Reduction of Operational Amplifiers Finite Gain Effects in Switched-Capacitor Low-Pass Notch Biquads

Nikolay Radev and Kantcho Ivanov

Abstract: An combined approach for reducing the errors in the notch frequency f_z , in the pole frequency f_p , in the quality factor Q_p and in the amplitude H_p at the pole frequency of switched-capacitor low-pass notch biquads is presented. At first, the conventional integrators in the biquads are replaced with gain- and offset-compensated integrators. Subsequently, the errors $\Delta f_z/f_z$, $\Delta f_p/f_p$, $\Delta Q_p/Q_p$ and $\Delta H_p/H_p$ are minimized by modifying the values of the integrating capacitances and of the appropriately chosen zero-forming and pole-forming capacitances. The effectiveness of this approach is demonstrated by designing two low-pass notch biquad topologies which realize the same transfer function.

Keywords: filters, gain- and offset- compensation, operational amplifiers, switched-capacitor integrators

1 Introduction

One of the important nonideal properties which influence the performance of the switched-capacitor (SC) circuits is the finite dc gain *A* of the operational amplifiers (op amps). In filters, the finite gain causes errors in both the amplitude and the phase responses [1, 2]. From the point of view of simplifying amplifier design and improving high-frequency capability several gain- and offset- compensated (GOC) SC building blocks (integrators, gain stages, sample-and-hold circuits) have been reported in the literature. The phase error $\theta(\omega)$ of the GOC integrators is proportional to $1/A^2$ (in a conventional integrator this is a simple inverse dependence 1/A). In most of the GOC integrators proposed the reduction in phase error was obtained at the expense of increased gain error $m(\omega)$.

Manuscript received March 20, 2006.

The authors are with Dept. Theory of Electrical Engineering, Faculty of Automatica, Technical University of Sofia, 8, Kliment Ohridski Blvd., 1000 Sofia, Bulgaria ivanovkp@tu-sofia.bg

⁴⁶⁵

The SC low-pass notch (LPN) biquads are commonly realized using a feedback loop containing one inverting and one noninverting conventional integrators.

The gain errors of the integrators affect the notch frequency f_z and the pole frequency f_p of the biquads, while the phase errors affect the zero Q-factor Q_z , the pole Q-factor Q_p , the attenuation H_z at the notch frequency and the magnitude H_p of the biquad transfer function at the pole frequency.

A combined approach for minimization the effects of op amps finite gain in switched-capacitor bandpass biquads has been presented in [3].

In this paper the approach proposed in [3] is adapted for reducing the errors in the notch frequency f_z , in the pole frequency f_p , in the quality factor Q_p and in the amplitude H_p at the pole frequency of SC LPN biquads with low but precisely known and stable op amps dc gain [4]. The effectiveness of this approach is verified for two LPN biquad topologies which realize the same transfer function.

2 Proposed design approach

The z-domain transfer function of the LPN biquads has the general form

$$H(z) = \frac{N(z)}{D(z)} = k \frac{1 + a_1 z^{-1} + a_2 z^{-2}}{1 + b_1 z^{-1} + b_2 z^{-2}},$$
(1)

which for any pairs of complex conjugate zeros and poles can be rewritten as

$$H(z) = k \frac{1 - 2R_z \cos \theta_z z^{-1} + R_z^2 z^{-2}}{1 - 2R_P \cos \theta_P z^{-1} + R_P^2 z^{-2}}.$$
(2)

Here, R_z is the radius and θ_z is the angle to the zero; R_p and Q_p correspond to the pole radius and angle, respectively. From (2) the following relationships for the notch frequency f_z , the zero Q-factor Q_z , the pole frequency f_p and the pole Q-factor Q_p can be derived:

$$f_z = \frac{f_s}{2\pi} \sqrt{\theta_z^2 + (\ln R_z)^2}, \quad Q_z = -\frac{\pi f_z / f_s}{\ln R_z}$$
 (3)

and

$$f_p = \frac{f_s}{2\pi} \sqrt{\theta_p^2 + (\ln R_p)^2}, \quad Q_p = -\frac{\pi f_p / f_s}{\ln R_p},$$
 (4)

where f_s is the sampling frequency.

