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Crack Sizing by Using Pulsed Eddy Current Technique
and Neural Network

Ivaylo Dolapchiev and Kostadin Brandisky

Abstract: A neural network approach for solving an inverse problem of identification
of crack width and depth is proposed. Radial Basis Function (RBF) neural networks
(NN) perform the identification. It was trained using information from numerical
simulated pulsed eddy current (PEC) nondestructive testing (NDT). The capability of
the RBF NN was checked with information from numerical and physical experiment.
The obtained results illustrate the efficiency of the approach.
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1 Introduction

The measuring of surface crack dimensions in metal structures is a task that is
usually accomplished by NDT methods. In contrast to the classical eddy current
NDT methods, PEC measurements excite the probe’s coil with arepetitive square
wave pulse [1]. The resulting transient current through thecoil induces transient
eddy currents in the test piece, that are associated with highly attenuated magnetic
pulses propagating through the material.

This work investigates the PEC method and a NN based inversion as an ap-
proach to the nondestructive crack sizing. The interactionbetween eddy current
probe and the device under control is modeled numerically. The prepared model
consists of a sample with an artificial crack and a probe. The coil of the probe is
supplied by square wave voltage source. The forward problemis solved by means
of the finite element method (FEM) and transient solver. By changing the width
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and the depth of the crack, two data sets were built – one with “time-current” data
values obtained from forward problem solution and another with crack dimensions.

A Radial Basis Function (RBF) neural network is used to approximate non-
linear relationship between the probe current attenuationat the end of the excitation
pulse and crack parameters.

2 Forward Problem Definition

The FEM is used as a forward problem solver to collect information for field dis-
tribution in the region under investigation. This region contains an eddy current
probe, disposed over a specimen with crack. The probe consists of ferrite core
coaxially placed in a pancake coil. Because of the symmetry of the model only one
fourth of the investigated region is considered. The interaction between electro-
magnetic field, excited from the probe, and the specimen is analyzed numerically
in 3D.

During the analysis all used materials are accepted to be linear and homoge-
neous. Electromagnetic field is excited by the coil, supplied by a repetitive square
wave pulse voltage source and attenuates entirely at the boundaries of examined
region The resulting transient magnetic field distributionis governed by partial dif-
ferential equation (1), which includes the effect of magnetic field variation with
time.
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The numerical solution of equation (1) was performed at zerovalue boundary
conditions using FEM and commercial software package MAGNET [2]. To study
the response of the pulsed eddy current probe to crack’s width and depth, a series
of simulations were carried out. The problem was solved for full combinations of
3 values of crack’s width and 10 different values for crack’sdepth. Figure 1 shows
the magnetic flux density plot for one of these simulations, at the end of the voltage
pulse. The dark gray color at the figure corresponds to the high values of the flux.

3 Using RBF Neural Network for Solving the Inverse Problem

The neural network approach for the described inverse problem solution requires
input and target data sets for the training. The informationin the input data set
is collected either by data acquisition system during physical experiments or by
numerical simulations. In the examined problem, this set was formed with “time–
current” information for probe’s coil. The target data set contains data for crack
parameters.
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The RBF neural network was preferred to the most popular multi-layered per-
ceptron networks (MLP). The neurons, used in RBF NN, respondto relatively small
regions of the input space, which allows such networks to have more neurons than
the MLP networks for the same tasks. RBF networks provide fast training rate and
good abilities to approximate any given nonlinear functioneven though in multi-
dimensional space. The accuracy of approximation depends on the number of the
hidden neurons [3]. During the training process, the valuesfor their weights and
the biases are determined. Despite of the large number of neurons, RBF network is
trained very quickly.

Fig. 1. 3D plot of flux density distribution

For the purpose of the described inverse problem solution, two different RBF
networks were formed. They use identical input data set withinformation for probe
current values at fixed time steps. This information was prepared using results from
numerical simulated experiments.

Both networks are with approximately 100 inputs and a singleoutput. They
differ in neurons parameters and the used target data sets. The first target data set
contains information for crack’s width and the second one was with information for
crack’s depth. Therefore, the networks were trained to different crack parameters
determination.

4 Physical Experiments

To test the abilities of the created neural networks a physical experiment was con-
ducted. An inductive transducer consisting of cylinder ferrite core and a pancake
coil at its end was created. The transducer was supplied by a square wave voltage
source. A shunt resistor connected in series with the coil was used to measure the
changes in coil’s current. The current values are measured at equal time steps by
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means of digital storage oscilloscope. The probe is placed in a plastic holder to
guarantee its perpendicular position to the sample’s surface.

The specimen under test is manufactured for the adjustment of non-destructive
testing devices. It represents a thick flat steel slab with three transverse cracks.
They have equal width of 0.2mm and 0.2mm, 0.5mm and 1mm depth.The conduc-
tivity and permeability of the slab material are known.

The voltage source used ensures pulse amplitude of 1V and frequency of 1kHz
with 30% duty cycle. At this excitation, the values of potential drop over the shunt
resistor were measured in 2µs time steps. The speed of probe current decay differs
depending on crack dimensions. In order to extract information about the influ-
ence of crack to the probe current decay, the following experimental scheme was
accomplished, Figure 2.
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Fig. 2. Schematic view of the experimental setup

Two identical probes were used – one placed over the crack andanother on
the section of the specimen without cracks. Both probes weresupplied by two
identical voltage sources VS1 and VS2 that are controlled bypulse voltage gen-
erator PG. The voltage dropsUC andUT, over the shunt resistors Rsh1 and Rsh2,
are proportional to the currents in the probes. The attenuation of the current in
the compensation probe CP depends on the electromagnetic properties of the spec-
imen’s material. The current in the testing probe TP attenuate in a manner that
depends on the specimen material properties and on the crackdimensions.

