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Neural Network for Optimization of Routing in
Communication Networks

Nenad Kojić, Irini Reljin, and Branimir Reljin

Abstract: The efficient neural network algorithm for optimization of routing in com-
munication networks is suggested. As it was known from literature, different opti-
mization and ill-defined problems may be resolved using appropriately designed neu-
ral networks, due to their high computational speed and the possibility of working
with uncertain data. Under some assumptions, the routing in packet-switched com-
munication networks may be considered as optimization problem, more precisely, as
a shortest-path problem. The Hopfield-type neural network is a very efficient tool for
solving such problems. The suggested routing algorithm is designed to find the opti-
mal path, meaning, the shortest path (if possible), but taking into account the traffic
conditions: the incoming traffic flow, routers occupancy, and link capacities, avoiding
the packet loss due to the input buffer overflow. The applicability of the proposed
model is demonstrated through computer simulations in different traffic conditions
and for different full-connected networks with both symmetrical and non-symmetrical
links.

Keywords: Routing, shortest path, Hopfield type neural network, optimization, packet
switching, communication networks.

1 Introduction

In modern communication networks, particularly in packet switched networks,
routing is an important process that has a significant impact on the network’s per-
formance. Ideal routing algorithm comprises finding the ”optimal” path(s) between
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source and destination router, enabling high-speed data transmission and avoid-
ing a packet loss. Since modern communication traffic is characterized by huge
amount of source-destination pairs, high variability (burstiness), nonlinearity and
unpredictability, the routing policy is a very hard task. Under some assumptions
the optimal routing may be considered as the shortest path (SP) computations that
have to be carried out in real time. This makes neural networks very good can-
didates for solving the problem, due to their high computational speed and the
possibility of working with uncertain data. In their famous paper [1], Hopfield and
Tank described a neural network suitable for solving different optimization prob-
lems - among others the well-known Traveling Salesman Problem (TSP): it has
to visit given set ofn cities, passing only once each city and returning to starting
point, forming the shortest path loop. Algorithmically speaking, the TSP may be
described by a square matrix of dimensionn× n whose rows correspond to the
particular city,X, while columns denote the sequence,i, of passing through cities.
Such a matrix has only one non-zero element, of the value of unity, at each row and
at each column. As an example, forn = 5 cities, labeledA, B, C, D andE, with
shortest path loopA−C−B−E−D−A, this matrix has the following form:

1 2 3 4 5
A 1
B 1
C 1
D 1
E 1

. (1)

For n cities case there aren! possible loops of general form described by (1).
Among all solutions there are2n loops with the same lengths, since each loop has
the degeneracy ofn-th order, depending on the starting point in the loop, and the
second-order degeneracy depending on the loop direction. Consequently, there is
n!/2n different loops among which it is necessary to find the shortest one. The
TSP problem is computationally very hard if the number of cities increases. For
instance, forn= 5 there is only 12 different loops, forn= 10the number is 181,440,
while for n = 30 it amounts4.4×1030, which highly extends the number of stars
in Milky Way (about1011 stars)!

For solving different optimization problems Hopfield and Tank proposed a neu-
ral network of the recurrent type [1]. The computational power of their approach
was demonstrated just on the n cities TSP problem. Since then many researchers
used similar model in solving a variety of combinatorial optimization problems.
Among others, the routing problems in telecommunication and computer networks
were under assumption. The graph nodes in neural network correspond to posi-
tions of source and destination routers(i, j) in the initial communication network.
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Instead of distances,di j , between routers (in normalized space[0,1]) some other at-
tributes, called the ’cost’ can be introduced describing the transmission conditions;
for instance, the link capacity, traffic flow, transit time, etc. [2]. Under these as-
sumptions the routing can be considered as an optimization problem of the shortest
path type.

In this paper a Hopfield-like neural network designed for solving the routing
problem, is presented. Section 2 gives a brief review of the Hopfield network
and its applicability to solve the TSP problem. In Section 3, a neural network
for solving the routing problem in packet switched networks, initiated by previ-
ously suggested algorithm [2], is described. The applicability and efficiency of the
new algorithm was demonstrated through computer simulations for different full-
connected networks. Several characteristic examples are described in Section 4.
Some concluding remarks are given in Section 5.

