FACTA UNIVERSITATIS (NIS)
SER.: ELEC. ENERG. vol. 19, no. 1, April 2006, 133-141

Efficient Implementation of the Third Order RLS
Adaptive Volterra Filter

Georgeta Budura and Corina Botoca

Abstract: Nonlinear adaptive filtering techniques are widely usedliernonlinear-
ities identification in many applications. This paper preg®a new implementation
of the third order RLS Volterra filter based on the decomparsiof the input vector.
Its performances are evaluated in a typical nonlinear sy&lentification application.
Different degrees of nonlinearity for the nonlinear systmm considered. Compara-
tions, based on the adaptive filter error, are made in allscagth a linear identifier.
The experimental results show that the proposed nonlideatifier has better perfor-
mances than the linear one.

Keywords: Adaptive filter, Volterra filter, efficient implementationpnlinear identi-
fier performances.

1 Introduction

The dynamic development of nonlinear filtering is indicated by the amounttaf pu
lished research and the wide spread use of nonlinear digital filters.ifi ps
plications that need nonlinear structures are encountered in many «iféeess,
notably in: telecommunications, image processing, in geophysical and biahedic
signal processing [1]. Detection, representation and identificationrdinearities

in different systems represent important tasks in many applications aral iad

jor contribution to the development of the main nonlinear modelling techniques.
The current trend in the telecommunication systems design is the identification and
compensation of unwanted nonlinearities [2]. It was demonstrated thatnied
nonlinearities in the system will have a determinant effect on his perforeanc
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There are various ways of reducing the effects of undesired noritiesa The
use of nonlinear models considered in this paper to characterize and rsaigpe
harmful nonlinearities offer a possible solution.

The Volterra series have been widely applied as nonlinear system modelling
technique with considerable success. However, at present, noreaberethod
exists to calculate the Volterra kernels for nonlinear systems, although dindyec
calculated for systems whose order is known and finite [3]. When the mamlin
system order is unknown, adaptive methods and algorithms are widelyfarsed
the Volterra kernel estimation. The accuracy of the Volterra kernels widrdene
the accuracy of the system model and the accuracy of the inverse syséehfor
compensation. The speed of kernel estimation process is also importanst A fa
kernel estimation method may allow the user to construct a higher order matel th
gives an even better system representation.

2 The Volterra Model

This section will discuss some important aspects of the third order Volterralmod
For a discrete-time and causal nonlinear system with memory, with input mgh] a
output y[n], the Volterra series expansion is given by:

M-1
y[n} = hg+ Z hy [kl] X[I’l— kl]
ki=0

M-1M-1

+ Z Z hy [k]ﬁkz]X[ﬂ— k]_]X[I’I— kz] (1)
ki=0k>=0
M-1M-1M-1

hs [kq ko, k —k _k k
+klz:0k22:0k32:0 3 ke ka2, ks X [N — ki) x[n — ka] x[n — ks]

where, for simplicity we have considered a nonlinear model up to the thiet.ord

In the above representation, the functinsg = 1,3, represent the kernels as-
sociated to the nonlinear operatétgx[n||. The input-output relation can also be
written in terms of nonlinear operators as indicated in relation (2).

y[n] = Ho + Ha [x[n]] + Hz [X[n]] + H3 [x[n]] (2)

The nonlinear model described by the relations (1) and (2) is called a third o
der Volterra model. Note that the above representation has the same memory fo
all nonlinearity orders. In the most general case the relation (1) mayifise d
ent memory for each nonlinearity order. A further simplification can be made to
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relation (1) by considering symmetric Volterra kernels. The kem@...k] is
symmetric if the indices can be interchanged without affecting its value. lfome ¢
sider symmetric kernels of memory M, the second order Volterra kernalresq
the determination oM (M + 1) /2 coefficients, while the third order kernel needs
M (M + 1) (M +2) /6 coefficients. The second order Volterra kernel is a symmetric
(M x M) matrix. As presented in reference [4], the third order kernel is contbose
of M symmetric matrices having the dimensidv x M).

The kernel estimation accuracy becomes the major problem in the practical ap
plications. It was shown that the Volterra operators are homogenedugeasarally
not orthogonal. As a consequence of this last characteristic the Vokernels
can not be measured using the cross correlation techniques and the ofithe
\olterra kernels will depend on the order of the Volterra representagomghused
[2]. If the order of the Volterra model is changed the Volterra kernels ahidinge
and they must be recalculated. However, for an input having a symmetrlitizohep
density function, such as the Gaussian noise, the odd order \oltentidiuals are
orthogonal to the even order Volterra functionals. It follows that for tyje of in-
put, a 2nd order Volterra model, with zero DC component, is an orthogorndgino
This leads to direct Volterra kernel measurement by the cross-correfagthods
[5].

