Reduction of Operational Amplifiers Finite Gain Effects in Switched-Capacitor Low-Pass Notch Biquads

Nikolay Radev and Kantcho Ivanov

Abstract

An combined approach for reducing the errors in the notch frequency f_{z}, in the pole frequency f_{p}, in the quality factor Q_{p} and in the amplitude H_{p} at the pole frequency of switched-capacitor low-pass notch biquads is presented. At first, the conventional integrators in the biquads are replaced with gain- and offset-compensated integrators. Subsequently, the errors $\Delta f_{z} / f_{z}, \Delta f_{p} / f_{p}, \Delta Q_{p} / Q_{p}$ and $\Delta H_{p} / H_{p}$ are minimized by modifying the values of the integrating capacitances and of the appropriately chosen zero-forming and pole-forming capacitances. The effectiveness of this approach is demonstrated by designing two low-pass notch biquad topologies which realize the same transfer function.

Keywords: filters, gain- and offset- compensation, operational amplifiers, switchedcapacitor integrators

1 Introduction

One of the important nonideal properties which influence the performance of the switched-capacitor (SC) circuits is the finite dc gain A of the operational amplifiers (op amps). In filters, the finite gain causes errors in both the amplitude and the phase responses [1,2]. From the point of view of simplifying amplifier design and improving high-frequency capability several gain- and offset- compensated (GOC) SC building blocks (integrators, gain stages, sample-and-hold circuits) have been reported in the literature. The phase error $\theta(\omega)$ of the GOC integrators is proportional to $1 / A^{2}$ (in a conventional integrator this is a simple inverse dependence $1 / A)$. In most of the GOC integrators proposed the reduction in phase error was obtained at the expense of increased gain error $\mathrm{m}(\omega)$.

[^0]The SC low-pass notch (LPN) biquads are commonly realized using a feedback loop containing one inverting and one noninverting conventional integrators.

The gain errors of the integrators affect the notch frequency f_{z} and the pole frequency f_{p} of the biquads, while the phase errors affect the zero Q-factor Q_{z}, the pole Q-factor Q_{p}, the attenuation H_{z} at the notch frequency and the magnitude H_{p} of the biquad transfer function at the pole frequency.

A combined approach for minimization the effects of op amps finite gain in switched-capacitor bandpass biquads has been presented in [3].

In this paper the approach proposed in [3] is adapted for reducing the errors in the notch frequency f_{z}, in the pole frequency f_{p}, in the quality factor Q_{p} and in the amplitude H_{p} at the pole frequency of SC LPN biquads with low but precisely known and stable op amps dc gain [4]. The effectiveness of this approach is verified for two LPN biquad topologies which realize the same transfer function.

2 Proposed design approach

The z-domain transfer function of the LPN biquads has the general form

$$
\begin{equation*}
H(z)=\frac{N(z)}{D(z)}=k \frac{1+a_{1} z^{-1}+a_{2} z^{-2}}{1+b_{1} z^{-1}+b_{2} z^{-2}}, \tag{1}
\end{equation*}
$$

which for any pairs of complex conjugate zeros and poles can be rewritten as

$$
\begin{equation*}
H(z)=k \frac{1-2 R_{z} \cos \theta_{z} z^{-1}+R_{z}^{2} z^{-2}}{1-2 R_{P} \cos \theta_{P} z^{-1}+R_{P}^{2} z^{-2}} . \tag{2}
\end{equation*}
$$

Here, R_{z} is the radius and θ_{z} is the angle to the zero; R_{p} and Q_{p} correspond to the pole radius and angle, respectively. From (2) the following relationships for the notch frequency f_{z}, the zero Q-factor Q_{z}, the pole frequency f_{p} and the pole Q-factor Q_{p} can be derived:

$$
\begin{equation*}
f_{z}=\frac{f_{s}}{2 \pi} \sqrt{\theta_{z}^{2}+\left(\ln R_{z}\right)^{2}}, \quad Q_{z}=-\frac{\pi f_{z} / f_{s}}{\ln R_{z}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{p}=\frac{f_{s}}{2 \pi} \sqrt{\theta_{p}^{2}+\left(\ln R_{p}\right)^{2}}, \quad Q_{p}=-\frac{\pi f_{p} / f_{s}}{\ln R_{p}} \tag{4}
\end{equation*}
$$

