
FACTA UNIVERSITATIS (NIŠ)
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Extending the Frequency Measurement of a Single
Sinusoid Above the Nyquist Limit Based on Zero

Crossings Method

Septimiu Mischie and Liviu Toma

Abstract: This paper presents the measurement of the frequency of a single sinusoid
by counting the zero crossings and extends it above the Nyquist limit. For this purpose,
two sets of samples are acquired, at two different but close sampling frequencies.
Based on the count of zero crossings obtained in each case andon the two sampling
frequencies, four coefficients are computed. Then, the mostappropriate coefficient
from those four is used for calculating the frequency. The less the difference between
the two sampling frequencies, the higher the maximum measurable frequency. The
relative error is of the order of 10−4, and the measurement time is about 100 ms.
The method was experimentally tested using a National Instruments PCI 6023 data
acquisition board.

Keywords: Frequency, sampling frequency, Nyquist limit, zero crossings, maximum
measurable frequency.

1 Introduction

Usually, frequency or period measurement of periodic waveforms is achieved by
means of counter-timer instruments [1], [2], [3] by counting the pulses withina spe-
cific time interval. The hardware of these instruments is not simple. Other methods
are based on digital signal processing (DSP) techniques, [4] - [5]. They require a
common data acquisition board and a software algorithm. Among DSP techniques,
some allow the measurement of frequency in a narrow range, for instancethe fre-
quency of a power system [6], [5]. Other techniques allow the measurement in a
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wide range [4], [7], but the range is limited at half the sampling frequency (Nyquist
limit). Counting the zero crossings is a simple and well known technique [4], [7].
This paper also uses the method of counting the zero crossings. Even if, incom-
parison with [7], the error is a little higher, the measurement range is much larger
than the Nyquist limit. In this section the basic principle of frequency measurement
based on counting the zero crossings is presented, when the sampling theorem is
satisfied (signal frequency below the Nyquist limit). Section 2 presents a detailed
description of the used principle when this theorem is not satisfied and section 3
presents the experimental results.

Let a periodical signal with no dc component, whose zero crossings areequally
spaced at half the period. A particular case is that of a single sinusoid. Inorder
to measure its frequency by counting the zero crossings,N data samples must be
acquired, Fig. 1. Letfs and 1/Ts the sampling frequency and period, respectively.
Then, the acquisition timeTac can be computed by

Tac = (N −1)Ts. (1)
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Fig. 1. The samples of the acquired signal.

Let fz(= 1/Tz) the zero-crossings frequency. IfNz is the number of zero cross-
ings corresponding to theN data samples, then

Tz =
1
fz

=
Tac

Nz/2
=

2(N −1)

fsNz
. (2)
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If the sampling theorem is satisfied, that isfs ≥ 2 f , wheref = 1/T is the signal
frequency, then

f = fz =
fsNz

2(N −1)
. (3)

Signal acquisition starts with the first zero crossing and ends after the detection
of a zero crossing of the same type as the first one that occurs after a pre-established
number of samples. Thus, in Fig. 1 the first zero crossing is from a positive sample,
denoted by 1, to a negative sample denoted by 2. The last zero crossing,that ends
the acquisition, is that from theN-th sample to the(N + 1)-th sample, and is not
counted inNz. It follows that the number of acquired samples can slightly differ
from one measurement to another. From Fig. 1 it can also be seen thatTac is less
than a multiple ofTz by at mostTs. It is easy to show that there is a similar case
whenTac is higher by at mostTs than a multiple ofTz. Therefore,Tz calculated with
equation (2) can be affected by a maximum relative error of

εTz = εTac =
Ts

(N −1)Ts
=

1
N −1

, (4)

if the error of detecting zero crossings is zero. In the following section there will
be a come-back to this problem. Becausef is computed by (3) it follows that it is
affected by the same error, that isε f = 1/(N−1). It can be observed that this error
does not depend on the value of measured frequencyf .

In comparison with this principle, the method from [7] is as follows. The period
of the signal in Fig. 1 is computed as the number of sampling intervals between
two consecutive zero crossings of the same type (for instance, 2Ts, between sam-
ples 1 and 3) and then the time interval between sample 3 and the next real zero
crossing of waveform is added and the time interval between sample 1 and thenext
real crossing is subtracted. These time intervals are determined by linear interpo-
lation. In this mode, a smaller error with comparison to equation (4) is obtained,
but it is necessary thatfs ≫ 2 f and further computations are required. The method
presented in this paper has however the advantage of extending the measurement
range above the Nyquist limit.

