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SER.: ELEC. ENERG. vol. 19, no. 2, August 2006, 247-260

The Multilevel Ant Stigmergy Algorithm for Numerical
Optimization

Peter Korošec and Jurij Šilc

Abstract: The Multilevel Ant Stigmergy Algorithm (MASA) is a new approach to
solving multi-parameter problems based on stigmergy, a type of collective work that
can be observed in nature. In this paper we evaluate the performance of MASA re-
garding its applicability as numerical optimization techniques. The evaluation is per-
formed with several widely used benchmarks functions, as well as on an industrial
case study. We also compare the MASA with Differential Evolution, well-known nu-
merical optimization algorithm. The average solution obtained with the MASA was
better than a solution recently found using Differential Evolution.

Keywords: Ant-based algorithm, multilevel approach, numerical optimization, stig-
mergy.

1 Introduction

Numerical optimizationis important in decision science and in the analysis of phys-
ical systems. An important step in optimization is the identification of some objec-
tive, i.e., a quantitative measure of the performance of the system. This objective
can be any quantity or combination of quantities that can be represented by asingle
number. The objective depends on certain characteristics of the system called pa-
rameters, which are often restricted or constrained in some way. Furthermore, the
parameters can have either continuous or discrete values. Our goal is to find values
of the parameters that optimize the objective. Depending on the type of parameters,
we distinguish betweencontinuousoptimization [1] anddiscreteoptimization [2].

There is no universal optimization algorithm to solve such optimization prob-
lems. Many of the problems arising in real-life applications are NP-hard. Hence,
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one usually solves large instances with the use of approximate methods that return
near-optimal solutions in a relatively short time. Algorithms of this type are called
heuristics. The upgrade of a heuristic is ametaheuristic[3]: a set of algorithmic
concepts that can be used to define a heuristic method applicable to a wider set of
different problems. A particularly successful metaheuristic is based on stigmergy.

Stigmergyis a method of communication in decentralized systems in which the
individual parts of the system communicate with one another by modifying their
local environment [4]. It provides a new paradigm for developing decentralized
complex applications such as autonomous and collective robotics [5], communica-
tion in computer networks [6], multi-agent systems [7], optimization algorithms,
etc.

In this paper, we introduce a new stigmergy-based approach inspired bycolony
of real ants. Ants communicate with one another by laying down pheromones along
their trails, so an ant colony is a stigmergic system. Ant colony metaheuristic is
usually used for solving (discrete) combinatorial optimization problems [8], but we
will show a successful implementation on numerical multi-parameter optimization
problem which is often solved by algorithms for continuous optimization.

Multi-parameter optimization is the process of finding the point in the parame-
ter spaceP = {p1, p2, . . . , pD} where a cost functionf (P) is minimized according
to the feasible setΩ of parameterspi , i = 1,2, . . . ,D, that satisfy the constraints.
Very often this cost function contains information about the problem targetand
the constraints that the solution has to meet (constrained optimization). These con-
straints define the region of the design space where the solution has to be comprised
– called the feasibility region. Optimizing a multi-parameter function is usually a
continuous problem.

2 Multilevel Ant Stigmergy Algorithm

TheMultilevel Ant Stigmergy Algorithm(MASA) [9] is a new approach to solving
multi-parameter optimization problems. It is based on stigmergy, a type of collec-
tive work that can be observed in ant colonies. MASA consists of five phases (see
Fig. 1):

1. Search graph construction. We first had to discretize the continuous, multi-
parameter problem by discretizing all the parameters of the multi-parameter
function. For example, if a parameterpi has a range fromLi to Ui and the
discrete step is∆ then a discrete parameterpi has⌈Ui−Li

∆ ⌉+1 discrete values.
A search graph is defined as a connected, directed, non-weighted, acyclic
graph. It is also rooted and ordered. So what we do is translate all the discrete
parameter values into a search graph. For this purpose we define a search
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Multilevel Ant Stigmergy Algorithm
1. Construct the search graph from all parameters.
2. Coarsen the graph inL levels.
3. Initialize vertices with initial amount of pheromone.
4. For all levelsℓ from L down to 1, do:

4.1. While current levelℓ stopping criterion not met, do:
(a) For all ants find (using probability rule) the cheapest path.
(b) Update pheromone amounts in all vertices visited by the ants.
(c) Additionally increase the pheromone amounts on

currently best path (Daemon action).
(d) Evaporate pheromone in all vertices.