During the experimental preparation, the resistances of the shunt resistors were
equalized. In this manner the voltageUD obtained as a difference between the volt-
age dropsUC andUT, is proportional to the crack parameters. Its values were mag-
nified by the differential amplifier DA and measured by means of digital storage
oscilloscope DSO. The obtained in “time–voltage” information for probe’s current
behavior is prepared and saved for further neural network processing.
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5 Results

The physical experiment was simulated numerically using FEM. The described for-
ward problem was solved at different values of crack dimensions, and the obtained
“time-current” values were used to reconstruct the voltagedropUT over the shunt
resistor Rsh2. The information for voltage attenuation over the shunt resistor of the
compensation probe UC was prepared using the same approach. In order to collect
this information the same forward problem was solved but theused specimen was
without crack. The voltageUD was obtained numerically as a difference between
UC andUT, at each time step. This “time–voltage” information dependon crack
parameters and corresponds to the readings of the digital storage oscilloscope at
the experimental bench.

The numerically obtained information allowed charting thevariation of the
measured voltage UD with respect to crack depth and width. Figure 3 shows the
influence of crack depth on the voltage variation at fixed width of the crack, and
Figure 4 represents the influence of the crack’s width if its depth did not change.
Both charts display voltageUD 100µs after the end of the excitation pulse.
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Fig. 3. The influence of crack depth on the voltage
UD
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Fig. 4. The influence of crack width on the
voltageUD

The training process of the RBF neural network requires two data sets. The
input data set contains information for the voltage UD at previously defined time
range and fixed time step. The target data set contains information about crack
dimensions. Both data sets were prepared numerically as it was described above.
The information in the data sets corresponds to the results from ideal physical ex-
periment.

To facilitate the identification of crack parameters, two RBF NN were prepared
– one for width and another for depth identification. Both networks were trained
with identical input data but with different target data sets.
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In order to test their abilities and to adjust their parameters, new testing data
sets were prepared. These sets were built in the same manner using the numerical
model and forward problem solver. At this stage, the forwardproblem was solved
for cracks, different in their dimensions from the cracks that formed the training
target data sets. In addition to that, these results were processed to simulate the
real measurement conditions. Because in practice measurements are influenced
by disturbances, which induce significant noise in the collected data, a normally
distributed random noise was added to the obtained voltage values.

The obtained noisy input data sets with approximately 40dB signal-to-noise ra-
tio were applied to the RBF networks. The relative accuracy of their identifications
is shown at Figure 5 and Figure 6.

The standard specimen with three cracks was used to conduct the physical ex-
periments. Two identical ferrite core probes CP and TP were placed over the speci-
men. The CP was fixed far from the cracks and TP. The TP moves over the surface
and at crack positions, the voltagesUC andUT were digitized and saved. After the
UD calculation the input data set was formed and applied to the networks.
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Fig. 5. Relative accuracy of RBF 1 – depth iden-
tification at different widths, %
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Fig. 6. Relative accuracy of RBF 2 – width iden-
tification at different depths, %

The determined from RBF 1 depth and from RBF 2 width of the crack differ
from the expected values of the same parameters. The relative accuracy of determi-
nationδ was up to three times worse than the worst results obtained inthe testing
stage of the neural network preparation. The expected and obtained values together
with the relative accuracy are shown in Table 1.

Table 1. Expected and obtained values of crack parameters.

Depth Width
Crack Exp RBF 1 δ Exp RBF 2 δ

mm mm % mm mm %

#1 0.2 0.207 3.5 0.2 0.195 2.5
#2 0.5 0.484 3.2 0.2 0.206 3.0
#3 1.0 0.945 5.5 0.2 0.185 7.5
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6 Conclusion

This work presents an investigation of the use of RBF NN for the inverse problem
solution in the field of PEC NDT. The solution of the forward problem was obtained
using 3D FEM transient solver. The investigation of the influence of crack’s width
and depth on the field decays was done at constant conductivity and permeability
of the specimen.

Field attenuation depends not only on the crack parameters but also on the con-
ductivity and permeability of the specimen. To suppress theinfluence of specimen
material parameters on the output voltage a differential measuring circuit is pro-
posed. The circuit works properly if the shunt resistors, ferrite probes and voltage
sources used are identical.

With these restrictions on the investigation, it was determined that crack’s di-
mensions change the speed of probe’s current attenuation. This allows suggesting
that crack’s sizes can be defined by suitable processing the information for the
probe’s current. The results from numerical simulation of the experiment show that
the correlation between the voltage UD and crack dimensions is non-linear. This
allows artificial NN to be used as a tool for inverse problem solution. The obtained
two RBF NN were adjusted and tested with numerically computed data from the
forward problem solution.

The applied data set at the testing stage of the RBF preparation demonstrates
their abilities to perform identification with acceptable accuracy. The conducted
physical experiment showed worse accuracy. This is due to the errors and dis-
turbances in the measurements as well as to the insufficient information for NN
training stage.
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