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A Simple 2D Digital Calibration Routine for Transducers

Aleksandar Č. Žori ć, Dragoljub Martinovi ć,
and Slobodan Obradovíc

Abstract: A new practical algorithm for linearization and compensation of a two di-
mensional transducers transfer characteristic is described in this paper. The algorithm
is suitable for smart sensor applications which incorporate a microprocessor. The cal-
culating routine is simple and the algorithm requires initial calibration at nine points
only.

Theoretical and practical results are given for the assumed and measured piezore-
sistive pressure sensor characteristics, respectively. After correction based on 3×3
calibration, the obtained error was less than one percent of the full scale output in
both cases.

Keywords: Transducers, calibration routine, piezoresistive pressure sensor, micro-
controller, three points method.

1 Introduction

Recent digital methods of transducer transfer characteristics linearization and cor-
rection are designed to be implemented by software in the smart sensor interfaces
[1]. There are numerous digital methods and algorithms as linearization based on
a look-up table [2], linearization based on piecewise-linear interpolation, lineariza-
tion based on piecewise-polynomial or spline interpolation [3], [4], curve fitting
linearization [5], linearization based on the error minimization [6], three-point cali-
bration method [7] and so on. Transducer calibration techniques found in literature
are practically all based on one of these techniques or on a combination of them.
With respect to the number of calibration measurements the best linearization can
be achieved with the spline interpolation and the curve-fitting techniques.
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The mentioned linearization techniques are mainly one-dimensional functions.
Some of them as look-up table method can easily be expanded to achieve cali-
bration of a two-dimensional transducer transfer curve. As the response of some
semiconductor sensors and transducers, as piezorezistive pressure sensors, ceramic
humidity sensors, silicon photo and magneto-sensors etc., depends on the influence
of two or more nonelectrical quantities simultaneously, several two-dimensional
or multi-dimensional complex calibration methods are developed [6]. Naturally,
memory requirements and the number of calibration measurements will increase
rapidly. This will determine the response time and the cost of calibration proce-
dure, respectively.

A new simple two-dimensional algorithm, based on the one-dimensional gen-
eral digital linearizing method for transducers [7], which is proposed in the pre-
sented paper, is a good compromise between the needed number of calibration
measurements and the transducer response accuracy. 3×3 calibration values of the
transducer output are transformed into a set of three cross-sensitivity dependent cal-
ibration coefficients. One of the three coefficients controls the zero offset, the sec-
ond determines the scale factor and the third one serves for the transducer response
linearization referred to the one input variable for the desired sensitivity. Simul-
taneously, all of three coefficients compensate the influence of the second cross-
sensitivity variable. The proposed method is especially useful in data-acquisition
systems based on the smart sensor interfaces.

2 Three Point Calibration Method

One practical three-point digital linearizing method for the general use has been
described in the paper [7]. As shown, the method based on the second order ap-
proximation of a continued fraction given by

V(y) = C0 +
C1y

1+C2y
(1)

wherey = f (x) presents the transducer transfer characteristic andV(y) is the lin-
earization function for the three-point calibration method. The calibration coef-
ficientsC0, C1 andC2 should be calculated from three calibration measurements
of the transducer responsey = f (x), namelyL = f (l), M = f (m) andH = f (h)
with m in the middle of the interval[l . . .h] such thath−m = m− l . The coef-
ficient C0 serves to correct the offset error and can be determined from the con-
dition V(L) = n, wheren is the zero offset of the responseV. The coefficient
C1 serves to obtain the correct scaling and can be determined from the equation
V(H)−V(L) = d, whered is the scale factor of the response.V(y) will be an
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approximately linear function ofx if

V(H)−V(M)
V(M)−V(L)

=
h−m
m− l

= 1 (2)

The coefficientC2 can be found directly from the last equation and it compen-
sates nonlinear behavior of a transducer. The complete procedure of the calibration
coefficients calculation has been shown in the paper [7]. Also, when in practice it
will be impossible to realize the mid-range calibration exactly, the simple modified
routine is shown in that paper. The results given for eight commonly used temper-
ature transducers show that the method is superior to the second-order Lagrange
interpolation.

