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The Multilevel Ant Stigmergy Algorithm for Numerical
Optimization

Peter Koroec and Jurij Silc

Abstract: The Multilevel Ant Stigmergy Algorithm (MASA) is a new appoh to
solving multi-parameter problems based on stigmergy, a tfizollective work that
can be observed in nature. In this paper we evaluate therpaafwe of MASA re-
garding its applicability as numerical optimization tetjues. The evaluation is per-
formed with several widely used benchmarks functions, dt ageon an industrial
case study. We also compare the MASA with Differential Evioly, well-known nu-
merical optimization algorithm. The average solution ai#d with the MASA was
better than a solution recently found using DifferentiabEnion.

Keywords: Ant-based algorithm, multilevel approach, numerical miation, stig-
mergy.

1 Introduction

Numerical optimizatiofis important in decision science and in the analysis of phys-
ical systems. An important step in optimization is the identification of some objec-
tive, i.e., a quantitative measure of the performance of the system. Thigiebjec
can be any quantity or combination of quantities that can be representesiriglea
number. The objective depends on certain characteristics of the syalieh jga-
rameters, which are often restricted or constrained in some way. Furtfesrthe
parameters can have either continuous or discrete values. Our goahid talfiies
of the parameters that optimize the objective. Depending on the type of garame
we distinguish betweecontinuousoptimization [1] anddiscreteoptimization [2].
There is no universal optimization algorithm to solve such optimization prob-
lems. Many of the problems arising in real-life applications are NP-hardcéjen
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one usually solves large instances with the use of approximate methodstinat re
near-optimal solutions in a relatively short time. Algorithms of this type are called
heuristics The upgrade of a heuristic ismaetaheuristid3]: a set of algorithmic
concepts that can be used to define a heuristic method applicable to a wider se
different problems. A particularly successful metaheuristic is basetigmergy.
Stigmergyis a method of communication in decentralized systems in which the
individual parts of the system communicate with one another by modifying their
local environment [4]. It provides a new paradigm for developingedéalized
complex applications such as autonomous and collective robotics [5], coicaaun
tion in computer networks [6], multi-agent systems [7], optimization algorithms,
etc.
In this paper, we introduce a new stigmergy-based approach inspicmdyy
of real ants. Ants communicate with one another by laying down pheromtores a
their trails, so an ant colony is a stigmergic system. Ant colony metaheuristic is
usually used for solving (discrete) combinatorial optimization problems {8we
will show a successful implementation on numerical multi-parameter optimization
problem which is often solved by algorithms for continuous optimization.
Multi-parameter optimization is the process of finding the point in the parame-
ter space® = {p1, p2, ..., Ppo} where a cost functioffi(P) is minimized according
to the feasible se® of parameters;, i = 1,2,...,D, that satisfy the constraints.
Very often this cost function contains information about the problem taagdt
the constraints that the solution has to meet (constrained optimization). Tdrese ¢
straints define the region of the design space where the solution has tmpesed
— called the feasibility region. Optimizing a multi-parameter function is usually a
continuous problem.

2 Multilevel Ant Stigmergy Algorithm

The Multilevel Ant Stigmergy AlgorithitMASA) [9] is a new approach to solving
multi-parameter optimization problems. It is based on stigmergy, a type of collec-
tive work that can be observed in ant colonies. MASA consists of fiasgh (see
Fig. 1):

1. Search graph constructioiWe first had to discretize the continuous, multi-
parameter problem by discretizing all the parameters of the multi-parameter
function. For example, if a parametpr has a range from; to U; and the
discrete step iA then a discrete parametnrhas(%} + 1 discrete values.

A search graph is defined as a connected, directed, non-weightadicac
graph. Itis also rooted and ordered. So what we do is translate all tretis
parameter values into a search graph. For this purpose we definech sear
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Multilevel Ant Stigmergy Algorithm
1. Construct the search graph from all parameters.
2. Coarsen the graph Inlevels.
3. Initialize vertices with initial amount of pheromone.
4. For all levels/ from L down to 1, do:
4.1. While current levef stopping criterion not met, do:
(a) For all ants find (using probability rule) the cheapest path.
(b) Update pheromone amounts in all vertices visited by the ants.
(c) Additionally increase the pheromone amounts on
currently best path (Daemon action).
(d) Evaporate pheromone in all vertices.
4.2. Refine the graph by one level.
5. Optionally perform LO of the currently best solution.

