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A Class of Circularly-Symmetric CNN Spatial Linear
Filters

Radu P. Matei and Liviu Goraş

Abstract: This paper proposes a simple and efficient method for designing a class
of circularly-symmetric spatial linear filters implemented on cellular neural networks.
The design method relies on a so-called 1-D prototype filter,with desired character-
istics and on a 1-D to 2-D spatial frequency transformation.Several design examples
are given, for 2-D low-pass and band-pass filters (both of FIRand IIR type) with im-
posed cut-off or peak frequency and a specified selectivity.Finally, simulation results
are provided, on a real grayscale biomedical image.
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1 Introduction

Cellular Neural Networks (CNNs) are complex dynamic systems consisting in reg-
ular arrays, made of identical elements called cells [1]. Recently, they havefound
useful applications in various image processing tasks ( [1, 2]). Spatial filters with
circular symmetry are useful in linear filtering tasks, both in digital and analogim-
age processing [3, 4]. In the latter case, CNNs can be used as stable linear 2-D
filters. The image I to be filtered is usually applied at the input (UUU=I) and the initial
state is usually zero (XXX=0). When used in this class of tasks, CNN cells must not
reach saturation during operation, which implies the restriction for the cell state:
|xi j|< 1|, i, j = 1, . . . ,N. Generally, the linear CNN filter is described by the spatial
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transfer function [5]:

H(ω1,ω2) = −B(ω1,ω2)

A(ω1,ω2)
(1)

whereA(ω1,ω2 andB(ω1,ω2 are the 2-D Discrete Space Fourier Transforms (DSFT)
of templatesA andB.

An essential constraint regarding CNNs is the local connectivity, which isspe-
cific to these parallel systems. The design of 2-D spatial filtering functions may
lead to high-order spatial filters, which require large-size templates, that cannot be
directly implemented in VLSI. In fact, the templates currently implemented are no
larger than 3×3, 5×5, rarely 7×7 [2]. Consequently, large templates can only
be implemented by decomposing them into a set of elementary templates. Thus,
a given filtering operation can be achieved as a sequence of elementary filtering
tasks, directly implemented [6].

Large templates, which correspond to high order spatial filters, can be systemat-
ically decomposed as a sum of convolution products of elementary (minimum-size)
templates using the Singular Value Decomposition (SVD), as shown in [7].

The most convenient templates are the so-called separable templates, which fi-
nally can be written as a discrete convolution of small-size templates. We will show
here that the templates of the 2-D spatial filters resulted from 1-D prototypescan
be always written as a single convolution product of small-size templates, therefore
the filtering can be realized in several steps.

Correspondingly, the filtering function will be a product of elementary func-
tions. For instance, for a 2-D IIR filterH(ω1,ω2), the final image (state) can be
expressed as

X(ω1,ω2) = U(ω1,ω2)H(ω1,ω2)

=U(ω1,ω2)H1(ω1,ω2)H2(ω1,ω2) · · ·Hn(ω1,ω2)
(2)

The imageX(ω1,ω2) = U(ω1,ω2)H(ω1,ω2) resulted after the first filtering step is
re-applied to CNN input, giving the second output image:X2(ω1,ω2)=U(ω1,ω2)H2(ω1,ω2)
and so on, until the whole filtering is achieved. This successive filtering is possible
for any 1-D filter and for 2-D separable filters. For instance, a high-order separable
2-D filter has a large-size control template B

B = Bc ∗Br =(Bc1∗Bc2∗ · · · ∗BcN)∗ (Br1∗Br2∗ · · · ∗BrN)

=(Bc1∗Br1)∗ (Bc2∗Br2)∗ . . .∗ (BcN ∗BrN)

=B1∗B2∗ · · · ∗BN

(3)

The separable templateB is written as an outer product of the column vectorBc

with row vectorBr. Then,Bc andBr are decomposed into small templatesBci, Br j
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(of size 1×3 or 1×5), which are then coupled in pairs, giving by outer product
the elementary templatesB1, . . . ,BN (3×3 or 5×5). Here the symbol∗ stands for
bothouter product of two vectors and2-D convolution of two matrices, which are
associative operations, therefore can be interchanged.