where f_{s} is the sampling frequency.
For small ratios $f_{z} / f_{s}, f_{p} / f_{s}$ and high Q-factors the frequencies f_{z}, f_{p} and the Q-factors Q_{z}, Q_{p} are approximately given by

$$
\begin{equation*}
f_{z} \approx \frac{f_{s}}{2 \pi} \sqrt{1+a_{1}+a_{2}}, \quad Q_{z} \approx \frac{\sqrt{1+a_{1}+a_{2}}}{1-a_{2}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{p} \approx \frac{f_{s}}{2 \pi} \sqrt{1+b_{1}+b_{2}}, \quad Q_{p} \approx \frac{\sqrt{1+b_{1}+b_{2}}}{1-b_{2}} . \tag{6}
\end{equation*}
$$

For standard design of LPN biquads the op amps gain values are assumed to be infinite. Then, the coefficients in (1) are functions of the capacitances only and $Q_{z} \rightarrow \infty\left(a_{2}=1\right)$. In this case, from (5), (6) and (1) the logarithmic sensitivities of the f_{z}, f_{p}, Q_{p} and of the amplitude H_{p} at the pole frequency to the capacitances can be obtained.

The proposed combined approach for minimization of the errors $\Delta f_{z} / f_{z}, \Delta f_{p} / f_{p}$, $\Delta Q_{p} / Q_{p}, \Delta H_{p} / H_{p}$ and for enhancement of Q_{z} consists in the following consecutive steps, in which the calculations are made for the nominal value A_{o} of the op amps dc gain A :

Step 1. First, to reduce the effect of op amp imperfections (dc gain A and offset voltage $V_{O S}$) the conventional integrators in the LPN biquad considered are replaced with Nagaraj-86 [5] and Ki-89 [6] GOC SC integrators. These simple biphase integrators form an excellent GOC integrator-pair without using extra clock phases or holding circuits to satisfy the sampling conditions. The reduced phase errors of the GOC integrators provide a reduction in the errors $\Delta Q_{p} / Q_{p}, \Delta H_{p} / H_{p}$ and enhance the quality factor Q_{z}.

Step 2. The gain error $m(\omega)$ of the integrators is equivalent to an element value variation ΔC_{i} of the integrating capacitance C_{i}. If the finite dc gain A_{o} is known, the value of C_{i} can be replaced with $C_{i}^{\prime}=C_{i}(1+m)$ in the two integrators of the GOC biquad, thereby essentially reducing the gain errors $m(\omega)$ [7]. This prewarping technique automatically provides a reduction in the notch frequency error $\Delta f_{z} / f_{z}$ and in the pole frequency error $\Delta f_{p} / f_{p}$ of the biquad considered.

Step 3. For some LPN biquad configurations the compensation in Step 2 is not sufficiently effective. In this case the errors $\left(\Delta f_{z} / f_{z}\right)_{2}$ and $\left(\Delta f_{p} / f_{p}\right)_{2}$, obtained in the previous step, can be further reduced by modifying one zero-forming capacitance C_{z} and one pole-forming capacitance $C_{p 1}$. The new capacitance values C_{z}^{\prime} and $C_{p 1}^{\prime}$ are the solutions of the equations

$$
\begin{equation*}
S_{C_{z}}^{f_{z}}\left(\frac{C_{z}^{\prime}}{C_{z}}-1\right)=-\left(\frac{\Delta f_{z}}{f_{z}}\right)_{2} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{C_{p_{1}}}^{f_{p}}\left(\frac{C_{p_{1}}^{\prime}}{C_{p_{1}}}-1\right)=-\left(\frac{\Delta f_{p}}{f_{p}}\right)_{2} . \tag{8}
\end{equation*}
$$

The sensitivities $S_{C_{Z}}^{f_{z}}$ and $S_{C_{p_{1}}}^{f_{p}}$ are calculated using (5) and (6) for the initial values of the capacitances and infinite op amp dc gain.