Fig. 1. Outline of the multilevel ant stigmergy algorithm.
graph® = (V, E) with a set of vertices

D
V=JVa, Va={Va1, - Vidn}
=1

and set of edges between the vertices

D
E= | Ea.
d=1
Ea = {€d-1).d.j) = Via-1i),Vid,jy) | Vid-1iy € Va-1AVia,jy € Va},

whereD represents the length of the longest path in the search graph, which
equals the number of parameters, agdepresents the number of discrete
values of a parametgy. In this way, the multi-parameter optimization prob-
lem is transformed into a problem of finding the cheapest path in the search
graph. Physical limitation of the graph size is determined by computer’s
RAM size; in 32-bit environment this means®\ertices and in 64-bit envi-
ronment 18° vertices.

2. Coarsening The search graph is coarsened to a predetermined size. Coars-
ening is done by merging two or more neighboring vertices into one vertex;
this is done irL iterations (we call them levels=1,2,... L). Let us con-
sider coarsening from levélto level /4 1 at a distanced. Here

0_ :
Vd - {Vfd,l)""vvgd_,n@}

is a set of vertices at levél and distanceal of the search grap®, where

1<d<D.If né is the number of vertices at a starting level of coarsening
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and a distancd, then for every levef the equatlonn”rl [:ﬂ is true, where
d

s, is the number of vertices at levél which merge into one vertex at level
¢4 1. So what we do is we d|V|deﬂtf into né+1 subsets, where

nfj+1
Vi = UV Viri € {8, ,ng AT £ Vg Vg, =0.
k=1

Each subset is defined as follows:

Viay = Vo Vfdg(:j)}v

{ng Sh+1) Vfd725fj>}7

={V

<d’(né+1_1>sé+1>7 )

v

SetVy ™t = {vj1,.- vﬁhl } is the set of vertices at distandeat level

(41, wherevfg‘ﬁ> € V< K is selected on some predetermined principle. For
example, random pick, the most left/right/centered vertex in the subset, etc.
The outline of the coarsening pseudo code figiio V™ is as follows:

d,nf,)}'

(d n[+l

Fork=1ton}™ do
Viiiy = SelectOneVerte; )
EndFor

. Optimization Here the algorithm applies the optimization procedure based

on ant-colony optimization [10] (loop 4.1 in Fig. 1). All ants simultaneously
start from the starting vertex. The probability of choosing the next vertex
depends on the amount of pheromone in the vertices. More specificdlly, an
a in stepd moves from vertexq_1jy € {Vig_11),---,Vid—1n, ;) } 10 Vertex
Vid,j) € {V(d,1)» - - - Vid,ng) § With the probability given by:

T(d,j)

ro —
prof ¢(d) = 2 1<k<ng T(dk)

wheret gy, is the amount of pheromone on vertey . Ants repeat this
action until reaching the ending vertex. The parameter values gathered on
each ant's path represent a candidate solution which is then evaluated ac-
cording to the given objective function. Afterwards, each ant rettorthe
starting vertex, on its way depositing pheromone in the vertices according to
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the evaluation result: the better the result, the more pheromone is deposited.
If the gathered parameter values form an infeasible solution, the amount of
pheromone in the parameter vertices is slightly decreased. When the ants
return to the starting vertex, two additional actions are performed. First,
following ant colony optimization, “daemon action” is applied as a type of
elitism, i.e., additional increase of the pheromone amount on the currently
best path. Second, the pheromone in all vertices evaporates, tleerefor
each vertex the amount of pheromone is decreased by some predetermined
percentage on each vertexq  in the search grapif:

Tk < (1=P) k-
The whole procedure is then repeated until some ending condition is met.