2 Hopfield Neural Network and the TSP Problem

The block scheme of the Hopfield neural computational circuit [1] is depicted in
Fig. 1(a). The processing elements (neurons) are full-connected: output,vi , of each
ith cell is connected to inputs of all other neurons via synaptic weights,Ti j , produc-
ing the modification of cell inputs,ui , and thus changing the network state. If the
system is stable successive iterations lead to smaller and smaller output changes
and network reaches some minima of the system energy. Each cell is externally
excited by input bias,Ii . These inputs can be used to set the general level of ex-
citability of the whole network (shifting the input-output relation along theui axis),
or to provide direct parallel inputs to drive specific neurons.

In hardware implementation, processing cells are realized as summing ampli-
fiers, Fig. 1(b), with nonlinear transfer functiong(ui) = vi/ui , called also anacti-
vation function. In Hopfield’s early work [3] the activation function was a simple
threshold (hard limiter), and the model was a discrete one. Later on, Hopfield
introduced continuous activation function. A common choice is the sigmoidal or
logistic function, plotted in Fig. 1(b) upper right

gi(ui) =
1

1+e−ai ·ui
. (2)

The coefficientai determines the steepness of the sigmoidal function. The activa-
tion functiong(ui) approaches the threshold function for large values ofai , while
smaller values ofai produce more gentle slope, as indicated in Fig. 1(b). Synap-
tic weightsTi j are realized as resistors of resistancesRi j = 1/|Ti j |. This resistor is
connected to the non-inverting output of amplifier for excitatory synapses(Ti j > 0).
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Fig. 1. Hopfield network: a) network structure, b) possible hardware realization of ith neuron
(lower drawing) and its activation function (upper diagram).

In case of inhibitory synapses(Ti j < 0), it is connected to the inverting output of
amplifier. An additional RC section,ρi , Ci , defines the time constant of the cell
and provides the integrative analog summation of the synaptic input currents from
other neurons.

State equations of the circuit in Fig. 1(b) is described by

Ci
dui

dt
=

N

∑
j=1
j 6=i

Ti j v j − ui

Ri
+ Ii , i = 1,2, . . . ,N (3)

whereRi is an equivalent resistance connected to the cell’s capacitorCi . Usually
(but not necessarily) all neurons are identical, except synaptic conductance.

Hopfield network withN neurons may haveM = 2N distinct states associated
with an N-dimensional hypercube with sidesvi ∈ {0,1}. Stable states are deter-
mined by the network weights and the current inputs. It was shown [4] that re-
current networks are stable if the matrix of weights is symmetrical with zeros on
its main diagonal. In Hopfield realization [1] that means,Ti j = Tji , andTii = 0 -
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thus, in Fig. 1a weightsTii are plotted as dashed lines. Under these assumptions,
and if constantsai are sufficiently large (for instance,ai > 100), the stability of the
network, in Liapunov sense, may be verified by observing the energy function,E,
describing the state of the network:

E =−1
2

N

∑
i=1

N

∑
j=1
i 6= j

Ti j v jvi−
N

∑
i=1

Iivi . (4)

The change in energy, due to the change in the state of neuroni, is

∂E
∂vi

=−
N

∑
j=1

Ti j v j −
N

∑
i=1

Ii . (5)

Comparing (5) and (3), the state equation (3) can be rewritten as

Ci
dui

dt
=−ui

Ri
− ∂E

∂vi

or, in stable state, when signals are unchangeable:dui/dt = 0, one can obtain

∂E =−ui

Ri
∂vi . (6)

From (6), and the activation function of the form (2), we can conclude that the term
ui∂vi is strictly positive or zero, and the change in energy,∂E, must be negative or
zero - the network energy must either decrease or stay constant, hence, the system
is stable.