Step 4. The errors $\left(\Delta Q_{p} / Q_{p}\right)_{2}$ and $\left(\Delta H_{p} / H_{p}\right)_{2}$ obtained in Step 2, or the errors $\left(\Delta Q_{p} / Q_{p}\right)_{3}$ and $\left(\Delta H_{p} / H_{p}\right)_{3}$ obtained in Step 3, can be further minimized by modifying one another pole-forming capacitance $C_{p 2}$. This capacitance is chosen such that the following relations hold:

$$
\begin{equation*}
S_{C_{p_{2}}}^{Q_{p}} \approx S_{C_{p_{2}}}^{H_{p}}, \quad\left|S_{C_{p_{2}}}^{f_{p}}\right| \ll 1, \quad\left|S_{C_{p_{2}}}^{f_{z}}\right| \ll 1 . \tag{9}
\end{equation*}
$$

The new capacitance value $C_{p 2}^{\prime}$ is calculated from the equations

$$
S_{C_{p_{2}}}^{Q_{p}}\left(\frac{C_{p_{2}}^{\prime}}{C_{p_{2}}}-1\right)=-\left(\frac{\Delta Q_{p}}{Q_{p}}\right)_{r}
$$

and

$$
\begin{equation*}
S_{C_{p_{2}}}^{H_{p}}\left(\frac{C_{p_{2}}^{\prime}}{C_{p_{2}}}-1\right)=-\left(\frac{\Delta H_{p}}{H_{p}}\right)_{r} . \tag{11}
\end{equation*}
$$

The terms $\left(\Delta Q_{p} / Q_{p}\right)_{r}$ and $\left(\Delta H_{p} / H_{p}\right)_{r}$ on the right hand sides are the errors $\left(\Delta Q_{p} / Q_{p}\right)_{2}$ and $\left(\Delta H_{p} / H_{p}\right)_{2}$ obtained in Step 2, or the errors $\left(\Delta Q_{p} / Q_{p}\right)_{3}$ and $\left(\Delta H_{p} / H_{p}\right)_{3}$ obtained in Step 3.

The following two cases are considered:
a) The capacitance $C_{p 2}^{\prime}$ is the solution of equation (10), i.e.,

$$
\begin{equation*}
C_{p 2}^{\prime}=C_{p 2}\left[1-\frac{\left(\Delta Q_{p} / Q_{p}\right)_{r}}{S_{C_{p}}^{Q_{p}}}\right] . \tag{12}
\end{equation*}
$$

b) The capacitance $C_{p 2}^{\prime}$ is the average of the solutions of (10) and (11), i.e.,

$$
\begin{equation*}
C_{p 2}^{\prime}=C_{p 2}\left\{1-0.5\left[\frac{\left(\Delta Q_{p} / Q_{p}\right)_{r}}{S_{C_{p_{2}}}^{Q_{p}}}+\frac{\left(\Delta H_{p} / H_{p}\right)_{r}}{S_{C_{p_{2}}}^{H_{p}}}\right]\right\} . \tag{13}
\end{equation*}
$$

3 Application of the proposed approach

The approach proposed is illustrated by means of two LPN biquad topologies. For comparative purposes the two biquads are designed to fulfil the same specifications:

$$
f_{p} \cong 1 \mathrm{kHz}, \quad f_{z} \cong 2.5 \mathrm{kHz}, \quad Q_{p} \cong 30, \quad H_{p} \cong 28 \mathrm{~dB}, \quad f_{s} \cong 12.5 \mathrm{kHz} .
$$

Fig. 1 shows the circuit schema of the Martin and Sedra's type-I LPN biquad with conventional integrator [8]. The relative capacitance values are: $C_{1}=2.027, C F_{1}=1$, $C B_{1}=1, C B_{2}=1, C_{2}=59.207, C F_{2}=29.945$ and $C F_{3}=10.687$.

Fig. 1. Martin and Sedra's type-I LPN biquad with conventional integrators.

The ideal z-domain transfer function is

$$
\begin{equation*}
H_{i d}^{22}(z)=-\frac{C F_{3}}{C_{2}} \frac{z^{-2}-\left[2-\frac{C F_{1} C F_{2}}{C_{1} C F_{3}}\right] z^{-1}+1}{z^{-2}-\left[2+\frac{C B_{2}}{C_{2}}-\frac{C B_{1} C F_{2}}{C_{1} C_{2}}\right] z^{-1}+\frac{C B_{2}}{C_{2}}+1} . \tag{14}
\end{equation*}
$$