For small ratios f_z/f_s , f_p/f_s and high Q-factors the frequencies f_z , f_p and the Q-factors Q_z , Q_p are approximately given by

$$f_z \approx \frac{f_s}{2\pi} \sqrt{1 + a_1 + a_2}, \quad Q_z \approx \frac{\sqrt{1 + a_1 + a_2}}{1 - a_2}$$
 (5)

and

$$f_p \approx \frac{f_s}{2\pi} \sqrt{1+b_1+b_2}, \quad Q_p \approx \frac{\sqrt{1+b_1+b_2}}{1-b_2}.$$
 (6)

For standard design of LPN biquads the op amps gain values are assumed to be infinite. Then, the coefficients in (1) are functions of the capacitances only and $Q_z \rightarrow \infty$ ($a_2 = 1$). In this case, from (5), (6) and (1) the logarithmic sensitivities of the f_z , f_p , Q_p and of the amplitude H_p at the pole frequency to the capacitances can be obtained.

The proposed combined approach for minimization of the errors $\Delta f_z/f_z$, $\Delta f_p/f_p$, $\Delta Q_p/Q_p$, $\Delta H_p/H_p$ and for enhancement of Q_z consists in the following consecutive steps, in which the calculations are made for the nominal value A_o of the op amps dc gain A:

Step 1. First, to reduce the effect of op amp imperfections (dc gain *A* and offset voltage V_{OS}) the conventional integrators in the LPN biquad considered are replaced with Nagaraj-86 [5] and Ki-89 [6] GOC SC integrators. These simple biphase integrators form an excellent GOC integrator-pair without using extra clock phases or holding circuits to satisfy the sampling conditions. The reduced phase errors of the GOC integrators provide a reduction in the errors $\Delta Q_p/Q_p$, $\Delta H_p/H_p$ and enhance the quality factor Q_z .

Step 2. The gain error $m(\omega)$ of the integrators is equivalent to an element value variation ΔC_i of the integrating capacitance C_i . If the finite dc gain A_o is known, the value of C_i can be replaced with $C'_i = C_i(1+m)$ in the two integrators of the GOC biquad, thereby essentially reducing the gain errors $m(\omega)$ [7]. This prewarping technique automatically provides a reduction in the notch frequency error $\Delta f_z/f_z$ and in the pole frequency error $\Delta f_p/f_p$ of the biquad considered.

<u>Step 3.</u> For some LPN biquad configurations the compensation in Step 2 is not sufficiently effective. In this case the errors $(\Delta f_z/f_z)_2$ and $(\Delta f_p/f_p)_2$, obtained in the previous step, can be further reduced by modifying one zero-forming capacitance C_z and one pole-forming capacitance C_{p1} . The new capacitance values C'_z and C'_{p1} are the solutions of the equations

$$S_{C_z}^{f_z} \left(\frac{C'_z}{C_z} - 1\right) = -\left(\frac{\Delta f_z}{f_z}\right)_2 \tag{7}$$

and

$$S_{C_{p_1}}^{f_p} \left(\frac{C'_{p_1}}{C_{p_1}} - 1 \right) = -\left(\frac{\Delta f_p}{f_p} \right)_2.$$
(8)

The sensitivities $S_{C_z}^{f_z}$ and $S_{C_{p_1}}^{f_p}$ are calculated using (5) and (6) for the initial values of the capacitances and infinite op amp dc gain.

Step 4. The errors $(\Delta Q_p/Q_p)_2$ and $(\Delta H_p/H_p)_2$ obtained in Step 2, or the errors $(\Delta Q_p/Q_p)_3$ and $(\Delta H_p/H_p)_3$ obtained in Step 3, can be further minimized by modifying one another pole-forming capacitance C_{p2} . This capacitance is chosen such that the following relations hold:

$$S_{C_{p_2}}^{Q_p} \approx S_{C_{p_2}}^{H_p}, \quad \left|S_{C_{p_2}}^{f_p}\right| \ll 1, \quad \left|S_{C_{p_2}}^{f_z}\right| \ll 1.$$
 (9)

The new capacitance value C'_{p2} is calculated from the equations

$$S_{C_{p_2}}^{Q_p} \left(\frac{C'_{p_2}}{C_{p_2}} - 1 \right) = -\left(\frac{\Delta Q_p}{Q_p} \right)_r \tag{10}$$

and

$$S_{C_{p_2}}^{H_p} \left(\frac{C'_{p_2}}{C_{p_2}} - 1 \right) = -\left(\frac{\Delta H_p}{H_p} \right)_r.$$
 (11)

The terms $(\Delta Q_p/Q_p)_r$ and $(\Delta H_p/H_p)_r$ on the right hand sides are the errors $(\Delta Q_p/Q_p)_2$ and $(\Delta H_p/H_p)_2$ obtained in Step 2, or the errors $(\Delta Q_p/Q_p)_3$ and $(\Delta H_p/H_p)_3$ obtained in Step 3.