Considering a 1-D recursive CNN spatial filter of orderN, its transfer function
can be expressed as

H(ω) =

N
∑

n=1
bn cosn ω

N
∑

m=1
am cosm ω

(4)

According to the fundamental theorem of algebra, the numerator and denomi-
nator of (4) can be factorized into first and second order polynomials in cosω . For
instance, the numerator can be decomposed as follows

B(ω) = k
n

∏
i=1

(cosω +bi)
m

∏
j=1

(cos2 ω +b1, j cosω +b2, j) (5)

with n + 2m = N (the filter order). Correspondingly, the symmetric 1-D template
B (size 1×N), can be decomposed into elementary, symmetric templates of size
1×3 or 1×5, i.e. it can be written as a discrete convolution

B = B1∗B2∗ · · · ∗Bk (6)

A similar expression is valid for the denominatorA(ω).

Coupling conveniently the factors ofA(ω) andb(ω), the filter transfer function
(4) can be always written as a product of elementary functions of order1 or 2,
realized with pairs of 1×3 or 1×5 templates

H(ω) = H1(ω)H2(ω) · · ·Hk(ω) (7)

Different useful 1-D filters (low-pass, band-pass etc.) realized with minimum
size templates were proposed in [8]. Such filters, easy to design, can be considered
as 1-Dprototypes for various 2-D spatial filters.

Here we will discuss zero-phase CNN filters (FIR and IIR), i.e. with real-
valued transfer functions, which correspond to symmetric control and feedback
templates [5].

2 Proposed Design Method

In the following approach we propose an efficient design technique for2-D circular-
symmetric filters, based on 1-D filters, considered as prototypes. Given a1-D proto-
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type with transfer functionHp(ω), the corresponding 2-D filter functionH(ω1,ω2)

results through the transformationω →
√

ω2
1 +ω2

2

H(ω1,ω2) = Hp(
√

ω2
1 +ω2

2) (8)

which can be interpreted as arotation of the prototype function around its central
axis, which generates the 2-D characteristic. A currently-used approximation of

the 2-D cosine characteristic cos
√

ω2
1 +ω2

2 given by the 3×3 template

C =





0.125 0.25 0.125
0.25 −0.5 0.26
0.125 0,25 0.125



 (9)

such that we have the approximation

cos
√

ω2
1 +ω2

2 ≃C(ω1,ω2)

= −0.5+0.5(cosω1 +cosω2)+0.5cosω1cosω2

(10)

This is also known as the McClellan transform.

The corresponding characteristicC(ω1,ω2) and the constant level contours are
given in Fig.1, showing a good circular symmetry in a large domain, while near the
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Fig. 1. (a) CharacteristicC(ω1,ω2); (b) level contours

margins the contour shape is less and less circular. Nevertheless, compared to other
realizations we will discuss, it has the essential advantage of decreasingsmoothly
and uniformly to the minimum value (−1) at the limits of the domain and showing
no ripple. The deviation from circular symmetry is rather unimportant for the types
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of filters under discussion. Let us consider a 1-D filter with the symmetric control
template of radiusR

Bp =
[

· · · b2 b2 b1 b0 b1 b2 b3 · · ·
]

(11)

Its frequency characteristic is given by DSFT:

Bp(ω) = b0 +2
R

∑
k=1

b+ kcoskω (12)

Using trigonometric identities for coskω , k = 1, . . . ,R, we finally get a polyno-
mial expression in powers of cosω

Bp(ω) = c0 +
R

∑
k=1

ck(cosω)k (13)

Considering this 1-D characteristic as a prototype and using the frequency
transformation specified before, we obtain:

B(ω1,ω −2) = BP(
√

ω2
1 +ω2

2 = c0 +
R

∑
k=1

ckC
k(ω1,ω2) (14)

where we used the notation:C(ω1,ω1) = cos(
√

ω2
1 +ω2

2). Therefore, once ob-
tained the 1-D prototype filter with desired frequency response, the design of the
2-D circularly-symmetric filter consists in substituting in the prototype function

H(ω) with thecircular cosine C(ω1,ω2) = cos
√

ω2
1 +ω2

2 . This substitution was
made in each factor of in the form (5); we can write

B(ω1,ω2) = k
n

∏
i=1

(C +bi)
m

∏
j=1

(C2 +b1, jC +b2, j) (15)

whereC is a shorthand notation forC(ω1,ω2).

Since the filtering function can be written as a product of elementary functions,
the 2-D filter with circular symmetry, obtained from the 1-D prototype, issepara-
ble, which is a major advantage in implementation.