4. Refinement The coarsened graph is refined by one level. Because of the
simplicity of the coarsening, the refinement itself is very trivial. Let us con-
sider refinement from leveélto levell — 1 at distancel. The outline of the
refinement pseudo code is as follows:

Fork=1ton} do
1 _\yi—1
For e/}atlzhlg(Li> € Vg do
Uiy = Tk
EndFor
EndFor

All vertices created from one vertex have the same amount of pherorsone a
the original one. When refinement is done, the optimization phase continues.
These two phases are repeated until the graph is expanded to its origgnal s
and the optimization performed on every level of the expansion.

5. Local optimization This phase performs the steepest-descent local optimiza-
tion (LO) on the currently best solution until a local minimum is found. Local
optimization is optional, but usually significantly contributes to the quality of
solutions.

3 Differential Evolution

Evolutionary Algorithms (e.g., CMA-ES [11]), the Particle Swarm Optimization
[12], andDifferential Evolution(DE) [13] are very popular numerical optimization
procedures. The results reported in [14, 15] show that DE genenaipedorms
the other algorithms. Therefore, we decided to compare the MASA with DE.
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Differential evolution is the stochastic, population-based optimization algo-
rithm. It was introduced by Storn and Price [13] and was developed to ogtimiz
the real (float) parameters of a real-valued function. DE resembles tietust
of an evolutionary algorithm, but differs from traditional evolutionary aidpons
in its generation of new candidate solutions and by its use of a “greed\Ctiesie
scheme. The basic idea of DE is outlined in Fig. 2.

The candidate is calculated as a weighted sum of three randomly chosen indi-
viduals, that are different from the parent. Only then does the paeetitipates
in the creation of the candidate — the candidate is modified by a crossover with its
parent. Finally, the candidate is evaluated and compared to the parentardie c
date replaces the parent in the population, only if it is better than the parket. T
described procedure (loop 2.1 in Fig. 2) is repeated for all the pardividaals
from the population. When it is finished the individuals from the populatien ar
randomly enumerated and the procedure is repeated.

Differential Evolution
1. Evaluate the initial populatio of random individuals.
2. While stopping criterion not met, do:
2.1. Foreach parest (i=1, ..., popSizg¢from Srepeat:
(a) Randomly select three individuas, s,,, s, from S,
wherei, i1, i andiz are pairwise different.
(b) Calculate candidateasc=s, +F - (s, — Si,),
whereF is a scaling factor.
(c) Modify the candidate by binomial crossover with
the parent; using crossover constaGR
(d) Evaluate the candidate.
(e) If the candidate is better than the parent,
replace the parent with the candidate.
2.2. Randomly enumerate the individualsSn

Fig. 2. Outline of differential evolution.

4 Performance Evaluation

In this section we analyze the performance of the MASA and compare theAMAS
to DE. The evaluation is performed on a set of numerical benchmark fusciod

in designing optimal universal electric motor rotor and stator geometrieseviher
primary objective is to minimize the motor power losses.

4.1 Benchmark functions

For the benchmark functions we have decided to $ighere §,(X), Griewangk
fer(X), Rastrigin ka(X), Rosenbrock fy(X), Krink fk(X), and negative Krink
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frr(X). For evaluation purposes we used three different function dimenBienS,

25, and 50. The function definitions are as follows:

D

fsp(X) = i;Xiz,

1 D ’ D
for(X) = mi;(x; —100)“ — iElcos(

fra(X) = i(lo+ x? —10cog27x)),

D-1

xi —100

i )+1,

frolX) = 3 (10001~ )2+ (x — 1)?),

O

fier (X) = Zl(—37.816415— I

ol

fee(R) = _Z(_89.016293+ X

5
—50]+405|r(%)),

511

— 50— 40sir(75")).

The global minimum of functiondsp, far, fra, and fre is exactly zero, while
for fx, and fg; we set constants so that the global minimum is as close to zero

possible, see Table 1.