4.2. Refine the graph by one level.
5. Optionally perform LO of the currently best solution.

Fig. 1. Outline of the multilevel ant stigmergy algorithm.

graphG = (V,E) with a set of vertices

V =
D
⋃

d=1

Vd, Vd = {v〈d,1〉, . . . ,v〈d,nd〉}

and set of edges between the vertices

E =
D
⋃

d=1

Ed,

Ed = {e〈d−1,i〉,〈d, j〉 = (v〈d−1,i〉,v〈d, j〉) | v〈d−1,i〉 ∈Vd−1∧v〈d, j〉 ∈Vd},

whereD represents the length of the longest path in the search graph, which
equals the number of parameters, andnd represents the number of discrete
values of a parameterpd. In this way, the multi-parameter optimization prob-
lem is transformed into a problem of finding the cheapest path in the search
graph. Physical limitation of the graph size is determined by computer’s
RAM size; in 32-bit environment this means 106 vertices and in 64-bit envi-
ronment 1015 vertices.

2. Coarsening. The search graph is coarsened to a predetermined size. Coars-
ening is done by merging two or more neighboring vertices into one vertex;
this is done inL iterations (we call them levelsℓ = 1,2, . . . ,L). Let us con-
sider coarsening from levelℓ to levelℓ+1 at a distanced. Here

Vℓ
d = {vℓ

〈d,1〉, . . . ,v
ℓ
〈d,nℓ

d〉
}

is a set of vertices at levelℓ and distanced of the search graphG , where
1≤ d ≤ D. If n1

d is the number of vertices at a starting level of coarsening
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and a distanced, then for every levelℓ the equationnℓ+1
d = ⌈nℓ

d

sℓ
d
⌉ is true, where

sℓ
d is the number of vertices at levelℓ, which merge into one vertex at level

ℓ+1. So what we do is we divideVℓ
d into nℓ+1

d subsets, where

Vℓ
d =

nℓ+1
d
⋃

k=1

Vℓ
〈d,k〉,∀i, j ∈ {1, . . . ,nℓ+1

d }∧ i 6= j : Vℓ
〈d,i〉∩Vℓ

〈d, j〉= /0.

Each subset is defined as follows:

Vℓ
〈d,1〉 = {vℓ

〈d,1〉, . . . ,v
ℓ
〈d,sℓ

d〉
},

Vℓ
〈d,2〉 = {vℓ

〈d,sℓ
d+1〉, . . . ,v

ℓ
〈d,2sℓ

d〉
},

...

Vℓ

〈d,nℓ+1
d 〉 = {v

ℓ

〈d,(nℓ+1
d −1)sℓ

d+1〉, . . . ,v
ℓ
〈d,nℓ

d〉
}.

SetVℓ+1
d = {vℓ+1

〈d,1〉, . . . ,v
ℓ+1
〈d,nℓ+1

d 〉} is the set of vertices at distanced at level

ℓ+1, wherevℓ+1
〈d,k〉 ∈Vℓ

〈d,k〉 is selected on some predetermined principle. For
example, random pick, the most left/right/centered vertex in the subset, etc.
The outline of the coarsening pseudo code fromVℓ

d to Vℓ+1
d is as follows:

For k = 1 tonℓ+1
d do

vℓ+1
〈d,k〉 = SelectOneVertex(Vℓ

〈d,k〉)

EndFor

3. Optimization. Here the algorithm applies the optimization procedure based
on ant-colony optimization [10] (loop 4.1 in Fig. 1). All ants simultaneously
start from the starting vertex. The probability of choosing the next vertex
depends on the amount of pheromone in the vertices. More specifically, ant
α in stepd moves from vertexv〈d−1,i〉 ∈ {v〈d−1,1〉, . . . ,v〈d−1,nd−1〉} to vertex
v〈d, j〉 ∈ {v〈d,1〉, . . . ,v〈d,nd〉} with the probability given by:

probi j ,α(d) =
τ〈d, j〉

∑1≤k≤nd
τ〈d,k〉

,

whereτ〈d,k〉 is the amount of pheromone on vertexv〈d,k〉. Ants repeat this
action until reaching the ending vertex. The parameter values gathered on
each ant’s path represent a candidate solution which is then evaluated ac-
cording to the given objective function. Afterwards, each ant returnsto the
starting vertex, on its way depositing pheromone in the vertices according to
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the evaluation result: the better the result, the more pheromone is deposited.
If the gathered parameter values form an infeasible solution, the amount of
pheromone in the parameter vertices is slightly decreased. When the ants
return to the starting vertex, two additional actions are performed. First,
following ant colony optimization, “daemon action” is applied as a type of
elitism, i.e., additional increase of the pheromone amount on the currently
best path. Second, the pheromone in all vertices evaporates, therefore, in
each vertex the amount of pheromone is decreased by some predetermined
percentageρ on each vertexv〈d,k〉 in the search graphG :

τ〈d,k〉← (1−ρ)τ〈d,k〉.

