n−1)+ q(n)+ q(n−2)
)

, (A3)
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and

TA3 =
N

∑
n=3

q(n−1)
(

q(n)+ q(n−2)
)

. (A4)

As q(n) is white, with zero mean, we have

E{q(n)} = 0; E{q(n)q(m)} = δ n
mσ2

q . (A5)

There resultsE{TA2} = E{TA3} = 0, E{AN} = E{TA1} = TA1 and (17).

In order to calculateE{A2
N}, we note that, due to (A5), we haveE{TAiTA j} = 0

for i 6= j. Therefore

E{A2
N} = T 2

A1+ E{T 2
A2}+ E{T 2

A3}. (A6)

We evaluate now the second and the third term in the RHS of (A6).

E{T 2
A2} =

N

∑
n=3

α2cos2
(

ω0(n−1)+ φ
)

×
[

4cos2(ω0)E
{(

q(n−1)
)2}

+ E
{(

q(n)
)2}

+ E
{(

q(n−2)
)2}]

+2
N

∑
n=3

N

∑
m=n+1

α2cos
(

ω0(n−1)+ φ
)

cos
(

ω0(m−1)+ φ
)

×E
{(

2cos(ω0)q(n−1)+ q(n)+ q(n−2)
)

×
(

2cos(ω0)q(m−1)+ q(m)+ q(m−2)
)}

.

By performing the multiplications and by using (A5) there results

E{T 2
A2} =

N

∑
n=3

α2 1+cos
(

2ω0(n−1)+2φ
)

2

(

4σ2
q cos2(ω0)+2σ2

q

)

+
N

∑
n=3

N

∑
m=n+1

α2[cos
(

ω0(n+ m−2)+2φ
)

+cos
(

ω0(m−n)
)]

×
[

2cos(ω0)E{q(n−1)q(m−2)}
+2cos(ω0)E{q(n)q(m−1)}+ E{q(n)q(m−2)}

]

.
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Using again (A5) we get

E{T 2
A2} = α2σ2

q

(

N −2+ β (2,N −1)
)(

cos(2ω0)+2
)

+α2σ2
q

N−1

∑
n=3

4cos(ω0)
(

cos
(

(2n−1)ω0 +2φ
)

+cos(ω0)
)

+α2σ2
q

N−2

∑
n=3

(

cos(2ω0n+2φ)+2cos(2ω0)
)

= α2σ2
q [4N −10+(4N −12)cos(2ω0)

+β (2,N −1)
(

2+cos(2ω0)
)

+2β (2,N −2)

+2β (3,N −1)+ β (3,N −2)]. (A7)

Then

E{T 2
A3} = E

{

N

∑
n=3

[(

q(n−1)q(n)
)2

+2q2(n−1)q(n)q(n−2)

+
(

q(n−1)q(n−2)
)2]}

+2E
{

N

∑
n=3

N

∑
m=n+1

q(n−1)q(m−1)

×
(

q(m)+ q(m−2)
)(

q(n)+ q(n−2)
)}

= 2(N −2)σ4
q +2

N−1

∑
n=3

E{q2(n)q2(n−1)}

= (4N −10)σ4
q . (A8)

With the use of (A2), (A6), (A7), and (A8) we obtain (19).
From (1), (2), (8), and (22) we get

BN = TB1+ TB2+ TB3 (A9)

where

TB1 =α2(N −2+ β (2,N −1)
)

cos(2ω0), (A10)

TB2 =4α
N

∑
n=3

cos
(

ω0(n−1)+ φ
)

×
(

cos(ω0)
(

q(n)+ q(n−2)
)

−q(n−1)
)

, (A11)

and

TB3 =
N

∑
n=3

(

q2(n)+ q2(n−2)+2q(n)q(n−2)−2q2(n−1)
)

. (A12)
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The application of (A5) yields as beforeE{BN} = TB1, (18) and

E{B2
N} = T 2

B1+ E{T 2
B2}+ E{T 2

B3}. (A13)

We have

E{T 2
B2} = 16α2

N

∑
n=3

cos2
(

ω0(n−1)+ φ
)(

2σ2
q cos2(ω0)+ σ4

q

)

+32α2
N

∑
n=3

N

∑
m=n+1

cos
(

ω0(n−1)+ φ
)

cos
(

ω0(m−1)+ φ
)

×E
{(

cos(ω0)
(

q(n)+ q(n−2)
)

−q(n−1)
)

×
(

cos(ω0)
(

q(m)+ q(m−2)
)

−q(m−1)
)}

.