3 A New 2D Algorithm

Taking into account the needed number of calibration measurements the method
[7], shortly explained in the previous Section, can be extended to handle two-
dimensional calibration. The basic principle is to select three lines in one dimen-
sion by fixing the values for one input variable and then along each selected line
1D calibration method [7] should be applied with three different values for the
second variable. The values for the first variable must be selected according to
the same procedure as for the one-dimensional method. By interpolating three by
three obtained coefficients, on the same way as in the one-dimensional calibration
method, we will get compensated and linearized response. To explain this princi-
ple mathematically we will use the uncalibrated sensor transfer function given by
y = f (x,z). To calibrate the cross-sensitivity for the signalz we assume that there
is an additional sensor which sensesz independent of other variablesz′ = f (z). The
uncalibrated sensor transfer function will be calibrated by the use of 3×3 calibra-
tion measurements of the sensor output at three fixed output values of an additional
zsensor, namely forz= zl

VL(y) = C(L)
0 +C(L)

1
y

1+C(L)
2 y

(3)

for z= zm

VM(y) = C(M)
0 +C(M)

1
y

1+C(M)
2 y

(4)

for z= zh

VH(y) = C(H)
0 +C(H)

1
y

1+C(H)
2 y

(5)
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The calibration coefficientsC(k)
i , i = 0,1,2,k = L,M,H should be calculated ac-

cording to the mentioned 1D algorithm [7] by setting the equal offsetn and the
scale factord for all of three cases. After this procedure the obtained coefficients
C(k)

i , i = 0,1,2,k = L,M,H, i = 0,1,2,k = L,M,H are depended on the variable
z. To calibrate the cross-sensitivity for thez signal each set of the three calculated
coefficients(C(L)

0 , C(M)
0 , C(H)

0 ), (C(L)
1 , C(M)

1 , C(H)
1 ) and(C(L)

2 , C(M)
2 , C(H)

2 ) should be
interpolated across three nodes using expression (1)

C0(z) = I0 +J0
z

1+K0z
(6)

C1(z) = I1 +J1
z

1+K1z
(7)

C2(z) = I2 +J2
z

1+K2z
(8)

The parametersIs, Js andKs, s= 0,1,2, can be determined from three linear systems
of equations

C0(zl ) = C(L)
0 ; C0(zm) = C(M)

0 ; C0(zh) = C(H)
0 ; (9a)

C1(zl ) = C(L)
1 ; C1(zm) = C(M)

1 ; C1(zh) = C(H)
1 ; (9b)

C2(zl ) = C(L)
2 ; C2(zm) = C(M)

2 ; C2(zh) = C(H)
2 . (9c)

The interpolation nodeszl , zm andzh should be chosen exactly or approximately
equidistantly. Such access represents a guaranted way of the interpolation error
minimisation in the whole range fromzl to zh. The final calibration function is
given by

V(y) = C0(z)+C1(z)
y

1+C2(z)y
(10)

4 Results of Simulation

The output of a pressure sensor, for example, is determined by the applied pressure
and the operating temperature of the sensor simultaneously in such a way that the
errors as offset, gain and non-linearity are dependent on the temperature [4], [6].
Such a sensor has to be calibrated for both pressure and temperature, hence the term
two-dimensional calibration. The pressure sensor output signal is represented by
U = U(P,T) whereU is the output voltage of the sensor,P is the applied pressure
andT is the operating temperature. In order to estimate the measure of the error
which proposed 2D algorithm produces, we will assume the arithmetic relation
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between the output voltage of the sensor and the pressure and the temperature in
the following form

U(P,T) =−1.2ln(1.7(1+0.01T)−P) (11)

Fig. 1. Uncalibrated sensor transfer charac-
teristics at the three temperatures.

Fig. 2. Surface plot of the sensor response in
the temperature range from0◦C to 20◦C.

Several fictive sensor responses were generated by using the mathematical de-
scription of the two-dimensional transfer function (11) with different kinds of non-
linearity and cross-sensitivity. The uncalibrated sensor responses used for testing
and the appropriate 3D surface plot are shown in Fig. 1 and Fig. 2 respectively.
Three equidistant pressure pointsPl = 0bar,Pm = 0.5bar,Ph = 1bar and tempera-
ture pointsTl = 0◦C, Tm = 10◦C, Th = 20◦C present the selected calibration nodes.

Table 1. The output voltage in [V] of the pressure sensor.

P(bar) 0 0.5 1.0
T(◦C)
0 −0.63675 −0.21879 0.42801
10 −0.75113 −0.37777 0.16711
20 −0.85554 −0.51814 −0.04706

Table 1. shows the discrete pressure sensor responses at the different pressure
and temperature values calculated by Eq. (11). In order to calculate calibration
coefficients, according to Eq. (3), (4) and (5), we apply the one dimensional algo-
rithm [7] by fixing three temperature values successive. Additionally, we will adopt
the equal offsetn = 0 and the scale factord = 1000for the Eq. (3), (4) and (5).
The selected offset and scale factor represent the calibrated sensor response-digital
word. In Table 2. are given the calculated values of the calibration coefficients at
three different temperatures for the selected offset and scale factor.
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Table 2. Coefficients calculated by the algorithm [7] at three temperatures
with the adopted offsetn = 0 and the scale factord = 1000.