The following two cases are considered:

a) The capacitance C'_{p2} is the solution of equation (10), i.e.,

$$C'_{p2} = C_{p2} \left[1 - \frac{(\Delta Q_p / Q_p)_r}{S^{Q_p}_{C_{p_2}}} \right].$$
 (12)

b) The capacitance C'_{p2} is the average of the solutions of (10) and (11), i.e.,

$$C'_{p2} = C_{p2} \left\{ 1 - 0.5 \left[\frac{(\Delta Q_p / Q_p)_r}{S_{C_{p_2}}^{Q_p}} + \frac{(\Delta H_p / H_p)_r}{S_{C_{p_2}}^{H_p}} \right] \right\}.$$
 (13)

3 Application of the proposed approach

The approach proposed is illustrated by means of two LPN biquad topologies. For comparative purposes the two biquads are designed to fulfil the same specifications:

$$f_p \cong 1 \,\mathrm{kHz}, \quad f_z \cong 2.5 \,\mathrm{kHz}, \quad Q_p \cong 30, \quad H_p \cong 28 \,\mathrm{dB}, \quad f_s \cong 12.5 \,\mathrm{kHz}.$$

Fig.1 shows the circuit schema of the Martin and Sedra's type-I LPN biquad with conventional integrator [8]. The relative capacitance values are: C_1 =2.027, CF_1 =1, CB_1 =1, CB_2 =1, C_2 =59.207, CF_2 =29.945 and CF_3 =10.687.

Fig. 1. Martin and Sedra's type-I LPN biquad with conventional integrators.

The ideal z-domain transfer function is

$$H_{id}^{22}(z) = -\frac{CF_3}{C_2} \frac{z^{-2} - \left[2 - \frac{CF_1CF_2}{C_1 CF_3}\right] z^{-1} + 1}{z^{-2} - \left[2 + \frac{CB_2}{C_2} - \frac{CB_1CF_2}{C_1 C_2}\right] z^{-1} + \frac{CB_2}{C_2} + 1}.$$
 (14)

The frequencies f_z and f_p , and the quality factor Q_p are approximately given by

$$f_z \approx \frac{f_s}{2\pi} \sqrt{\frac{CF_1 CF_2}{C_1 CF_3}}, \qquad f_p \approx \frac{f_s}{2\pi} \sqrt{\frac{CB_1 CF_2}{C_1 (C_2 + CB_2)}}$$

$$Q_p \approx \sqrt{\frac{CB_1 CF_2 (C_2 + CB_2)}{C_1 CB_2^2}}.$$
(15)

It was found that for nominal op amps gains
$$A_{0_1} = A_{0_2} = 100$$
 the deviations of f_z , f_p , Q_p and H_p from the ideal case are:

$$(\Delta f_z/f_z)_c = -0.852\%, \quad (\Delta f_p/f_p)_c = -1.427\%,$$

 $(\Delta Q_p/Q_p)_c = -47.33\%, \quad (\Delta H_p/H_p)_c = -47.25\%.$

The zero *Q*-factor and the attenuation at f_z are $Q_{zc} = 128.18$ and $H_{zc} = -56.78$ dB.

According to the approach proposed the first integratior in the conventional biquad (Fig.1) is replaced with the Nagaraj-86 integrator and the second integratorwith the Ki-89 integrator. The resulting filter is shown in Fig.2, where $C_{h1} = 1$ and $C_{h2} = C_2$.