The whole procedure is then repeated until some ending condition is met.

4. Refinement. The coarsened graph is refined by one level. Because of the
simplicity of the coarsening, the refinement itself is very trivial. Let us con-
sider refinement from levell to level l −1 at distanced. The outline of the
refinement pseudo code is as follows:

For k = 1 tonℓ
d do

For eachvℓ−1
〈d,i〉 ∈Vℓ−1

〈d,k〉 do

τℓ−1
〈d,i〉 = τℓ

〈d,k〉
EndFor

EndFor

All vertices created from one vertex have the same amount of pheromone as
the original one. When refinement is done, the optimization phase continues.
These two phases are repeated until the graph is expanded to its original size
and the optimization performed on every level of the expansion.

5. Local optimization. This phase performs the steepest-descent local optimiza-
tion (LO) on the currently best solution until a local minimum is found. Local
optimization is optional, but usually significantly contributes to the quality of
solutions.

3 Differential Evolution

Evolutionary Algorithms (e.g., CMA-ES [11]), the Particle Swarm Optimization
[12], andDifferential Evolution(DE) [13] are very popular numerical optimization
procedures. The results reported in [14, 15] show that DE generally outperforms
the other algorithms. Therefore, we decided to compare the MASA with DE.
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Differential evolution is the stochastic, population-based optimization algo-
rithm. It was introduced by Storn and Price [13] and was developed to optimize
the real (float) parameters of a real-valued function. DE resembles the structure
of an evolutionary algorithm, but differs from traditional evolutionary algorithms
in its generation of new candidate solutions and by its use of a “greedy” selection
scheme. The basic idea of DE is outlined in Fig. 2.

The candidate is calculated as a weighted sum of three randomly chosen indi-
viduals, that are different from the parent. Only then does the parent participates
in the creation of the candidate – the candidate is modified by a crossover with its
parent. Finally, the candidate is evaluated and compared to the parent. The candi-
date replaces the parent in the population, only if it is better than the parent. The
described procedure (loop 2.1 in Fig. 2) is repeated for all the parent individuals
from the population. When it is finished the individuals from the population are
randomly enumerated and the procedure is repeated.

Differential Evolution
1. Evaluate the initial populationSof random individuals.
2. While stopping criterion not met, do:

2.1. For each parentsi (i = 1, . . . , popSize) from Srepeat:
(a) Randomly select three individualssi1,si2,si3 from S,

wherei, i1, i2 andi3 are pairwise different.
(b) Calculate candidatec asc = si1 +F · (si2−si3),

whereF is a scaling factor.
(c) Modify the candidate by binomial crossover with

the parentsi using crossover constantCR.
(d) Evaluate the candidate.
(e) If the candidate is better than the parent,

replace the parent with the candidate.
2.2. Randomly enumerate the individuals inS.

Fig. 2. Outline of differential evolution.

4 Performance Evaluation

In this section we analyze the performance of the MASA and compare the MASA
to DE. The evaluation is performed on a set of numerical benchmark functions and
in designing optimal universal electric motor rotor and stator geometries where the
primary objective is to minimize the motor power losses.

4.1 Benchmark functions

For the benchmark functions we have decided to useSphere fSp(~x), Griewangk
fGr(~x), Rastrigin fRa(~x), Rosenbrock fRo(~x), Krink fKr(~x), and negative Krink
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fKr(~x). For evaluation purposes we used three different function dimensionsD = 5,
25, and 50. The function definitions are as follows:

fSp(~x) =
D

∑
i=1

x2
i ,

fGr(~x) =
1

4000

D

∑
i=1

(xi−100)2−
D

∏
i=1

cos(
xi−100√

i
)+1,

fRa(~x) =
D

∑
i=1

(

10+x2
i −10cos(2πxi)

)

,

fRo(~x) =
D−1

∑
i=1

(

100(xi+1−x2
i )

2 +(xi−1)2),

fKr(~x) =
D

∑
i=1

(

−37.816415−|xi−50|+40sin(
5πxi

18
)
)

,

fKr(~x) =
D

∑
i=1

(

−89.016293+ |xi−50|−40sin(
5πxi

18
)
)

.