Tl = 0◦C Tm = 10◦C Th = 20◦C
C0 C(L)

0 = 697.1711 C(M)
0 = 867.7201 C(H)

0 = 1041.018

C1 C(L)
1 = 824.8303 C(M)

1 = 839.6594 C(H)
1 = 857.3526

C2 C(L)
2 = 0.387355 C(M)

2 = 0.3636727 C(H)
2 = 0.3452811

Now, across the three temperature nodes by using the pairs of the equations (6)
and (9a), (7) and (9b), (8) and (9c), the nonlinear interpolations of the coefficients
C0, C1 andC2 are performed, respectively. In that way the temperature dependent
calibration coefficients are obtained

C0(T) = 697.1711+16.9196
T

1−7.931×10−4T

C1(T) = 824.8303+1.362887
T

1−8.094×10−3T

C2(T) = 0.3873−2.709×10−3 T
1+1.438×10−2T

(12)

Ultimately, the linearised and compensated sensor response is given by

V(U) = C0(T)+C1(T)
U

1+C2(T)U
(13)

The calibrated transfer characteristics of the pressure sensor at the different
temperatures 5, 7, 15 and18◦C and the appropriate 3D surfaces are shown in Figure
3 and Figure 4, respectively.

Fig. 3. Linearised and temperature compen-
sated characteristics.

Fig. 4. Surface plot of the sensor response
after the calibration.

Taking into account the one-dimensional algorithm [7] the ideal linear sensor
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response can be shown in the following form

V(U(P,T))
∣∣∣
Tε(Tl−Th)

=
d

Ph−Pl
(P−Pl )+n = 1000P (14)

Maximum deviations regard to the ideal sensor response should be expected in
the middle of the two calibration nodes(Pm + Pl )/2 and (Ph + Pm)/2. The error
curves, calculated as the difference between the Eq. (14) and (13) at the different
operating temperatures, are shown in Figure 5.

Fig. 5. Error curves at the different operating temperatures.

As can be seen, the maximum absolute deviations are less than 0.3 percent of
the full scale output in the adopted temperature range. Furthermore, the reduction
of the error can be expected by the temperature or the pressure or the temperature
and pressure range segments.

5 Experimental Results

The very good results obtained by the algorithm simulation are verified across the
experimental procedure for the piezoresistive pressure sensor NPT-0.3, made in the
Institute of Chemistry, Technology and Metallurgy-Centre for Microelectronic’s
Technologies and Mono-crystals (IHTM-CMTM) in Belgrade. The sensor is real-
ized for pressures up to0.3 bar. In this range the sensor response is approximately
linear at the constant temperature of the sensor. However, the sensor is sized for a
greater pressure than specified but its transfer characteristics are nonlinear outside
the specified range. Our measurements are performed in the extended pressures and
temperatures range for the given sensor, from0bar to 1 bar and from−19.5◦C to
59.9◦C, respectively. The measurements are performed under the laboratory con-
ditions (IHTM-CMTM) by using the digital pressure controller MENSOR-USA
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which resolves pressure to0.1 mbar and the insulated temperature chamber with
a precise digital thermometer. The sensor response is monitored by a digital volt-
meter. In Table 3 are shown the measurement responses of the sensor in [mV] in the
extended temperatures and pressures range. Figure 6 and Figure 7 show 2D and 3D
plot of the uncalibrated sensor response at the different temperatures, respectively.

Table 3. Measured data in [mV] of the pressure sensor NPT-0.3.

T(◦C) −19.5 −10 2.1 11.5 20.4 29.5 40.5 49.6 59.9
P [bar]
0 -3.4 0.95 6.1 10.4 15.85 20 25.2 29.3 34.1
0.125 46.7 50.2 54.6 58.25 63 66.8 71.2 74.7 78.85
0.25 96.05 98.8 102.5 105.45 109.4 112.7 116.4 119.2 122.7
0.375 144.15 146.25 149.1 151.4 154.65 157.3 160.2 162.4 165.15
0.5 190.75 192.05 194.5 195.7 198.15 200.2 202.3 203.85 205.9
0.625 235 235.75 236.95 237.95 239.7 241.2 242.5 243.4 244.75
0.75 277.35 277.3 277.8 278.1 279.2 280.05 280.6 280.9 281.65
0.875 317.25 316.6 316.4 316 316.5 316.8 316.6 316.4 316.5
1.0 355 353.7 352.8 351.9 351.7 351.5 350.7 349.9 349.4

Fig. 6. Uncalibrated transfer characteristics
of the pressure sensor NPT-0.3 at nine tem-
peratures.