Table 1. Function constraints and minimum values

Function L; Ui A Minimum value
fsp(X) -100 100 103 fsp(0) =0

far (%) -600 600 102 fr(100) =0
fra(X) -5.12 5.12 10% fra(0) =0

fro(X) -50 50 103 fro(1) =0

fir (%) 0 100 103 fir (= 52167) ~ 0
fer (%) 0 100 103 frer (~ 99.031) ~ 0

We ran the MASA and DE 30 times on each experiment. The number of maxi-
mum function evaluations per experiment was set to 500,000.

For the MASA the number of ants was 10, the ending condition for each level
was “no best solution found for last 50 iterations” and the coarsenirgginvple-
mented by merging two vertices into one. The DE algorithm has three parameters
which were set to the following values: the population size was 50, thear@iss

constant was 0.8, and the scaling factor was 0.5.

The evaluation results of the MASA and DE are presented in Table 2, where
the best and the average solutions obtained in 30 runs are shown lfoexgzeri-
ment. The standard deviation of the solutions and the average numberctbfun
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evaluations per experiment are also included in the table. We can see thlat on
most all functions and dimensions the MASA found an optimal or near-optimal
solution. The only function where the MASA performed worse Viggs The main
reason for this is that the first expressi@®0(x;, 1 — x?)2 has two global minima at
x =0andx =1,i=1,2,...,D, while the second expressi¢x — 1)? has only one
global minimum at; = 1. Thex? in the first expression prefexks= 0 overx; = 1.
Since the first expression dominates over the second, the MASA is anhfsigtad
into solutionx; = 0, from where it can slowly move toward the global minimum at
xi=1,i=1,2,...,D. Furthermore, for DE we can see that figy, and fg, return
near optimal results for all dimensions; fég, and fk, return near optimal results
only for N = 5; for fro return near optimal results fd¢ < 50; for fr DE do not
produce any good results in 500,000 evaluations.

A convergence comparison of the MASA and DE on high-dimensional-func
tions can be seen in Fig. 3 and Fig. 4. We observe, with exceptifr.ofhat the
MASA outperforms DE.

4.2 Electric motor design

The efficiency of an universal electric motor (UM) can be improved lapceng

the power losses in the motor that originate in the iron and the copper. Aoagtpr

to reducing the power losses is to optimize the geometry of the rotor and the stator
Due to the high magnetic saturation of the iron in a UM, this optimization task is
non-linear. In our case, 10 mutually independent variable parametémsdehe

rotor and stator geometry are subject to optimizatidr=10). Predefined discrete
step for all parameters is= 0.1 mm. The optimization task is to find the geometry
parameter values that would generate the rotor and stator geometry with minimum
power losses.

The MASA was run 20 times. On each run the algorithm coarsened thetgraph
levelL = 7, and on each level of optimization we let 200 ants down the graph. So,
overall the algorithm made 1400 evaluations (calculated with the ANSY'S finite-
element program) on each run. At the end, LO was applied, which rekjwre
average, an additional 116.25 evaluations. The time required for a IsIBVHOX-
imately one day on an Athlon XP 1800+ processor. Almost all the time is consumed
by the solution evaluations.

The DE starts with goopSize= 20 initial solutions that are random perturba-
tions of a predefined engineering solution. The stopping criterion wae 44100
solutions, parameters were set to the following val@R= 0.9, andF = 0.5.

The results (see Table 3) show that the MASA outperforms the DE and signifi
cantly improves the engineering design of the UM rotor and stator. In sigf@Q
runs, MASA was able to find geometry parameter values resulting in powssados
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Table 2. Experimental results for benchmark functions