The frequencies f_{z} and f_{p}, and the quality factor Q_{p} are approximately given by

$$
\begin{gather*}
f_{z} \approx \frac{f_{s}}{2 \pi} \sqrt{\frac{C F_{1} C F_{2}}{C_{1} C F_{3}}}, \quad f_{p} \approx \frac{f_{s}}{2 \pi} \sqrt{\frac{C B_{1} C F_{2}}{C_{1}\left(C_{2}+C B_{2}\right)}} \tag{15}\\
Q_{p} \approx \sqrt{\frac{C B_{1} C F_{2}\left(C_{2}+C B_{2}\right)}{C_{1} C B_{2}^{2}}} .
\end{gather*}
$$

It was found that for nominal op amps gains $A_{0_{1}}=A_{0_{2}}=100$ the deviations of f_{z}, f_{p}, Q_{p} and H_{p} from the ideal case are:

$$
\begin{aligned}
\left(\Delta f_{z} / f_{z}\right)_{c}=-0.852 \%, & \left(\Delta f_{p} / f_{p}\right)_{c}=-1.427 \% \\
\left(\Delta Q_{p} / Q_{p}\right)_{c}=-47.33 \%, & \left(\Delta H_{p} / H_{p}\right)_{c}=-47.25 \%
\end{aligned}
$$

The zero Q-factor and the attenuation at f_{z} are $Q_{z c}=128.18$ and $H_{z c}=-56.78 \mathrm{~dB}$.
According to the approach proposed the first integratior in the conventional biquad (Fig.1) is replaced with the Nagaraj-86 integrator and the second integratorwith the Ki-89 integrator. The resulting filter is shown in Fig.2, where $C_{h 1}=1$ and $C_{h 2}=C_{2}$.

The performance parameters of the GOC biquad for $A_{0_{1}}=A_{0_{2}}=100$ are

$$
\begin{align*}
& \left(\Delta f_{z} / f_{z}\right)_{1}=-1.4033 \%, \quad\left(\Delta f_{p} / f_{p}\right)_{1}=-2.0818 \% \\
& \left(\Delta Q_{p} / Q_{p}\right)_{1}=-1.4044 \%, \quad\left(\Delta H_{p} / H_{p}\right)_{1}=-1.1374 \% \tag{16}\\
& Q_{z 1}=13000, \quad H_{z 1}=-96.91 \mathrm{~dB}, \quad H(2500 \mathrm{~Hz})=-45.87 \mathrm{~dB}
\end{align*}
$$

Fig. 2. Martin and Sedra's type-I LPN biquad with GOC integrators.

First, for reducing the errors $\left(\Delta f_{z} / f_{z}\right)_{1}$ and $\left(\Delta f_{p} / f_{p}\right)_{1}$ of the GOC biquad, the integrating capacitances C_{1} and C_{2} are modified according to the expressions [9]

$$
\begin{equation*}
C_{1}^{\prime}=\left(C_{1}-\frac{C F_{1}+C B_{1}+C_{h_{1}}}{A_{0_{1}}}\right)\left(1+\frac{1}{A_{0_{1}}}\right)^{-1} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{2}^{\prime}=\left(C_{2}-\frac{C B_{2}+C F_{2}+C F_{3}}{A_{0_{2}}}\right)\left(1+\frac{1}{A_{0_{2}}}\right)^{-1} . \tag{18}
\end{equation*}
$$

For $A_{0_{1}}=A_{0_{2}}=100$ one obtains $C_{1}^{\prime}=1.977228$ and $C_{2}^{\prime}=58.208594$. The corresponding performance parameters of the biquad are

$$
\begin{align*}
& \left(\Delta f_{z} / f_{z}\right)_{2}=-3.25 .10^{-5} \%, \quad\left(\Delta f_{p} / f_{p}\right)_{2}=-2.075 .10^{-3} \%, \\
& \left(\Delta Q_{p} / Q_{p}\right)_{2}=-0.98282 \%, \quad\left(\Delta H_{p} / H_{p}\right)_{2}=-0.98410 \%, \\
& Q_{z_{2}}=12867, \quad H_{z_{2}}=-96.68 \mathrm{~dB}, \quad H(2500 \mathrm{~Hz})=-84.35 \mathrm{~dB} .
\end{align*}
$$