The performance parameters of the GOC biquad for $A_{0_1} = A_{0_2} = 100$ are

$$(\Delta f_z/f_z)_1 = -1.4033\%, \quad (\Delta f_p/f_p)_1 = -2.0818\%, (\Delta Q_p/Q_p)_1 = -1.4044\%, \quad (\Delta H_p/H_p)_1 = -1.1374\%$$
(16)
$$Q_{z1} = 13000, \quad H_{z1} = -96.91 \,\mathrm{dB}, \quad H(2500 \,\mathrm{Hz}) = -45.87 \,\mathrm{dB}.$$

Fig. 2. Martin and Sedra's type-I LPN biquad with GOC integrators.

First, for reducing the errors $(\Delta f_z/f_z)_1$ and $(\Delta f_p/f_p)_1$ of the GOC biquad, the integrating capacitances C_1 and C_2 are modified according to the expressions [9]

$$C_1' = \left(C_1 - \frac{CF_1 + CB_1 + C_{h_1}}{A_{0_1}}\right) \left(1 + \frac{1}{A_{0_1}}\right)^{-1}$$
(17)

and

$$C_2' = \left(C_2 - \frac{CB_2 + CF_2 + CF_3}{A_{0_2}}\right) \left(1 + \frac{1}{A_{0_2}}\right)^{-1}.$$
(18)

For $A_{0_1} = A_{0_2} = 100$ one obtains $C'_1 = 1.977228$ and $C'_2 = 58.208594$. The corresponding performance parameters of the biquad are

$$(\Delta f_z/f_z)_2 = -3.25.10^{-5}\%, \quad (\Delta f_p/f_p)_2 = -2.075.10^{-3}\%, (\Delta Q_p/Q_p)_2 = -0.98282\%, \quad (\Delta H_p/H_p)_2 = -0.98410\%,$$
(19)
$$Q_{z_2} = 12867, \quad H_{z_2} = -96.68 \,\mathrm{dB}, \quad H(2500\,\mathrm{Hz}) = -84.35\,\mathrm{dB}.$$

From (15) and (14) one finds

$$S_{CB_2}^{Q_P} = -\frac{2C_2 + CB_2}{2(C_2 + CB_2)} = -0.99170, \quad S_{CB_2}^{f_P} = -\frac{CB_2}{2(C_2 + CB_2)} = -8.305.10^{-3},$$

 $S_{CB_2}^{H_P} = -1.00162.$

Nearly the same errors $(\Delta Q_p/Q_p)_2$ and $(\Delta H_p/H_p)_2$, on one hand and nearly the same sensitivities $S_{CB_2}^{Q_p}$ and $S_{CB_2}^{H_p}$ on the other hand suggest that the errors $(\Delta Q_p/Q_p)_2$ and $(\Delta H_p/H_p)_2$ can be further reduced by modifying the capacitance CB_2 . The choice of this capacitance is based also on the low sensitivity $S_{CB_2}^{f_p}$.

The new capacitance value CB'_2 is given by the expression

$$CB'_{2} = CB_{2} \left[1 - \frac{(\Delta Q_{p}/Q_{p})_{2}}{S^{Q_{p}}_{CB_{2}}} \right].$$
 (20)

One obtains $CB'_2 = 0.9900895$. The corresponding performance parameters of the biquad are

$$(\Delta f_z/f_z)_3 = -3.171.10^{-5}\%, \quad (\Delta f_p/f_p)_3 = 6.355.10^{-3}\%, (\Delta Q_p/Q_p)_3 = -5.928.10^{-3}\%, \quad (\Delta H_p/H_p)_3 = 6.873.10^{-7}\%, Q_{z_3} = 12867, \quad H_{z_3} = -96.68 \,\mathrm{dB}, \quad H(2500 \,\mathrm{Hz}) = -84.35 \,\mathrm{dB}.$$

The capacitance CB'_2 can be made equal to the unit capacitance. Then, the new values of the capacitances C_2 , CF_2 and CF_3 are

$$C_2 = 58.791247$$
, $CF_2 = 30.244742$ and $CF_3 = 10.793974$

By rounding-off the values of the capacitances to the third digit after the decimal point we finally obtain

$$C_1 = 1.977, \quad CF_1 = 1, \quad CB_1 = 1, \quad C_{h_1} = 1, \quad C_2 = 58.791, \\ CB_2 = 1, \quad CF_2 = 30.245, \quad CF_3 = 10.794, \quad C_{h_2} = 58.791.$$

Table 1 summarizes the performance parameters of the GOC Martin and Sedra's type-I LPN biquad with rounded-off capacitances and gain variation $A_{0_1} = A_{0_2} = 100 \pm 8$.