The global minimum of functionsfSp, fGr, fRa, and fRo is exactly zero, while
for fKr and fKr we set constants so that the global minimum is as close to zero
possible, see Table 1.

Table 1. Function constraints and minimum values
Function Li Ui ∆ Minimum value

fSp(~x) -100 100 10−3 fSp(
−→
0 ) = 0

fGr(~x) -600 600 10−2 fGr(
−→
100) = 0

fRa(~x) -5.12 5.12 10−4 fRa(
−→
0 ) = 0

fRo(~x) -50 50 10−3 fRo(
−→
1 ) = 0

fKr (~x) 0 100 10−3 fKr (≈
−−−−→
52.167)≈ 0

fKr (~x) 0 100 10−3 fKr (≈
−−−−→
99.031)≈ 0

We ran the MASA and DE 30 times on each experiment. The number of maxi-
mum function evaluations per experiment was set to 500,000.

For the MASA the number of ants was 10, the ending condition for each level
was “no best solution found for last 50 iterations” and the coarsening was imple-
mented by merging two vertices into one. The DE algorithm has three parameters,
which were set to the following values: the population size was 50, the crossover
constant was 0.8, and the scaling factor was 0.5.

The evaluation results of the MASA and DE are presented in Table 2, where
the best and the average solutions obtained in 30 runs are shown for each experi-
ment. The standard deviation of the solutions and the average number of function
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evaluations per experiment are also included in the table. We can see that onal-
most all functions and dimensions the MASA found an optimal or near-optimal
solution. The only function where the MASA performed worse wasfRo. The main
reason for this is that the first expression(100(xi+1−x2

i )
2 has two global minima at

xi = 0 andxi = 1, i = 1,2, . . . ,D, while the second expression(xi−1)2 has only one
global minimum atxi = 1. Thex2

i in the first expression prefersxi = 0 overxi = 1.
Since the first expression dominates over the second, the MASA is at firstmislead
into solutionxi = 0, from where it can slowly move toward the global minimum at
xi = 1, i = 1,2, . . . ,D. Furthermore, for DE we can see that forfSp and fGr return
near optimal results for all dimensions; forfRa and fKr return near optimal results
only for N = 5; for fRo return near optimal results forN < 50; for fKr DE do not
produce any good results in 500,000 evaluations.

A convergence comparison of the MASA and DE on high-dimensional func-
tions can be seen in Fig. 3 and Fig. 4. We observe, with exception offRo, that the
MASA outperforms DE.

4.2 Electric motor design

The efficiency of an universal electric motor (UM) can be improved by reducing
the power losses in the motor that originate in the iron and the copper. An approach
to reducing the power losses is to optimize the geometry of the rotor and the stator.
Due to the high magnetic saturation of the iron in a UM, this optimization task is
non-linear. In our case, 10 mutually independent variable parameters defining the
rotor and stator geometry are subject to optimization (D = 10). Predefined discrete
step for all parameters is∆ = 0.1 mm. The optimization task is to find the geometry
parameter values that would generate the rotor and stator geometry with minimum
power losses.

The MASA was run 20 times. On each run the algorithm coarsened the graphto
level L = 7, and on each level of optimization we let 200 ants down the graph. So,
overall the algorithm made 1400 evaluations (calculated with the ANSYS finite-
element program) on each run. At the end, LO was applied, which required, on
average, an additional 116.25 evaluations. The time required for a run was approx-
imately one day on an Athlon XP 1800+ processor. Almost all the time is consumed
by the solution evaluations.

The DE starts with apopSize= 20 initial solutions that are random perturba-
tions of a predefined engineering solution. The stopping criterion was setto 1400
solutions, parameters were set to the following values:CR= 0.9, andF = 0.5.