Fig. 7. NPT-0.3 sensor surface plot in the
temperature range from−19.5◦C to 59.9◦C.

Three equidistant pressure pointsPl = 0bar,Pm = 0.5bar,Ph = 1bar and three
approximately equidistant temperature pointsTl = −19.5◦C, Tm = 20.4◦C, Th =
59.9◦C are selected as the calibration nodes. By fixing the selected three temper-
ature values successive, the new calibration coefficients are calculated by the Eq.
(3), (4) and (5) with the adopted offsetn = 0 and scale factord = 10000. The cal-
culated values of the new calibration coefficients at the three different temperatures
for the selected offset and scale factor are given in Table 4.

To calibrate the cross-sensitivity for a temperature variable, each set of the three
calculated coefficients(C(L)

0 , C(M)
0 , C(H)

0 ), (C(L)
1 , C(M)

1 , C(H)
1 ) and(C(L)

2 , C(M)
2 , C(H)

2 )
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Table 4. New coefficients calculated by the algorithm [7] at the three temperatures with the
adopted offsetn = 0 and scale factord = 10000.

Tl =−19.5◦C Tm = 20.4◦C Th = 59.9◦C
C0 C(L)

0 = 80.3737 C(M)
0 =−394.5724 C(H)

0 =−887.5445

C1 C(L)
1 = 23.6739 C(M)

1 = 24.7102 C(H)
1 = 25.5721

C2 C(L)
2 =−4.3033×10−4 C(M)

2 =−4.6611×10−4 C(H)
2 =−5.1323×10−4

is interpolated across the three temperature nodes by using the pairs of the Eq. (6)
and (9a), (7) and (9b), (8) and (9c). So, the new temperature dependent calibration
coefficients are obtained

C0(T) =−148.9545−11.8955
T

1−5.8886×10−4T

C1(T) = 24.204+2.5973×10−2 T
1+2.2905×10−3T

C2(T) =−4.4662×10−4−8.8999×10−7 T
1−3.3467×10−3T

(15)

Finally, the linearized and temperature compensated sensor response is given
by the equation

V(U) = C0(T)+C1(T)
U

1+C2(T)U
(16)

whereU is the pressure sensor output voltage.
The calibrated 2D transfer characteristics and the appropriate 3D surface plot

of the pressure sensor NPT-0.3 response at the nine temperatures−19.5,−10, 2.1,
11.5, 20.4, 29.5, 40.5, 49.6 and59.9◦C are shown in Figure 8 and Figure 9 respec-
tively.

Fig. 8. Linearized and temperature compen-
sated transfer characteristics of the NPT-0.3
pressure sensor.

Fig. 9. Surface plot of the sensor NPT-0.3
response after the calibration.
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The ideal linear and temperature compensated sensor response can be shown in
the following form

V(U(P,T))
∣∣∣
Tε(−19.5−59.9)◦C

=
d

Ph−Pl
(P−Pl )+n = 10000P (17)

so the error curves, calculated as the difference between the Eq. (17) and (16) at
the different operating temperatures, are as in Figure 10.

Fig. 10. Error curves at the nine different operating temperatures of the NPT-0.3
pressure sensor.

As can be seen, in the extended pressures and temperatures range of the sensor
NPT-0.3 the maximum absolute deviations are not greater than 0.73 percent. In that
way the practical validity of the proposed routine is confirmed.

6 Conclusion

The presented two-dimensional algorithm provides the practical method for the
non-linearity correction and cross-sensitivity compensation of a transducer output.
The calculating routine is simple, limited by a set of only nine calibration data. It
is not necessary to know the transfer curve of a transducer explicitly. The men-
tioned limited set of calibration points will be sufficient. The algorithm is suitable
for smart sensor applications which incorporate a microprocessor. The algorithm
has been tested by the mathematical computer program MicroCal Origin. The an-
alytical description of a piezoresistive pressure sensor response is assumed. This
gives the obvious advantage when we study the behavior of the calibrated sensor
response. Moreover the experimental laboratory measurements are performed by
the piezoresistive pressure sensor NPT-0.3 made in IHTM-CMTM. By applying the
proposed algorithm the satisfactory linear and temperature compensated response is
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obtained in the wider temperature and pressure ranges than specified for the sensor
NPT-0.3. The achieved results have shown the method conveniences as accuracy,
small number of measurements and short response time.
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