If the sampling theorem is not satisfied, that is frequencyf is above the Nyquist
limit, f > fs/2, then f can be computed by one of the following equations [8]

f = k1 fs + fz, (5)

f = k2 fs − fz. (6)

Coefficientsk1 andk2 are positive integers. In order to compute the frequency
f , the required equation, either (5) or (6), and the value of the corresponding coef-
ficient, (k1 or k2), must be determined.
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2 Zero Crossings Method for Frequency Measurement

In this section the method for frequency measurement when the sampling theorem
is not satisfied is presented.

The equations (3), (5) and (6) can be written as follows, depending on the ratio
betweenf and fs

f =































fz for f ∈ [0, fs/2]
fs − fz for f ∈ [ fs/2, fs]

fs + fz for f ∈ [ fs,3 fs/2]
2 fs − fz for f ∈ [3 fs/2,2 fs]
2 fs + fz for f ∈ [2 fs,3 fs/2]

.... .

(7)

Based on (7), a similar expression forfz can be obtained, that is graphically
represented in Fig. 2, for a certain frequencyf .
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Fig. 2. The variation offz versusfs.

To calculate the frequency of the signal, equation (5) is used when the sampling
frequency is placed on a falling segment and equation (6) is used when thesampling
frequency is placed on a rising segment. Therefore, falling segments will be named
of k1 type and rising segments will be named ofk2 type.

It is easy to observe that the minimums of the graph are 0 and are obtained for
sampling frequencies that satisfy the following condition:

fs = f /k1 = f /k2, (8)
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with k1 = k2.
The maximums are obtained for sampling frequencies that satisfy the following

condition:
fs = 2 f /(2k1 +1) = 2 f /(2k2−1), (9)

with k2 = k1 + 1. The values offz that correspond to maximums in the graph can
be obtained by comparing equations (5) and (6):

fz + k1 fs = k2 fs − fz, (10)

with k2 = k1 +1.
Using (10) and (9), the values for each maximum of the graph from Fig. 2 are:

fzmax =
fs

2
=

f
2k1 +1

=
f

2k2−1
, (11)

wherek2 = k1 +1.
In order to compute the frequencyf , the proposed method requires two sets

of samples with sampling frequenciesfs1 and fs2, fs2 > fs1. The two sampling
frequencies must be on the same segment, or on two adjacent segments, in Fig. 2.
This condition imposes an upper limit for the measured frequency, and fourcases
for the computation ofk1 or k2. These cases are presented in the following:

1. The sampling frequenciesfs1 and fs2 are placed on a segment ofk1 type.

2. The sampling frequenciesfs1 and fs2 are placed on a segment ofk2 type.

3. The sampling frequencyfs1 is placed on a segment ofk1 type, the sampling
frequencyfs2 is placed on a segment ofk2 type andk1 = k2. In this case, the
two adjacent segments have a common point forfz = 0.

4. The sampling frequencyfs1 is placed on a segment ofk2 type, the sampling
frequencyfs2 is placed on a segment ofk1 type andk1 = k2−1. In this case,
the two adjacent segments have a common point forfz = f /(2k1 +1).

For the four cases above, coefficientsk1 andk2 can be determined as follows.
Let fz1 and fz2 the zero crossings frequencies obtained for sampling frequenciesfs1

and fs2, respectively.
For case 1:

f = fz1 + k1 fs1 = fz2 + k1 fs2. (12)

It follows that

k1 =
fz1− fz2

fs2− fs1
. (13)

For case 2:
f = k2 fs1− fz1 = k2 fs2− fz2. (14)
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It follows that

k2 =
fz2− fz1

fs2− fs1
. (15)

For case 3:
f = fz1 + k1 fs1 = k1 fs2− fz2. (16)

It follows that

k1 = k2 =
fz1 + fz2

fs2− fs1
. (17)

For case 4:
f = (k1 +1) fs1− fz1 = fz2 + k1 fs2. (18)

It follows that

k1 =
fs1− fz1− fz2

fs2− fs1
, k2 = k1 +1. (19)

Thus, in order to obtain the value ofk1 or k2, the expressions given by (13),
(15), (17) and (19) must be computed. Then, only one of these four values must be
a positive integer, because only one case from the four above is true for a certain
frequencyf , and that value will be the right value ofk1 or k2. When the sampling
theorem is verified,fz1= fz2 and thenk1 = k2 = 0. Finally, the measured frequency
can be computed by one of the equations (12), (14), (16) and (18), depending on
fz1 and fs1, or on fz2 and fs2.