The results (see Table 3) show that the MASA outperforms the DE and signifi-
cantly improves the engineering design of the UM rotor and stator. In six outof 20
runs, MASA was able to find geometry parameter values resulting in power losses
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Table 2. Experimental results for benchmark functions

FunctionD Algorithm Best Mean Std Avg iterations
fSp 5 DE 0 0 0 8785

25 0 0 0 52230
50 0 0 0 105560
5 MASA 0 0 0 9703
25 0 0 0 22852
50 0 0 0 27562

fGr 5 DE 0 0 0 39697
25 0 0.986 10−3 0.308 10−2 100140
50 0 0.493 10−3 0.188 10−2 132061
5 MASA 0 0.616 10−1 0.598 10−1 11347
25 0 0.148 10−1 0.140 10−1 30761
50 0 0.328 10−2 0.608 10−2 46472

fRa 5 DE 0 0 0 18222
25 0.995 14.307 14.083 500000
50 11.940 98.290 43.517 500000
5 MASA 0 0 0 8885
25 0 0.696 0.911 32084
50 0 0.663 1.149 55824

fRo 5 DE 0 0.315 10−7 0.131 10−6 84646
25 0 0.139 10−1 0.745 10−1 476097
50 15.188 37.273 14.522 500000
5 MASA 0.133 10−1 0.280 10−1 0.102 10−1 80246
25 0.174 10−1 0.949 2.636 500000
50 0.744 10−1 5.126 18.595 500000

fKr 5 DE 0.742 10−4 0.742 10−4 0 18498
25 14.000 209.900 86.522 500000
50 600.382 921.951 156.130 500000
5 MASA 0.136 10−5 4.733 3.514 15751
25 0.681 10−5 3.547 3.955 59069
50 0.136 10−4 3.827 4.502 88073

fKr 5 DE 0.418 8.100 8.466 72800
25 19.795 87.365 39.688 272312
50 97.104 228.734 65.940 500000
5 MASA -0.609 10−3 5.613 5.334 21626
25 -0.304 10−2 4.690 5.997 56639
50 -0.609 10−2 3.221 4.465 86784

under 120 W. In the remaining 14 runs it performed comparably to DE.
The best rotor and stator geometry obtained in numerical optimization exper-

iments generates power losses of 111.1 W. It was found by MASA with LO, and
is presented in Fig. 5. These laminations have a large rotor and stator slots, and
therefore low copper losses and overall power losses. The difficulty with this de-
sign is however in the strange dimensions of the stator pole. Its narrow middle
part makes it unacceptable for production. This outcome is due to the settingsin
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Fig. 3. Average minimum of (a)Sphere, (b) Griewangk, (c) Rastrigin, (d) Rosenbrock, (e)Krink, and
(f) negative Krinkfunctions withD = 25.

the simulation script used. It could be modified by inserting additional constraints
on the stator geometry. Once they are specified, a new optimization cycle will be
necessary. At this stage, however, the goal of our study is to check for possible im-
provements of the engineering UM design and compare the optimization methods
on this problem [16].
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Fig. 4. Average minimum of (a)Sphere, (b) Griewangk, (c) Rastrigin, (d) Rosenbrock, (e)Krink, and
(f) negative Krinkfunctions withD = 50.

5 Conclusions

In this paper, we presented a new approach to solving numerical problemsbased
on stigmergy, a type of collective work that can be observed in an ant colony. We
proposed a general approach for the translation of a multi-parameter problem into
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Table 3. Result of the electric motor optimization (power losses in watts)

Method Best Mean Worst Std
Engineering solution 177.9
DE 129.1 132.9 139.9 3.3
MASA w/o LO 114.2 128.9 135.9 7.8
MASA 111.1 126.2 135.0 9.7

Fig. 5. Laminations of the rotor and stator design with minimum power losses
(111.1 W) as found in the optimization experiments by the MASA. The figure
shows maximum magnetic flux densityB in tesla.

a search graph representation. Each longest path in the graph represents one pos-
sible solution, and all longest paths together represents the whole solution space
of the multi-parameter problem. For an efficient search of the solution spacewe
used a multilevel approach. We call this approach the Multilevel Ant Stigmergy
Algorithm.

We evaluated the performance of the Multilevel Ant Stigmergy Algorithm and
Differential Evolution in terms of their applicability as numerical optimization
techniques. First, the comparison is performed with several widely used bench-
marks functions (Sphere, Griewangk, Rastrigin, Rosenbrock, andKrink). It was
determined that for lower-dimension functions the performance was comparable,
while for higher dimensions the Multilevel Ant Stigmergy Algorithm outperformed
Differential Evolution in all functions with the exception of one. Second, both
methods was tested on a real industrial problem: the minimization of the power
losses in a universal electric motor. The average solution obtained with the Mul-
tilevel Ant Stigmergy Algorithm was better than a solution recently found using
Differential Evolution.
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[16] T. Tušar, P. Korǒsec, G. Papa, B. Filipič, and J.̌Silc, “A comparative study of stochas-
tic optimization methods in electric motor design,” Jožef Stafan Institute, Ljubljana,
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