Consequently, the large-size templateB corresponding to the FIR filterB(ω1,ω2)
results directly decomposed into elementary, small-size (3×3 or 5×5) templates,
as a discrete convolution

B = k(C1∗ · · · ∗Ci ∗ · · · ∗Cn)∗ (D1∗ · · · ∗D j ∗ · · · ∗Dm) (16)



304 R. Matei and L. Goraş:

If we use the 3×3 templateC given in (9) to approximate the function cosω2
1 +ω2

2 ,
each 3×3 templateCi from (15) is obtained fromC by adding the valuebi to the
central element. Each 5×5 template results as

D j = C ∗C +b1 jC1 +b2 jC0 (17)

whereC0 is a 5×5 zero template, with central element one;C1 is a 5×5 template
obtained by borderingC(3×3) with zeros.

3 FIR Filter Design Methods

3.1 FIR low-pass filter based on Fourier series

We intend to design a 2-D low-pass (LP) FIR filter with circular symmetry and
specified cut-off frequencyΩ0. The proposed approach is to find an approximation
of an ideal 1-D LP filter through Fourier series expansion. Consider theideal filter
function plotted in Fig.2 (curve 1)

HI(ω) =

{

1, ω ∈ [−Ω0,Ω0]

0, ω ∈ [−π,−Ω0]
⋃

[Ω0,π]
(18)

which generates the periodic frequency functionHI p(ω), that can be developed into
the Fourier series

HI p = ∑
m

HI(ω −2nπ) =
Ω0

π
+

2
π

∞

∑
n=1

sin(nΩ0)

n
cos(nω) (19)

Thus, we can find a filter approximation by truncating this series at a convenient
order.

Example: For an ideal LP filter withΩ0 = 0.3π, keeping 12 terms, we obtain
in the range[−π,π]:

HI(ω) ≃ 0.3+0.515cosω +0.3037cos2ω +0.0656cos3ω
−0.0936cos4ω −0.1273cos5ω −0.06236cos6ω
+0.0281cos7ω +0.07568cos8ω +0.05723cos9ω
−0.0468cos11ω −0.05045cos12ω

(20)

giving the characteristic denoted (2) in Fig.2. Using trigonometric identities for
cosnω , we get a polynomial in cosω , which can be factorized. Replacing in each
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Fig. 2. Prototype filter characteristic withΩ0 = 0.3π.

factor cosω by C = C(ω1,ω2), we finally get

B(ω1,ω2) ≃−103.33(C−1.0464)(C +0.9925)(C +0.9336)

(C +0.8164)(C +0.654)(C−0.4631)(C +0.451)

(C−0.2512)(C +0.2231)C−0.0162)(C2−1.8298C +0.8547)
(21)

For this FIR filter we takeA(ω1,ω2) = −1. In the spatial domain, correspond-
ing to (21), the control template is

B = −103.33C1∗C2∗C3∗ · · · ∗C10∗D1 (22)

whereC1(i = 1, . . . ,10) are 3∗3 symmetric templates, calculated as shown before,
and is a symmetric template

D1 = C ∗C−0.82298C1+).8547C0 (23)

Since 5×5 templates can be implemented, 3×3 templates can be coupled two by
two, leading to the convolution

B = −103.33C12∗C34∗C56∗C78∗C910∗D1 (24)

whereC12(5×5) = C1∗C2 and so on. Therefore, the equivalent templateB of size
25×25 can be realized as a convolution of 6 templates of size 5×5. In Fig.3(a),
the frequency characteristic of the 2-D low-pass filter is displayed. It can be no-
ticed that the filter is very steep around the cut-off frequency. Moreover, it has a
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perfect circular symmetry in the pass domain and a satisfactory one within the disk
of radius 2π/3. Outside this disk, the contour plot shows a rather poor circular
symmetry, which however is not important in the stop domain. Due to Fourier se-
ries truncation, the filter shows a radial ripple in both pass and stop domains.In
Fig.4(a) another filter is shown, having the cut-off frequencyΩ0 = 0.5π.

(a) (b)

Fig. 3. Low-pass circular-symmetric filter withΩ0 = 0.3π: (a) characteristic; (b) contour plot.

(a) (b)

Fig. 4. (a) LP characteristic (Ω0 = 0.5π); (b) contour plot.