Table 1. Performance parameters of the GOC Matrin and Sedra's type-I LPN biquad with rounded-off capacitances

A	92	100	108
$(\Delta f_z/f_z)$ [%]	-0.1164	$6.884.10^{-3}$	0.1122
$(\Delta f_p/f_p)$ [%]	-0.1699	0.0128	0.1690
$(\Delta Q_p/Q_p)$ [%]	-0.2156	$1.727.10^{-4}$	0.1734
$(\Delta H_p/H_p)$ [%]	-0.1860	$6.113.10^{-3}$	0.1596
Q_z	10906	12865	14997
$H(f_z)[dB]$	-95.26	-96.68	-97.99
$H(2.5 \mathrm{kHz})[\mathrm{dB}]$	-68.42	-81.29	-66.31

The GOC-version of the conventional Huang and Sansen's LPN biquad (Fig.5 from [10]) is shown in Fig.3. The relative capacitance values are: $C_1 = 2.02$, $C_{1S} = 27.79$, $CF_1 = 1$, $CB_1 = 1$, $CB_2 = 1$, $C_2 = 5.633$, $CF_2 = 2.79$, $CF_3 = 1$, $C_{h_1} = 1$ and $C_{h_2} = C_2$.

Fig. 3. Huang and Sansen's LPN biquad with GOC integrators.

The performances parameters of the GOC biquad for $A_{0_1} = A_{0_2} = 100$ are

$$\begin{aligned} (\Delta f_z/f_z)_1 &= -1.6892\%, \quad (\Delta f_p/f_p)_1 &= -2.3416\%, \\ (\Delta Q_p/Q_p)_1 &= -0.2035\%, \quad (\Delta H_p/H_p)_1 &= 0.058\% \\ Q_{z_1} &= 6622, \quad H_{z_1} &= -91.04\,\mathrm{dB}, \quad H(2500\,\mathrm{Hz}) &= -44.02\,\mathrm{dB}. \end{aligned}$$
(21)

For the modified values of the integrating capacitances $C'_1 = 1.970297$ and $C'_2 = 5.539703$ the performance parameters of the biquad are

$$(\Delta f_z/f_z)_2 = -0.28253\%, \quad (\Delta f_p/f_p)_2 = -0.25599\%, (\Delta Q_p/Q_p)_2 = 0.07455\%, \quad (\Delta H_p/H_p)_2 = 0.0660\%, Q_{z_2} = 6625, \quad H_{z_2} = -90.91 \,\mathrm{dB}, \quad H(2500 \,\mathrm{Hz}) = -58.52 \,\mathrm{dB}.$$
(22)

The errors $(\Delta f_z/f_z)_2$ and $(\Delta f_p/f_p)_2$ can be further reduced by modifying the zeroforming capacitance CF_1 and the pole-forming capacitance CB_1 . The new capacitance values CF'_1 and CB'_1 are the solutions of the equations

$$S_{CF_1}^{f_z}\left(\frac{CF_1'}{CF_1}-1\right) = -\left(\frac{\Delta f_z}{f_z}\right)_2, \quad S_{CB_1}^{f_p}\left(\frac{CB_1'}{CB_1}-1\right) = -\left(\frac{\Delta f_p}{f_p}\right)_2.$$
(23)

One obtains $CF'_1 = 1.0056506$ and $CB'_1 = 1.0051199$, for which the performance parameters of the biquad are

$$(\Delta f_z/f_z)_3 = 3.961.10^{-2}\%, \quad (\Delta f_p/)_3 = 1.792.10^{-3}\%, (\Delta Q_p/Q_p)_3 = 0.3300\%, \quad (\Delta H_p/H_p)_3 = 0.3972\%, Q_{z_3} = 6629, \quad H_{z_3} = -90.92\,\mathrm{dB}, \quad H(2500\,\mathrm{Hz}) = -88.19\,\mathrm{dB}.$$
(24)