In the following, the maximum measurable frequencyfmax, depending on the
two sampling frequencies will be computed. For this purpose we impose that the
sampling frequencies correspond to a single segment ofk1 type or ofk2 type in
graph from Fig. 2, for the maximum measurable frequency. In this case, the two
sampling frequencies will be on the same segment, or on the two adjacent segments,
if the frequency is less than the maximum measurable frequency.

1. The case of segment ofk1 type.
The condition that the sampling frequencies correspond to a single segmentis

obtained based on (8) and (9) forf = fmax:

fs1 ≥
2 fmax

2k1 +1
, (20)

fs2 ≤
fmax

k1
. (21)

Then, from (20) and (21) it follows that

k1 ≤
fs1

2( fs2− fs1)
. (22)
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The practical value ofk1 will be

k1max =

[

fs1

2( fs2− fs1)

]

, (23)

where[x] represents the largest integer smaller thanx.
¿From (20), fork1 = k1max, it follows that the maximum measurable frequency

is:

fmax ≤
(2k1max +1) fs1

2
. (24)

2. The case of segment ofk2 type.
The condition that the sampling frequencies correspond to a single segmentis

obtained based on (8) and (9) forf = fmax:

fs1 ≥
fmax

k2
, (25)

fs2 ≤
2 fmax

2k2−1
. (26)

Then, from (25) and (26) it follows that

k2 ≤
fs2

2( fs2− fs1)
. (27)

The practical value ofk2 will be

k2max =

[

fs2

2( fs2− fs1)

]

. (28)

From (25), fork2 = k2max, it follows that the maximum measurable frequency
is:

fmax ≤ k2max fs1. (29)

Finally, the maximum measurable frequency will be the minimum value from
those obtained by (24) and (29).

In the following, an error analysis for measuring the frequency above the Nyquist
limit is presented. From equations (5) and (6), it follows that signal frequency will
be determined with a maximum relative error of

ε f =
fz

f
ε fz +(1−

fz

f
)ε fs + fs

k
f

εk, (30)

wherek can bek1 or k2, fz can befz1 when fs is fs1, and fz2 when fs is fs2.
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The termε fz , that affectsfz, has two components: the error of 1/(N −1), and
the error of detecting zero crossings,εNz , which can be higher for frequency values
close tok fs1, k fs2, (k−0.5) fs1 or (k−0.5) fs2. The termfz1 (or fz2) is contained in
(12), (14), (16) or (18) but also can affect the calculations ofk1 or k2 by (13), (15),
(17) and (19). However, the value ofk will be chosen by rounding the closestk to
the corresponding integer. Therefore, it can be said thatεNz affects onlyε fz in (30),
and the third term in (30) will be 0 becauseεk = 0.

The error of detecting zero crossings occurs for signal frequencies close to one
of the four values presented above, because there are many consecutive samples
with very low values. In this case the presence of noise, including quantization
noise, can cause more or less zero crossings in comparison with the real case.

In order to reduce these errors, a single zero crossing is consideredeven if there
are more consecutive zero samples. Furthermore, when frequency values calculated
depending onfs1 andNz1 or on fs2 andNz2 differ by more than 20 ppm, only the
most accurate value should be kept. To determine the right value, the following
should be considered.

If the signal frequency is close tok fs1 or to k fs2, both Nz1 andNz2 are small
(under 100), and the smaller is affected by zero crossing detection errors. In this
case, the frequency value corresponding to the largerNz should be kept.

If the signal frequency is close to(k−0.5) fs1 or to(k−0.5) fs2, bothNz1 andNz2

will be large (close toN −1), the larger being affected by zero crossing detection
errors. In this case, the frequency value corresponding to the smallerNz should be
kept.

Finally, if the error of detecting zero crossings could be eliminated, it follows
that ε fz in (30) would be 1/(N − 1) and thenε f would be less than 1/(N − 1).
However, as will be shown in the following section, this reduction is not so great
as expected because the error of sampling frequencyε fs is not zero, and the error
of detecting zero crossings are not completely eliminated.