FunctionD Algorithm Best Mean Std Avg iterations
fsp 5 DE 0 0 0 8785
25 0 0 0 52230
50 0 0 0 105560
5 MASA 0 0 0 9703
25 0 0 0 22852
50 0 0 0 27562
for 5 DE 0 0 0 39697
25 0 0.986 103 0.308 102 100140
50 0 0.493 103 0.188 102 132061
5 MASA 0 0.616 101 0.598 10! 11347
25 0 0.148 101 0.140 101 30761
50 0 0.328 102 0.608 102 46472
fra 5 DE 0 0 0 18222
25 0.995 14.307 14.083 500000
50 11.940 98.290 43.517 500000
5 MASA 0 0 0 8885
25 0 0.696 0.911 32084
50 0 0.663 1.149 55824
fro 5 DE 0 0.315 107 0.131 10° 84646
25 0 0.139 101 0.745 101 476097
50 15.188 37.273 14.522 500000
5 MASA 0.1331010.280101 0.102 101 80246
25 0.174 101 0.949 2.636 500000
50 0.744 101 5.126 18.595 500000
fkr 5 DE 0.742 10% 0.742 10* 0 18498
25 14.000  209.900 86.522 500000
50 600.382 921.951  156.130 500000
5 MASA 0.13610° 4733 3514 15751
25 0.681 10° 3.547 3.955 59069
50 0.136 10 3.827 4.502 88073
fer 5 DE 0.418 8.100 8.466 72800
25 19.795 87.365 39.688 272312
50 97.104 228.734 65.940 500000
5 MASA -0.60910° 5.613 5.334 21626
25 -0.304 102 4.690 5.997 56639
50 -0.609 102 3.221 4.465 86784

under 120 W. In the remaining 14 runs it performed comparably to DE.

The best rotor and stator geometry obtained in numerical optimization exper-
iments generates power losses of 111.1 W. It was found by MASA with b@, a
is presented in Fig. 5. These laminations have a large rotor and stator slbts, a
therefore low copper losses and overall power losses. The difficutkytiis de-
sign is however in the strange dimensions of the stator pole. Its narrow middle
part makes it unacceptable for production. This outcome is due to the settings
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Fig. 3. Average minimum of (&phere (b) Griewangk (c) Rastrigin (d) Rosenbrock(e)Krink, and
(f) negative Krinkfunctions withD = 25.

the simulation script used. It could be modified by inserting additional cantsra

on the stator geometry. Once they are specified, a new optimization cycle will be
necessary. At this stage, however, the goal of our study is to cheplo$sible im-
provements of the engineering UM design and compare the optimization methods
on this problem [16].
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Fig. 4. Average minimum of (&phere (b) Griewangk (c) Rastrigin (d) Rosenbrock(e)Krink, and
(f) negative Krinkfunctions withD = 50.

5 Conclusions

In this paper, we presented a new approach to solving numerical probksas
on stigmergy, a type of collective work that can be observed in an amiyolve
proposed a general approach for the translation of a multi-paramet#eprinto
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Table 3. Result of the electric motor optimization (power losses in watts)

Method Best Mean Worst Std
Engineering solution 177.9

DE 129.1 132.9 139.9 33
MASA w/o LO 114.2 128.9 135.9 7.8
MASA 1111 126.2 135.0 9.7

Y A\

BI[T]

0.01-0.44
0.45-0.87

4\

< 3 i 1.31-1.74

_ _ B 1.75-2.17

e 7 218260

Fig. 5. Laminations of the rotor and stator design with minimum power losses
(111.1 W) as found in the optimization experiments by the MASA. The figure
shows maximum magnetic flux densByin tesla.

a search graph representation. Each longest path in the graphergprese pos-
sible solution, and all longest paths together represents the whole solp&oa s
of the multi-parameter problem. For an efficient search of the solution space
used a multilevel approach. We call this approach the Multilevel Ant Stigmergy
Algorithm.

We evaluated the performance of the Multilevel Ant Stigmergy Algorithm and
Differential Evolution in terms of their applicability as numerical optimization
techniques. First, the comparison is performed with several widely usethbe
marks functions $phere Griewangk Rastrigin RosenbrockandKrink). It was
determined that for lower-dimension functions the performance was cairlpar
while for higher dimensions the Multilevel Ant Stigmergy Algorithm outperformed
Differential Evolution in all functions with the exception of one. Seconahbo
methods was tested on a real industrial problem: the minimization of the power
losses in a universal electric motor. The average solution obtained with ke M
tilevel Ant Stigmergy Algorithm was better than a solution recently found using
Differential Evolution.
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