By performing the multiplications and by using again (A5) weget

E{T 2
B2} = 16α2σ2

q

(

2cos2(ω0)+1
)

N

∑
n=3

1+cos
(

2ω0(n−1)+2φ
)

2

+16α2
N

∑
n=3

N

∑
m=n+1

(

cos
(

ω0(m + n−2)+2φ
)

+cos
(

ω0(m−n)
)

)

×
[

cos2(ω0)E{q(n)q(m−2)}
−cos(ω0)

(

E{q(n)q(m−1)}+ E{q(n−1)q(m−2)}
)]

= 8α2σ2
q

(

N −2+ β (2,N −1)
)(

cos(2ω0)+2
)

+16α2σ2
q

N−2

∑
n=3

(

cos(2ω0n+2φ)+cos(2ω0)
)

cos2(ω0)

−32α2σ2
q

N−1

∑
n=3

(

cos
(

ω0(2n−1)+2φ
)

+cos(ω0
)

)

cos(ω0).

After some manipulations there results

E{T 2
B2} = α2σ2

q

[

4N +4(N −4)cos(4ω0)+8β (2,N −1)
(

2+cos(2ω0)
)

−16β (2,N −2)−16β (3,N −1)+8β (3,N −2)
(

1+cos(2ω0)
)]

.
(A14)

For the last term in (A9) we have

E{T 2
B3} = 4(N −2)σ4

q

+2
N

∑
n=3

N

∑
m=n+1

E
{(

q2(n)+ q2(n−2)+2q(n)q(n−2)−2q2(n−1)
)

×
(

q2(m)+ q2(m−2)+2q(m)q(m−2)−2q2(m−1)
)}

= 4(N −2)σ4
q . (A15)



Closed-FormVariance Formula of the RPHD Single-Tone Frequency Estimator463

With the use of (A10), (A13), (A14), and (A15) we obtain (20).

We now start from (A1)...(A4) and A(9)...A(12) in order to obtain

E{ANBN} = TC1 + TC2+ TC3 (A16)

where
TC1 = α4 cos(ω0)cos(2ω0)

(

N −2+ β (2,N −1)
)2

, (A17)

TC2 = α2
N

∑
n=3

N

∑
m=3

4cos
(

ω0(n−1)+ φ
)

cos
(

ω0(m−1)+ φ
)

×E
{

(

2cos(ω0)q(n−1)+ q(n)+ q(n−2)
)

×
(

cos(ω0)
(

q(m)+ q(m−2)−q(m−1)
)

)}

, (A18)

and

TC3 = E
{

N

∑
n=3

N

∑
m=3

q(n−1)
(

q(n)+ q(n−2)
)

×
(

q2(m)+ q2(m−2)+2q(m)q(m−2)−2q2(n−1)
)}

= 0. (A19)

The last equality in (A19) follows from (A5).
The quantity defined in (A18) can be calculated as follows

TC2 = 2α2
N

∑
n=3

N

∑
m=3

(

cos
(

ω0(m + n−2)+2φ
)

+cos
(

ω0(m−n)
)

)

×
(

(

4cos2(ω0)−2
)

q(n−1)q(m)+2cos(ω0)q(n−1)q(m)
)

= 4α2σ2
q

N−1

∑
m=3

cos(2ω0)
(

cos
(

ω0(2m−1)+2φ
)

+cos(ω0)
)

+4α2σ2
q

N−2

∑
m=3

cos(ω0)
(

cos(2ω0m +2φ)+cos(2ω0)
)

.

After some straightforward transformations we get

TC2 = α2σ2
q

[

(4N −14)
(

cos(ω0)+cos(3ω0)
)

+2
(

β (2,N −2)+ β (3,N −1)
)cos(2ω0)

cos(ω0)
+4β (3,N −2)cos(ω0)

]

. (A20)

With the use of (A16), (A17), (A19), and (A20) we obtain (21).
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