3 Experiments

The method presented in Section 2 has been used to implement a frequency meter
based on a National Instruments PCI 6023 data acquisition board. The correspond-
ing program was written in C-language and run in real time.

The two sampling frequencies were:fs1 = 1/(25×200ns)=200 kHz, andfs2 =
1/(24×200ns)= 208.3333 kHz. Thus, from (23), (24), (28) and (29) it follows that
the maximum measurable frequency is 2400 kHz. The number of data samples was
N = 10000, thus the relative error is 10−4. The measurement time is roughly the
time required for the acquisition of the two sets of data samples, that is 2Tac, and is
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about 100 ms.
Table 1 presents several experimental results. The signal to be measured was

taken from a HM8130 signal generator and, for a better accuracy, was also mea-
sured with a HM8122 counter-timer. The values in the first column of table 1 have
been measured with HM8122. The next four columns present the computedvalues
of coefficientsk1 or k2. For each frequency, the value in italics was rounded to the
nearest integer and then used to compute the result of the measurement, with the
corresponding equations from (12), (14), (16), or (18). The value f1 was obtained
with the first member of one from previous equations, depending onfs1, and value
f2 was obtained with the second member of one from previous equations, depend-
ing on fs2. The values marked with the symbol * in table 1 are the right frequency
values that should be kept (as shown in the previous section). It can beseen that in
each case the right value is inf2 column and is more accurate, becausefs2 is not
close tof /k or f /(k−0.5). It can also be seen that the errors are less than 10−4.

Table 1. Some experimental results for measuring different frequencies.

f k1 k2 k1 k2 f1 f2 Error
[kHz] with(11) with(13) with(15) with(17) [kHz] [kHz] [ppm]

499.968 1.9928 -1.9928 21.9874 3.0126 499.917 499.977* 18
600.007 -2.9566 2.9566 3.0393 21.9606 600.344 600.016* 15
600.029 -2.9397 2.9397 3.0508 21.9491 600.462 600.039* 16
750.002 -4.0002 4.0002 15.9964 9.0035 750.015 750.013 14
764.918 -3.9995 3.9995 12.4171 12.5828 764.926 764.930 15
883.557 4.0001 -4.0001 16.0559 8.9440 883.567 883.565 9
900.005 3.9676 -3.9676 19.9729 5.0270 900.247 900.021* 17
964.248 -4.9995 4.9995 13.5764 11.4235 964.260 964.264 12
1700.027 7.477 -7.477 15.9878 9.0121 1700.142 1700.043* 9
1800.049 -8.9479 8.9479 9.0413 15.9586 1800.382 1800.040* 5
1852.520 3.6131 -3.6131 9.0007 15.9992 1852.557 1852.551 16
2014.442 -6.5313 6.5313 10.0005 14.9994 2014.455 2014.450 14
2200.230 -10.866 10.8660 11.0641 13.9358 2200.822 2200.238* 3
2300.037 10.8640 -10.8641 12.8781 12.1218 2301.072 2300.050* 5
2394.538 -11.9581 11.9581 12.9582 12.0417 2394.561 2394.567 9

In the following, two examples with the acquired signals that show the error of
detecting zero crossings are presented.

Fig. 3 shows the acquired signal whenf is 900.005 kHz, that is close to(k−
0.5) fs1. In this case there should be a zero crossing at each sample starting with
the second, and each sample should have the same amplitude (as absolute value).
However, because the above relation is met approximately, the amplitude decreases
slowly and at a time it will be very low, and errors in detecting the zero crossings
can occur. Further, if the signal has a small dc component, many zero crossings can
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Fig. 3. The acquired signal whenf =
900.005 kHz.
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Fig. 4. The acquired signal whenf =
600.007 kHz.

be lost.
Fig. 4 shows the acquired signal whenf is 600.007 kHz, that is close tok fs1. In

this case there should be no zero crossings, and each sample should have the same
amplitude. Again, because the above relation is met approximately, a signal witha
slow slope, that can have further zero crossings will be obtained.

4 Conclusions

The possibility to extend the range of frequency measurement of a single sinusoid
based on counting the zero crossings, much beyond half the sampling frequency,
has been presented. For this purpose, two sets of data samples are acquired at
two different but close sampling frequencies. Then, simple calculations lead to the
measurement result. The main advantage of this method is that an instrument with
maximum measurable frequency much higher than the Nyquist limit of the data
acquisition board can be implemented.
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