Hopfield and Tank have applied the neural network, briefly described above,
to the TSPn cities problem [1]. They used a neural net withN = n×n neurons
and by minimizing its energy function they found the shortest path - the minimum
of the energy function (the most stable state) corresponded to the shortest path.
The routers belonging to this path have the final states equal to unity, as in matrix
(1). Energy function must favor strongly stable states of the form as described by
a matrix (1), and of then! such solutions it must favor those representing shortest
paths. Possible energy function satisfying these requirements is of the form

E =
A
2 ∑

X
∑

i
∑
j 6=i

vXivX j +
B
2 ∑

i
∑
X

∑
X 6=Y

vXivYi

+
C
2

(
∑
X

∑
i

vXi−n

)2

+
D
2 ∑

X
∑

Y 6=X
∑

i

dXYvXi(vY,i+1 +vY,i−1).

(7)
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The first three terms, ifA, B andC are sufficiently large and positive, enforce
valid tours, while the last term assures that the valid tour represents the shortest
path. Subscripts are of the form ’modulon’, that means thenth city is adjacent in
the tour to both city(n−1) and city 1:vY,n+ j = vY, j . In all terms double indices of
the formXi are used where the first (row) subscript corresponds to the city name
and the second (column) subscript has the interpretation of the position of that city
in a tour.

From relations (7), (4) and (3) the conductance matrix for the TSP problem
solving, has the terms

TXi,Y j =−AδXY(1−δi j )−Bδi j (1−δXY)−C−DdXY(δ j,i+1+δ j,i−1) (8)

whereδii = 1, δi j = 0, for i 6= j. and the bias currents areIxi = Cn. The Hopfield
network may be very efficient in solving the TSP problem despite of some diffi-
culties. Namely, the choice of network parameters is not unique, and the solution
obtained is not always just the shortest path but, it always belongs to one of the
shortest valid paths [1].

3 Design of Neural Network for Routing in Packet-Switched Network

The optimal routing in communication network may be considered as the shortest
path (SP) problem. For this purpose instead of distances,di j , describing the path
between routersi and j, some other attributes called the link costs,Ci j , are asso-
ciated to links, describing the transmission conditions between routers [2]. Then,
the goal is to minimize the total cost, i.e., to find the ’path’ between source (s)and
destination router (d): Csi+Ci j +Cjk + · · ·+Crd, that has the minimum length. The
use of neural networks to find the shortest path between a given source-destination
pair was described in several papers. In [5] the authors proposed a neural network
of sizen×m wherem < n denotes the number of routers forming the path. Se-
rious limitation in their representation is that it requires a prior knowledge of the
number of routers in the shortest path. Further improvements are derived in [6].
Authors used the Hopfield network and the neural network is designed to find the
shortest path between given source-destination pair. However, for another source-
destination pair, the neural configuration has to be changed. Furthermore, the cost
term in their energy function is quadratic, associated to the termA, in (7), that
means, associated to synaptic conductances. This solution is not appropriate for
real case because in practice the link costs in communication network are time
varying and, consequently, the conductances have to be changed, too.

Significant improvements in neural network algorithm are derived in paper of-
fered by Ali and Kamoun [2]. Forn routers problem their computational network
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usesn(n−1) neurons – the diagonal elements in the connection matrixn×n are
removed – and find the shortest path from final stable neuron states. A suitable
energy function is of the form

E =
µ1

2 ∑
X

∑
i 6=X

(X,i)6=(d,s)

CXivXi +
µ2

2 ∑
X

∑
i 6=X

(X,i)6=(d,s)

ρXivXi +
µ5

2
(1−vds)

+
µ3

2 ∑
X

(
∑
i 6=X

vXi− ∑
i 6=X

viX

)2

+
µ4

2 ∑
i

∑
X 6=i

vXi(1−vXi)

(9)

CoefficientsCXi are the link costs from routerX to routeri and the termsρXi de-
scribe the connection between routers: the value is 1 if routers are not connected,
and 0 for connected routers. The termµ1 minimizes the total cost;µ2 prevents
nonexistent links from being included in the chosen path;µ3 is zero for every
router in the valid path (the number of incoming links is equal to the number of
outgoing links);µ4 forces the state of the neural network to converge to one of the
stable states – corners of the hypercube defined byvi ∈ {0,1}. The state vi is close
to 1 for router belonging to the valid path, otherwise the state is close to 0. The
termµ5 is zero when the outputvds is equal to 1. This term is introduced to ensure
the source and the destination routers belong to the solution (the shortest path).
The main contribution in Ali-Kamoun’s paper [2] is that synaptic conductances are
constant, given by