The errors $(\Delta Q_p/Q_p)_3$ and $(\Delta H_p/H_p)_3$ can be reduced by modifying the capacitance CB_2 . The new capacitance value CB'_2 is the average of the capacitance $(CB'_2)_{O_P}$ and $(CB'_2)_{H_P}$ calculated from the equations

$$S_{CB_2}^{Q_p}\left(\frac{(CB_2')_{Q_p} - CB_2}{CB_2}\right) = -\left(\frac{\Delta Q_p}{Q_p}\right)_3$$
(25)

and

$$S_{CB_2}^{H_p}\left(\frac{(CB_2')_{H_p} - CB_2}{CB_2}\right) = -\left(\frac{\Delta H_p}{H_p}\right)_3.$$
 (26)

This results in $CB'_{2} = 1.0036366$.

Table 2 summarizes the performance parameters of the GOC Huang and Sansen's LPN biquad with rounded-off capacitances and gain variation $A_{0_1} = A_{0_2} = 100 \pm 8$.

 Table 2. Performance parameters of the GOC Huang and Sansen's LPN biquad with rounded-off capacitances

A	92	100	108
$\left(\Delta f_z/f_z\right)$ [%]	-0.0800	0.0682	0.1949
$(\Delta f_p/f_p)$ [%]	-0.2032	$2.133.10^{-3}$	0.1777
$(\Delta Q_p/Q_p)$ [%]	-0.22606	-0.062	0.0603
$(\Delta H_p/H_p)$ [%]	-0.0791	0.0622	0.1653
Q_z	5619	6631	7728
$H(f_z)[dB]$	-89.50	-90.93	-92.25
$H(2.5 \mathrm{kHz})[\mathrm{dB}]$	-67.44	-77.25	-64.24

4 Conclusion

A combined approach for reducing the effects of op amps finite gain in switchedcapacitor low-pass notch biquads has been presented. The effectiveness of the approach proposed has been demonstrated by two low-pass notch biquad topologies which realize the same transfer function. The filters with modified capacitances have approximately an order smaller of magnitude relative errors

References

- K. Martin and A. S. Sedra, "Effects of the op amp finite gain and bandwidth on the performance of switched-capacitor filters," in *Proc.1980 IEEE ISCAS*, 1980, pp. 321–325.
- [2] A. S. Sedra and M. W. Chomic, "High-frequency switched-capacitor filter: performance limitations and design considerations," in *Proc. 1984 IEEE ISCAS*, 1984, pp. 646–650.

- [3] N. Radev, N. Mastorakis, and V. Mladenov, "Minimization of operational amplifiers finite gain effects in switched-capacitor biquads," WSEAS Trans. Circuits Syst., Issue 5, vol. 3, pp. 1130–1134, 2004.
- [4] A. Baschirotto, R. Alini, and R. Castello, "BiCMOS operational amplifier with precise and stable dc gain for high-frequency switched capacitor circuits," *Electron. Lett.*, vol. 27, no. 15, pp. 1338–1340, 1991.
- [5] K. Nagaraj, J. Vlach, T. R. Viswanathan, and K. Singhal, "Switched-capacitor integrator with reduced sensitivity to amplifier gain," *Electron. Lett.*, vol. 22, no. 21, pp. 1103–1105, 1986.
- [6] W. H. Ki and G. C. Temes, "Low-phase-error offset-compensated switched-capacitor integrator," *Electron. Lett.*, vol. 26, no. 13, pp. 957–959, 1990.
- [7] K. Haug, F. Maloberti, and G. C. Temes, "Switched-capacitor integrators with low finite-gain sensitivity," *Electron. Lett.*, vol. 21, no. 24, pp. 1156–1157, 1985.
- [8] K. Martin and A. S. Sedra, "Stray's insensitive SC filters based on bilinear *z*-transform," *Electron. Lett.*, vol. 15, no. 13, pp. 365–366, 1979.
- [9] N. Radev, N. Mastorakis, and V. Mladenov, "Reduction of gain errors in finite gain insensitive switched-capacitor integrator pair," WSEAS Trans. Circuits Syst. Issue 5, vol. 3, pp. 1135–1139, 2004.
- [10] Q. Huang and W. Sansen, "Design techniques for improved capacitor are a efficiency in switched-capacitor biquads," *IEEE Trans. Circuits Syst.*, vol. CAS-34, no. 12, pp. 1590–1599, 1987.