From (15) and (14) one finds

$$
\begin{gathered}
S_{C B_{2}}^{Q_{P}}=-\frac{2 C_{2}+C B_{2}}{2\left(C_{2}+C B_{2}\right)}=-0.99170, \quad S_{C B_{2}}^{f_{P}}=-\frac{C B_{2}}{2\left(C_{2}+C B_{2}\right)}=-8.305 .10^{-3}, \\
S_{C B_{2}}^{H_{P}}=-1.00162 .
\end{gathered}
$$

Nearly the same errors $\left(\Delta Q_{p} / Q_{p}\right)_{2}$ and $\left(\Delta H_{p} / H_{p}\right)_{2}$, on one hand and nearly the same sensitivities $S_{C B_{2}}^{Q_{P}}$ and $S_{C B_{2}}^{H_{P}}$ on the other hand suggest that the errors $\left(\Delta Q_{p} / Q_{p}\right)_{2}$ and $\left(\Delta H_{p} / H_{p}\right)_{2}$ can be further reduced by modifying the capacitance $C B_{2}$. The choice of this capacitance is based also on the low sensitivity $S_{C B_{2}}^{f_{P}}$.

The new capacitance value $C B_{2}^{\prime}$ is given by the expression

$$
\begin{equation*}
C B_{2}^{\prime}=C B_{2}\left[1-\frac{\left(\Delta Q_{p} / Q_{p}\right)_{2}}{S_{C B_{2}}^{Q_{P}}}\right] . \tag{20}
\end{equation*}
$$

One obtains $C B_{2}^{\prime}=0.9900895$. The corresponding performance parameters of the biquad are

$$
\begin{aligned}
& \left(\Delta f_{z} / f_{z}\right)_{3}=-3.171 .10^{-5} \%, \quad\left(\Delta f_{p} / f_{p}\right)_{3}=6.355 .10^{-3} \% \\
& \left(\Delta Q_{p} / Q_{p}\right)_{3}=-5.928 .10^{-3} \%, \quad\left(\Delta H_{p} / H_{p}\right)_{3}=6.873 .10^{-7} \% \\
& Q_{z_{3}}=12867, \quad H_{z_{3}}=-96.68 \mathrm{~dB}, \quad H(2500 \mathrm{~Hz})=-84.35 \mathrm{~dB}
\end{aligned}
$$

The capacitance $C B_{2}^{\prime}$ can be made equal to the unit capacitance. Then, the new values of the capacitances $C_{2}, C F_{2}$ and $C F_{3}$ are

$$
C_{2}=58.791247, \quad C F_{2}=30.244742 \text { and } C F_{3}=10.793974
$$

By rounding-off the values of the capacitances to the third digit after the decimal point we finally obtain

$$
\begin{aligned}
& C_{1}=1.977, \quad C F_{1}=1, \quad C B_{1}=1, \quad C_{h_{1}}=1, \quad C_{2}=58.791, \\
& C B_{2}=1, \quad C F_{2}=30.245, \quad C F_{3}=10.794, \quad C_{h_{2}}=58.791 .
\end{aligned}
$$

Table 1 summarizes the performance parameters of the GOC Martin and Sedra's type-I LPN biquad with rounded-off capacitances and gain variation $A_{0_{1}}=$ $A_{0_{2}}=100 \pm 8$.

Table 1. Performance parameters of the GOC Matrin and Sedra's type-I LPN biquad with rounded-off capacitances

A	92	100	108
$\left(\Delta f_{z} / f_{z}\right)[\%]$	-0.1164	$6.884 .10^{-3}$	0.1122
$\left(\Delta f_{p} / f_{p}\right)[\%]$	-0.1699	0.0128	0.1690
$\left(\Delta Q_{p} / Q_{p}\right)[\%]$	-0.2156	$1.727 .10^{-4}$	0.1734
$\left(\Delta H_{p} / H_{p}\right)[\%]$	-0.1860	$6.113 .10^{-3}$	0.1596
Q_{z}	10906	12865	14997
$H\left(f_{z}\right)[\mathrm{dB}]$	-95.26	-96.68	-97.99
$H(2.5 \mathrm{kHz})[\mathrm{dB}]$	-68.42	-81.29	-66.31

The GOC-version of the conventional Huang and Sansen's LPN biquad (Fig. 5 from [10]) is shown in Fig.3. The relative capacitance values are: $C_{1}=2.02, C_{1 S}=$ 27.79, $C F_{1}=1, C B_{1}=1, C B_{2}=1, C_{2}=5.633, C F_{2}=2.79, C F_{3}=1, C_{h_{1}}=1$ and $C_{h_{2}}=C_{2}$.