TXi,Y j = µ4δXYδi j −µ3(δXY +δi j −δ jX −δiY) (10)

while the link costs and the information about the connection between routers are
associated to the bias currents

IXi =− µ1

2
CXi(1−δXdδis)− µ2

2
ρXi(1−δXdδis)− µ4

2
+

µ5

2
δXdδis

=





µ5

2
− µ4

2
, for (X, i) = (d,s)

−µ1

2
CXi− µ2

2
ρXi− µ4

2
, otherwise

.
(11)

In this way the neural network SP algorithm becomes very attractive for real time
processes. Ali and Kamoun [2] applied this algorithm to optimize delay in com-
puter networks under different network topologies and link costs. Recently, we
applied similar algorithm [7] to the routing in full-connected bi-directional (full-
duplex) networks, assuming both the symmetric(Ci j = Cji ) and non-symmetric
(Ci j 6= Cji ) cost matrix, that means, assuming the same and different link costs
(transport conditions) depending on the direction of traffic flow.
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Our further investigation was addressed to the routing with reduction of packet
loss. Namely, each link is characterized by itscapacity, Ki j (in data units per sec-
ond). Note that the link capacity from routeri to router j and in opposite direction
should not be the same, in general. On the other hand, each link has itstraffic
density, Gi j (also in data units per second), describing the actual traffic flow in par-
ticular direction. Certainly, the traffic density may not exceed the link capacity;
i.e., it must be satisfiedKi j ≥ Gi j . If, in some circumstances, incoming packets
overflow the input buffer, these packets would be lost. In order to minimize this ef-
fect we introduce a new term observing the free space in a link capacity. This term
is the difference(Ki j −Gi j ) and the routing have to find a path with enough free
space in link capacity. Since the neural network is designed to minimize the energy
function, actual term in energy function have to be of the form[1− (Ki j −Gi j ].
Following this reason we introduced new term,µ6, in biases

IXi =− µ1

2
CXi(1−δXdδis)− µ2

2
ρXi(1−δXdδis)

−µ4

2
+

µ5

2
δXdδis +

µ6

2

[
1− (KXi−GXi)

]
(1−δXdδis)

=





µ5

2
− µ4

2
, for (X, i) = (d,s)

−µ1

2
CXi− µ2

2
ρXi− µ4

2
+

µ6

2

[
1− (KXi−GXi)

] .

(12)

The termµ6 minimizes the possibility of packet loss under the constraintKi j ≥
Gi j . If Gi j exceeds the link capacity,Ki j , this router is removed from the algorithm
by setting an appropriate termρi j into the matrixρρρ defining the existence of links
between routers (the routers connectivity) to the value of 1.

By embedding (10) and (12) into the state equations (3) the following expres-
sion suitable for computer simulation is obtained

Ci
dui

dt
=− ui

Ri
− µ1

2
CXi(1−δXdδis)− µ2

2
ρXi(1−δXdδis)

−µ3 ∑
Y 6=X

(vXY−vYX)+ µ3 ∑
Y 6=X

(viY −vYi)

−µ4

2
(1−2vXi)+

µ5

2
δXdδis +

µ6

2

[
1− (KXi−GXi)

]
(1−δXdδis).

(13)

4 Simulation Results

Relations (13) and (2) are used for computer simulations derived in Matlab. The
router positions in Descartes space, and relevant matrices defining the routers con-
nectivity,ρρρ, the link cost,CCC, the link capacities,KKK, and the traffic density,GGG, have
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been constructed. We have analyzed rather complex case of fully connected graph
producing the maximal number of possible valid solutions, of the form (1), which
is equal ton!. Links were considered as bidirectional: for cases of symmetrical
transmission withCi j = Cji , as well as for more realistic case withCi j 6= Cji (non-
symmetrical case). The coefficientsµ1 to µ6 and the amplifier coefficients,a, have
been chosen for best results. Actually, we used:µ1 = 950; µ2 = 2500; µ3 = 1500;
µ4 = 475; µ5 = 2500; µ6 = 1000; a = 50; assuming thatCi andRi has the unit
values. Very intensive simulations have been done. The results here presented are
used for pointing out the algorithm itself.