3.2 FIR band-pass filter based on 1-D prototype

Let us consider the band-pass 1-D FIR filter, described by the 1× 5 symmetric
templateB = [r s p s r]. The filter frequency function is the DSFT of the discrete
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sequenceB
B̃ = p+2scosω +2r cos2ω (25)

We can impose the central frequencyω0, for which B(ω0 = 1. Template pa-
rameters result from the design relations

p =
1+4x0

2(1+ x0)2 s =
x0

(1+ x0)2 r = − 1
4(1+ x0)2 (26)

where we used the notationx0 = cosω0, for simplicity.

Example: We design first a band-pass filter withω0 = 4π and B̃(ω0) = 1,
B̃(π) = 0. Using (26), we get the parameter values:p = 0.5623, s = 0.0647,
r = −0.2164. The frequency characteristics of the FIR spatial filter is shown in
Fig.5(a). The filter can be cast into the polynomial form

(a) (b)

Fig. 5. (a) FIR BP filter withω0 = 0.47π; (b) IIR BP filter.

B̃(ω) = p−2r +2scosω +4r cos2 ω (27)

Using the method presented before, from this 1-D prototype filter we can derive
the 2-D circular-symmetric filter, with the proposed change of variable. We first use

the 3×3 templateC in (9) to approximate the functionC(ω1,ω2) = cos
√

ω2
1 +ω2

2 .
Doing so, we obtain the 5×5 template for the BP filter

B = 4rC ∗C +2sC1 +(p−2r)C0 (28)

B =













−0.0135 −0.0541 −0.0812 −0.0541 −0.0135
−0.0541 0.0162 0.1406 0.0162 −0.0541
−0.0812 0.1406 0.4435 0.1406 −0.0812
−0.0541 0.0162 0.1406 0.0162 −0.0541
−0.0135 −0.0541 −0.0812 −0.0541 −0.0135













(29)
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where the matricesC0 andC1 are specified before. The filter characteristics and
contour plot are displayed in Fig.6. As we notice, using the 3×3 templateC to ap-

(a) (b)

Fig. 6. (a) BP filter characteristic; (b) contour plot.

proximate the desired filter does not provide a very satisfactory circular symmetry
near the limits of the domainω1,2 ∈ [−π,π]. Therefore, we will try to find a 5×5
template which provides a larger domain of circular symmetry forC(ω1,ω2) =

cos
√

ω2
1 +ω2

2 . We use a straightforward approach, by finding a trigonometric ex-
pansion of the function. Using the changes of variable:x = cosω1 andy = cosω2,
becomes

f (x,y) = cos
√

arccos2 x+arccos2 y (30)

Next, we will expand the functionf (x,y) in a two-variable Taylor series around
(1,1). The general form is

f (x,y) = f (1,1)+
∞

∑
n=1

1
n!

(

(x−1)
∂
∂x

+(y−1)
∂
∂y

)n
f
∣

∣

∣

(1,1)
(31)

and takes the particular expression in our case

f (x,y) = 0.95848+0.91822(x+ y−2)−0.0534((x−1)2 +(y−1)2)

+0.21246(x−1)(y−1)−0.06986((x−1)2(y−1)+(x−1)(y−1)2)

−0.0135((x−1)3 +(y−1)3)+ · · ·
(32)

Coming back to the initial frequency variables,ω1 andω2, expanding and com-
bining powers, then using the trigonometric identities which express cosn ω as a
linear combination of coskω , k = 0, . . . ,n, we finally derive the following trigono-
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metric expansion, which can be considered a 2-variable Fourier transform

cos
√

ω2
1 +ω2

2 = −0.5488+0.517(cosω1 +cosω2)+0.4919cosω1cosω2

+0.0284(cos2ω1 +cos2ω2)−0.0349(cos2ω1cosω2 +cosω1cos2ω2)

+0.0252cos2ω1cos2ω2−0.0034(cos3ω1 +cos3ω2)+ · · ·
(33)

Keeping from this series the components of frequency 0,ω1, ω2, 2ω1, and
2ω2 their combinations, we determine by identification the elements of the 5×5
template

C2 =













0.0063 −0.0087 0.0142 −0.0087 0.0063
−0.0087 0.1231 0.2588 0.1231 −0.0087
0.0142 0.02588 −0.5488 0.2588 0.0142
−0.0087 0.1231 0.2588 0.1231 −0.0087
0.0063 −0.0087 0.0142 −0.0087 0.0063













(34)