Fig. 3. Huang and Sansen's LPN biquad with GOC integrators.
The performances parameters of the GOC biquad for $A_{0_{1}}=A_{0_{2}}=100$ are

$$
\begin{align*}
& \left(\Delta f_{z} / f_{z}\right)_{1}=-1.6892 \%, \quad\left(\Delta f_{p} / f_{p}\right)_{1}=-2.3416 \% \\
& \left(\Delta Q_{p} / Q_{p}\right)_{1}=-0.2035 \%, \quad\left(\Delta H_{p} / H_{p}\right)_{1}=0.058 \% \tag{21}\\
& Q_{z_{1}}=6622, \quad H_{z_{1}}=-91.04 \mathrm{~dB}, \quad H(2500 \mathrm{~Hz})=-44.02 \mathrm{~dB} .
\end{align*}
$$

For the modified values of the integrating capacitances $C_{1}^{\prime}=1.970297$ and $C_{2}^{\prime}=$ 5.539703 the performance parameters of the biquad are

$$
\begin{align*}
& \left(\Delta f_{z} / f_{z}\right)_{2}=-0.28253 \%, \quad\left(\Delta f_{p} / f_{p}\right)_{2}=-0.25599 \% \\
& \left(\Delta Q_{p} / Q_{p}\right)_{2}=0.07455 \%, \quad\left(\Delta H_{p} / H_{p}\right)_{2}=0.0660 \%, \tag{22}\\
& Q_{z 2}=6625, \quad H_{z 2}=-90.91 \mathrm{~dB}, \quad H(2500 \mathrm{~Hz})=-58.52 \mathrm{~dB} .
\end{align*}
$$

The errors $\left(\Delta f_{z} / f_{z}\right)_{2}$ and $\left(\Delta f_{p} / f_{p}\right)_{2}$ can be further reduced by modifying the zeroforming capacitance $C F_{1}$ and the pole-forming capacitance $C B_{1}$. The new capacitance values $C F_{1}^{\prime}$ and $C B_{1}^{\prime}$ are the solutions of the equations

$$
\begin{equation*}
S_{C F_{1}}^{f_{z}}\left(\frac{C F_{1}^{\prime}}{C F_{1}}-1\right)=-\left(\frac{\Delta f_{z}}{f_{z}}\right)_{2}, \quad S_{C B_{1}}^{f_{p}}\left(\frac{C B_{1}^{\prime}}{C B_{1}}-1\right)=-\left(\frac{\Delta f_{p}}{f_{p}}\right)_{2} . \tag{23}
\end{equation*}
$$

One obtains $C F_{1}^{\prime}=1.0056506$ and $C B_{1}^{\prime}=1.0051199$, for which the performance parameters of the biquad are

$$
\begin{align*}
& \left(\Delta f_{z} / f_{z}\right)_{3}=3.961 .10^{-2} \%, \quad\left(\Delta f_{p} /\right)_{3}=1.792 .10^{-3} \% \\
& \left(\Delta Q_{p} / Q_{p}\right)_{3}=0.3300 \%, \quad\left(\Delta H_{p} / H_{p}\right)_{3}=0.3972 \%, \tag{24}\\
& Q_{z_{3}}=6629, \quad H_{z_{3}}=-90.92 \mathrm{~dB}, \quad H(2500 \mathrm{~Hz})=-88.19 \mathrm{~dB} .
\end{align*}
$$

The errors $\left(\Delta Q_{p} / Q_{p}\right)_{3}$ and $\left(\Delta H_{p} / H_{p}\right)_{3}$ can be reduced by modifying the capacitance $C B_{2}$. The new capacitance value $C B_{2}^{\prime}$ is the average of the capacitance $\left(C B_{2}^{\prime}\right)_{Q_{P}}$ and $\left(C B_{2}^{\prime}\right)_{H_{P}}$ calculated from the equations

$$
\begin{equation*}
S_{C B_{2}}^{Q_{P}}\left(\frac{\left(C B_{2}^{\prime}\right)_{Q_{P}}-C B_{2}}{C B_{2}}\right)=-\left(\frac{\Delta Q_{p}}{Q_{p}}\right)_{3} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{C B_{2}}^{H_{P}}\left(\frac{\left(C B_{2}^{\prime}\right)_{H_{P}}-C B_{2}}{C B_{2}}\right)=-\left(\frac{\Delta H_{p}}{H_{p}}\right)_{3} . \tag{26}
\end{equation*}
$$

This results in $C B_{2}^{\prime}=1.0036366$.
Table 2 summarizes the performance parameters of the GOC Huang and Sansen's LPN biquad with rounded-off capacitances and gain variation $A_{0_{1}}=A_{0_{2}}=100 \pm 8$.