Example 1.Fully-connected network with 8 routers, Fig. 2, with symmetrical
link cost matrix given by (14). The optimal path between the router 1 and router 6,
having the ’length’ of 0.5, is 1-2-4-6 (with bolded entries in matrixCCC), as depicted
in Fig. 3. Note that this path is pure shortest one.

CCC =

0 0.1 0.4 0.5 0.6 0.9 0.6 0.8
0.1 0 0.8 0.2 0.3 0.8 0.7 0.5
0.4 0.8 0 0.5 0.2 0.6 0.3 0.8
0.5 0.2 0.5 0 0.4 0.2 0.9 0.4
0.6 0.3 0.2 0.4 0 0.7 0.8 0.2
0.9 0.8 0.6 0.2 0.7 0 0.5 0.2
0.6 0.7 0.3 0.9 0.8 0.5 0 0.4
0.8 0.5 0.8 0.4 0.2 0.2 0.4 0

(14)

Fig. 2. A eight-routers network.
Fig. 3. Optimal path (the shortest one) from
router 1 to router 6 (Example 1).

Example 2. Fully-connected eight-router network, as in Fig. 2, with non-
symmetrical link cost matrix, described by (15). The optimal path between the
source 1 and destination 6, is 1-3-4-7-6 (bolded entries in matrixCCC), having the
’length’ of 0.5, as represented in Fig. 4.
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CCC =

0 0.08 0.1 0 0 0.9 0.6 0.8
0.2 0 0 0.9 0.1 0 0 0.6
0.4 0 0 0.1 0.1 0.6 0.6 0.1
0.1 0 0.8 0 0 0.5 0.1 0.8

0 0.1 0 0.1 0 0.9 0.7 0.1
0.8 0 0 0 0.5 0 0.4 0.7
0.1 0.4 0.5 0 0 0.2 0 0.2

0 0.2 0.1 0.4 0.9 0 0.9 0

(15)

Fig. 4. Optimal path (the shortest one) from router 1 to router 6 (Ex-
ample 2).

Example 3. Fully-connected network with 10 routers and non-symmetrical
link cost matrix described by matrix (16). The algorithm has chosen the path 1-
10-6 as optimal between routers 1 and 6 Fig. 5(a). Its length is 0.7. However,
additional checking founded that the path 1-5-8-10-6 is the shortest one (bolded
entries), having the length of 0.5. Such behavior of Hopfield neural network is even
expected, according to initial paper [1]. Namely, the solution derived by Hopfield
neural network may not be exactly the shortest path but it always belongs to one of
the shortest valid paths. In our example, by changing the amplifier constants from
a = 25 to a = 3, the network had found the exact shortest path, Fig. 5(b), but the
computational time now was longer for nearly 15%.

CCC =

0 0.8 0.4 0.5 0.1 0.9 0.6 0.8 0.2 0.6
0.1 0 0.8 0.2 0.3 0.8 0.7 0.5 0.4 0.7
0.4 0.8 0 0.5 0.2 0.6 0.3 0.8 0.2 0.8
0.5 0.2 0.5 0 0.4 0.8 0.9 0.4 0.8 0.1
0.6 0.3 0.2 0.4 0 0.7 0.8 0.2 0.4 0.8
0.9 0.8 0.6 0.2 0.7 0 0.5 0.2 0.1 0.5
0.6 0.7 0.3 0.9 0.8 0.5 0 0.4 0.9 0.2
0.8 0.5 0.8 0.4 0.2 0.2 0.4 0 0.7 0.1
0.2 0.6 0.1 0.9 0.4 0.8 0.5 0.6 0.8 0.3
0.4 0.7 0.8 0.1 0.1 0.1 0.2 0.6 0.4 0.7

(16)
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Fig. 5. (a) Initially chosen optimal path (not the shortest one) from router 1 to router 6 and (b) the
shortest path obtained after changing amplifiers’ constant (Example 3).