The characteristic corresponding to templateC2 is shown in Fig.7(a). Using the

(a) (b)

Fig. 7. (a)C2(ω1,ω2) charavteristic; (b) contour plot.

template (34), we will re-design the same 2-D band-pass filter based on the 1-D
prototype discussed before. All we have to do is to replace the 3×3 templateC
by templateC2 in eq. (28). This time,C0 andC1 are 9×9 templates obtained as
before. We finally get a control templateB of size 9×9, which obviously cannot
be directly implemented. Considering the polynomial expression ofB̃(ω) in (27)
and taking into account the parameter expressions (26), it can be shownthat for
this particular filter type,̃B(ω) has always real roots, therefore templateB (9×9)
can be decomposed into two 5×5 templates, which can be directly implemented.
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However, in practice, the marginal elements of matrixB are negligible, so we can
retain only the 5×5 central matrix block without significant error. For the 2-D BP
filter we will then use the template

B =













0.0011 −0.0717 −0.0615 −0.0717 0.0011
−0.0615 0.1670 0.3777 0.1670 −0.0615
−0.0717 0.0172 0.1670 0.0172 −0.0717
−0.0615 0.1670 0.3777 0.1670 −0.0615
0.0011 −0.0717 −0.0615 −0.0717 0.0011













(35)

The BP frequency response and contour plot are shown in Fig.8, showing a

(a) (b)

Fig. 8. (a) BP filter characteristic; (b) contour plot.

larger domain of circular symmetry, but also larger ondulations near the margins of
the domain.

4 IIR Filter Design Method

4.1 IIR low-pass filter

A low-pass 1-D IIR filter, arbitrarily sharp, can be realized using the symmetric
feedback template:A = [s p s] and the control templateB = [0 1 0]. If the cut-
off frequencyΩ0 is imposed, we obtain the parameter expressions [8]:p = (1−√

2)/(1− cosΩ0), s = −p/2. In Fig.9(a) the low-pass prototype characteristic is
shown, obtained forpa = −37.6, sa = ra = 18.8, for Ω0 = 0.15. With the change
of variable introduced before, we get

A(ω1,ω2) = p+2scos
√

ω2
1 +ω2

2 (36)
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Using templateC from (9), this filter is realized using the following 3×3 template:

A = 2sC + pC0 =





4.7 9.4 4.7
9.4 −57.4 9.4
4.7 9.4 4.7



 (37)

B is a zero template, with central element 1. The 2-D IIR filter characteristic
H(ω1,ω2) is shown in Fig.9(b). Therefore, a LP circular-symmetric filter, as sharp

(a) (b)

Fig. 9. (a) LP prototype filter (Ω0 = 0.15π); (b) 2-D filter.

as desired, can be realized very efficiently in IIR version using the minimum-size
(3× 3) template. The smaller the cut-off frequencyΩ0, the larger the template
elements.

4.2 IIR band-pass filter

It can be easily noticed that the band-pass FIR filter discussed in section 3.2 has a
very low selectivity. Using the results previously obtained in the case of the low-
pass filter, we can realize a recursive filter with a higher selectivity, whichwill have
a general form for the transfer function, with the valuea > 0

H(ω) =
−1

−a−1+aB̃(ω)
(38)

Therefore, the IIR band-pass filter will be described by the feedbacktemplate

A =
[

ar as A(p−1)−1 as ar
]

(39)

We obviously haveH(ω0) = 1. The larger the value ofa, the more selective the
filter will be; the central frequency and bandwidth can be controlled independently.
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Based on the previous selective band-pass filter as prototype, we can design a 2-D
band-pass filter with circular symmetry. Using expression (25), and replacing in

the transfer function (38) cosω by C(ω1,ω2) ≃ cos
√

ω2
1 +ω2

2 , we obtain

H(ω1,ω2) =
−1

4arC2(ω1,ω2)+2asC(ω1,ω2)+a(p−2r−1)−1
(40)

Consequently, the filter is described by the following feedback template

A = a [4rC ∗C +2sC1 +(p−2r−1)C0]−C0 (41)

whereC0 is a 5×5 zero template with central element 1 andC1 is a 5×5 template
obtained by borderingC with zeros. As it can be noticed from (41), the filter
selectivity and the peak frequency can be controlled independently by adjusting the
parametersa andp, s, r, respectively. The larger the value of parametera, the more
selective the filter will be. However, it can be shown that this kind of IIR filters
exhibit a rather high sensitivity to parameter tolerances, inherently present in every
VLSI implementation. Therefore, the selectivity practically attainable is limited by
the precision of the realization of circuit parameters, depending on the technology.