Table 2. Performance parameters of the GOC Huang and Sansen's LPN biquad with rounded-off capacitances

A	92	100	108
$\left(\Delta f_{z} / f_{z}\right)[\%]$	-0.0800	0.0682	0.1949
$\left(\Delta f_{p} / f_{p}\right)[\%]$	-0.2032	$2.133 .10^{-3}$	0.1777
$\left(\Delta Q_{p} / Q_{p}\right)[\%]$	-0.22606	-0.062	0.0603
$\left(\Delta H_{p} / H_{p}\right)[\%]$	-0.0791	0.0622	0.1653
Q_{z}	5619	6631	7728
$H\left(f_{z}\right)[\mathrm{dB}]$	-89.50	-90.93	-92.25
$H(2.5 \mathrm{kHz})[\mathrm{dB}]$	-67.44	-77.25	-64.24

4 Conclusion

A combined approach for reducing the effects of op amps finite gain in switchedcapacitor low-pass notch biquads has been presented. The effectiveness of the approach proposed has been demonstrated by two low-pass notch biquad topologies which realize the same transfer function. The filters with modified capacitances have approximately an order smaller of magnitude relative errors

References

[1] K. Martin and A. S. Sedra, "Effects of the op amp finite gain and bandwidth on the performance of switched-capacitor filters," in Proc. 1980 IEEE ISCAS, 1980, pp. 321-325.
[2] A. S. Sedra and M. W. Chomic, "High-frequency switched-capacitor filter: performance limitations and design considerations," in Proc. 1984 IEEE ISCAS, 1984, pp. 646-650.
[3] N. Radev, N. Mastorakis, and V. Mladenov, "Minimization of operational amplifiers finite gain effects in switched-capacitor biquads," WSEAS Trans. Circuits Syst., Issue 5, vol. 3, pp. 1130-1134, 2004.
[4] A. Baschirotto, R. Alini, and R. Castello, "BiCMOS operational amplifier with precise and stable dc gain for high-frequency switched capacitor circuits," Electron. Lett., vol. 27, no. 15, pp. 1338-1340, 1991.
[5] K. Nagaraj, J. Vlach, T. R. Viswanathan, and K. Singhal, "Switched-capacitor integrator with reduced sensitivity to amplifier gain," Electron. Lett., vol. 22, no. 21, pp. 1103-1105, 1986.
[6] W. H. Ki and G. C. Temes, "Low-phase-error offset-compensated switched-capacitor integrator," Electron. Lett., vol. 26, no. 13, pp. 957-959, 1990.
[7] K. Haug, F. Maloberti, and G. C. Temes, "Switched-capacitor integrators with low finite-gain sensitivity," Electron. Lett., vol. 21, no. 24, pp. 1156-1157, 1985.
[8] K. Martin and A. S. Sedra, "Stray's insensitive SC filters based on bilinear z transform," Electron. Lett., vol. 15, no. 13, pp. 365-366, 1979.
[9] N. Radev, N. Mastorakis, and V. Mladenov, "Reduction of gain errors in finite gain insensitive switched-capacitor integrator pair," WSEAS Trans. Circuits Syst. Issue 5, vol. 3, pp. 1135-1139, 2004.
[10] Q. Huang and W. Sansen, "Design techniques for improved capacitor are a efficiency in switched-capacitor biquads," IEEE Trans. Circuits Syst., vol. CAS-34, no. 12, pp. 1590-1599, 1987.

[^0]: Manuscript received March 20, 2006.
 The authors are with Dept. Theory of Electrical Engineering, Faculty of Automatica, Technical University of Sofia, 8, Kliment Ohridski Blvd., 1000 Sofia, Bulgaria ivanovkp@tu-sofia.bg