In previous examples 1-3 the algorithm was derived without the termµ6, i.e.,
without the consideration of possible packet loss due to the input buffer overflow.
The next example will introduce this term.

Example 4.Fully-connected network with 8 routers and non-symmetrical link
cost matrix as in example 2, relation (15), and with link capacity and traffic density
matrices,KKK andGGG, given by (17) and (18), respectively. The optimal path between
the source router 1 and the destination 6 is 1-3-7-6, Fig. 6(a), having the length
of 0.9.

KKK =

0 0.2 0.41 0.8 0.4 0.8 0.6 0.1
0.1 0.6 0.8 0.1 0.4 0.7 0.7 0.1
0.8 0.2 0.5 0.4 0.8 0.5 0.9 0.3
0.4 0.1 0.4 0.4 0.8 0.9 0.1 0.1
0.1 0.5 0.4 0.5 0.1 0.1 0.2 0.6
0.7 0.5 0.1 0.1 0.5 0.1 0.6 0.2
0.6 0.9 0.7 0.7 0.3 1 0.2 0.4
0.2 0.1 0.3 0.1 0.5 0.1 0.8 0.9

(17)

GGG =

0 0.1 0.1 0.1 0.2 0.9 0.7 0.2
0.1 0 0.3 0.4 0.6 1 0.1 0.7
0.5 0.9 0 0.8 0.4 0.6 0.8 0.7
0.9 0.8 0.5 0 0.2 0.4 0.9 0.6
0.1 0.1 0.5 0.7 0 0.2 0.6 0.7
0.1 0.5 0.4 1 0.6 0 0.4 0.8
0.2 0.5 0.1 0.9 0.9 0.9 0 0.5
0.1 0.5 0.9 0.2 0.8 0.4 1 0

(18)

Let us assume increase ofG13 from 0.1, as in (18), to 0.5. Now the traffic
densityG13 = 0.5 exceeds its link capacityK13 = 0.41. According to our algorithm,
Eqs (12) and (13), the link 1-3 is excluded from the procedure. The optimal path
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Fig. 6. (a) Optimal path from router 1 to router 6, including link capacity and traffic density matrices
(b) Optimal path from router 1 to router 6 avoiding the packet loss in router 3 (Example 4).

between the source router 1 and the destination router 6 now is 1-2-7-6, Fig. 6(b),
having the length of 1.18. This path is not the shortest one, but the packet loss in
router 3 is avoided.

5 Conclusions

The routing problem in packet-switched communication networks can be solved as
the optimization problem of the traveling salesman type. Links are to be described
as appropriate ’costs’,Ci j , containing relevant data describing transmission condi-
tions from routeri to router j (instead of simple distance between the nodes, as
in case of classical TSP problem). Ali and Kamoun [2] derived efficient method
for optimizing the routing in communication networks with assistance of Hopfield
neural network. Recently, we have applied the Cellular Neural Networks for solv-
ing routing problems in networks of regular structure (known as Manhattan-Street
Networks) [8]. Here, we have derived a new routing algorithm, inspired by Ali-
Kamoun’s paper, applicable for full-duplex networks of arbitrary structure. The
algorithm assumes both symmetrical and non-symmetrical link cost matrices and
takes into account the link capacities and traffic density. In this way the packet loss
is minimized, as well. After performing intensive simulations, we have concluded
that neural network always finds the optimal solution: the shortest path or some
very close to this, but avoiding the packet loss due to the input buffer overflow.

The advantage of the Hopfield-type neural network is that this network can be
realized as classic electronic device, assuring the very high speed due to inherent
parallel processing. The data terms describing the communication network: the
link ’costs’, router connectivity, link capacities and the traffic density, as described
in the algorithm, are associated to bias currents, not to synaptic conductance. In
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this way the network becomes highly flexible and may be used even in real cases
when network parameters and traffic conditions may rapidly vary in time.
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