Example: We design an IIR BP filter with central frequencyω0 = 0.47π; from
(26) we obtain the following parameter values:p = 0.5623,s = 0.0647,r =−0.2164.
Using the general expression (38) we find, fora = 23, the IIR prototype filter
frequency response given in Fig.5(b). Based on this prototype, usingthe above-
presented method, we derive the feedback template A using (41). The IIRBP
circularly-symmetric filter frequency responseH(ω1,ω2) is shown in Fig.10(a) and
its contour plot in Fig.10(b). The filter is very sharp, has a perfect circular symme-
try and is very smooth in the stop frequency domain.

4.3 Multi-band IIR circularly-symmetric filter

A direct generalization of the IIR band-pass filter proposed in the previous section
is a so-calledmulti-band filter. If B̃(ω) in (38) is a 1-D spatial cosine of a higher
frequency, we obtain a prototype filter function of the form

H(ω) =
−1

−a−1+a cos(Nω)
(42)

If the frequency transformation (8) is then applied, we obtain a 2-D filter presenting
several concentric pass-band regions. The filter will also present a narrow pass re-
gion around the origin, so the filters will be of the LP-BP type. In Fig.11 we plotted
the 1-D prototype filters forN = 3 andN = 5, and the 2-D circularly-symmetric
filter for N = 3.
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(a) (b)

Fig. 10. (a) IIR BP 2-D filter (ω0 = 0.47π, a = 23); (b) contour plot.

The denominatorA(ω) of (42) corresponds to a symmetric 1× (2N + 1) tem-
plate; however, it can be also expressed as aN-order polynomial in cosω and can
be factorized as in (5), so it can be implemented with 1×3 and 1×5 templates.
For instance, withN = 3, takinga = 12, we get the 1× 7 template, written as a
convolution between 1×3 and 1×5 templates, and the factorized denominator

A =
[

6 0 0 −13 0 0 6
]

= 0.48
[

0.5 −0.0091 0.5
]

∗
[

0.25 0.5046 0.7684 0.5046 0.25
]

= f A1∗A2

(43)

A(ω) = 48(cosω −1.0091)(cos2 ω +1.0091cosω +0.2684) (44)

The constant factorf can be conveniently distributed between the two templates.
So the 2-D filter can be realized with a 3×3 and a 5×5 template.

5 Simulation Results

To test the filtering capabilities of some of the proposed filters, we have chosen a
medical image, namely an angiography image of the liver vein system, obtained
through a magnetic resonance technique (MRA). The original image, applied at the
CNN input, is shown in Fig.12(a). The image (b) was obtained at the output ofthe
LP FIR filter (Fig.3) and the effect is hardly visible. The image (c) is obtainedby
a very selective LP IIR filtering (Fig.9(b)) and is visibly blurred, all the fine details
(small blood vessels etc.) are smoothed out. Such a filtering can be combined with
non-linear operations, to extract some basic features of the image. If the image is
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(a) (b)

(c) (d)

Fig. 11. (a) 1-D prototype filter (N = 3); (b), (c) 2-D filter frequency response and contour plot; (d)
1-D prototype filter (N = 5).

passed through a sharp circularly-symmetric BP filter (Fig.10), we get the image
(d), in which both low- and high-frequency components are eliminated.

6 Conclusions

An efficient and convenient method was proposed for designing 2-D CNN spatial
filters with circular symmetry. The method relies on a frequency transformation,
which starting from a 1-D prototype, realized either in a FIR or IIR version, gen-
erates the corresponding 2-D filter, specified by the spatial transfer function in the
frequency plane (ω1,ω2). Therefore, in order to design a circularly-symmetric filter
with given specifications, we simply have to determine the template parameters for
the 1-D prototype. Then, the templates for the 2-D filter will result from a simple
linear combination of matrices. An important advantage is the fact that the transfer
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(a) (b)

(c) (d)

Fig. 12. (a) MRA image; (b) filtered with the LP FIR filter; (c) filtered with the selective LP IIR filter;
(d) filtered with the selective BP IIR filter.

function of every 2-D filter designed using this technique can be factorized, such
that the filtering can always be realized in several steps, corresponding to elemen-
tary templates.
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