For higher order \olterra filters adaptive methods of kernels estimation are
widely used. Due to the linearity of the input-output relation according to the
kernels, or filter coefficients, the application of adaptive algorithms foviterra
filters implementation is quite simple. The nonlinearity is reflected only by multiple
products between the delayed versions of the input signal.

Next we will introduce the input vectors corresponding to differenecsdker-
nels. The first order input vector is defined as follows:

Xe=[ x[n] x[n—1] x[n-2] | (3)
"The second order input vector” can be expressed by:
Xo = Xq % X1 4)

For "the third order input vector” we propose to express the multiple input
delayed signal products in relation (1) by matrices elements. These maites c
be generated by multiplying the "second order input vector” definedrdcapto
relation (4 ) by the elements of the first order input vector. If we consdeeal
filters length memoriesyl = 3, it follows:
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x3[n] x?[n]x[n—1] X2 [n]x[n— 2]

XoxX[n| = e X[ [n—=1] x[nx[n—1x[n—2] (5)
x[n]x?[n— 2]

Xorx[n—1=| .. @n—1 x[n—1x[n (6)

x[n—1x?[n—2]

XokX[N—2] = (7)

x3[n—2]
Hence, "the third order input vector” consists in fact of M matrices as atditin
relations (5)%-(7) and corresponds to a symmetric third order Volterra kernel.

This decomposition of "the third order input vector” will be implemented for
the RLS Volterra filter.

3 \olterra Kernel Estimation Using the RLS Adaptive Algorithm

A typical adaptive technique is shown in Fig.1.

Nonlinear system

x [n] e[n]

ol

RLS Volte sl B
filte

Fig. 1. The RLS Volterra Identifier

The Volterra filter of a fixed order and a fixed memory adapts to the unknown
nonlinear system using one of the various adaptive algorithms. The asapfive
techniques for Volterra kernel estimation has been well studied. Mostqgfri
vious research consider 2nd order Volterra filters and some cons&8rdiorder
case [6],[7]. A simple and commonly used algorithm is based on the LMS adapta
tion criterion. Adaptive Volterra filters based on the LMS adaptation algoréten
computational simple but suffer from slow and input signal dependamwecgence
behavior and hence are not useful in many applications.
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The aim of this section is to discuss the efficient implementation of the RLS
adaptive algorithm on a third order Volterra filter. For simplicity we have con-
sidered only odd order nonlinearities, up to the third order, in the systémg be
identified. Due to the linearity of the input-output relation of the Volterra model
with respect to filter coefficients, the implementation of the RLS algorithm can be
realized as an extension of the RLS algorithm for linear filters.

Hence we define the extended input vector, for a third order Volterraviliech
has only odd order kernels, as:

X=[x[n .. xn—=M+1] x3n x*nxn-1 .. X*n-M+1] ] (8)

and the extended filter coefficients vector as:

H=[hy .. hu—1 hooo hoor ... hm—im—1m-1 ] %)

The elements of the extended input vector can be easily actualized batbexd on
first order and "third order input vectors” using the proposed relat{&i=(7).

As in the linear case the adaptive nonlinear system minimizes the following
cost function at each time:

J(n) = i/\”—k (d(K)—H ()X’ (k)? (10)
k=

whereH (n) andX (n) are the coefficients and the input signal vectors, respectively,
as defined in (9) and (8), is a factor that controls the memory span of the adaptive
filter andd(k) represents the desired output. The solution of equation (10) can be
obtained recursively using the RLS algorithm.

The RLS algorithm updates the filter coefficients according to the following
steps:

. Initialization:
define the filter memoyenght for H(n) and X(n))
H(0)=[00...0];

Cxx (0) =01 whered is a small positive constant;

Il. Operations: fom = 1,nr.of iterations
1. Create the input vector:
X (n)
2. Compute the error:
e(n/n—1)=d(n)—H(n—1)*X'(n);
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3. Compute the scalar:
p(n) =X (n) «Cxx(n—1) X (n);
4. Compute the matrix:
G(n) = (Cxx(n=1)xH'(n-1)) /(A + p);
5. Updates the filter vector:
H(n)=H(n-1)+e(n/n—1)«xG'(n);
6. Updates the matri€y x:
Cxx = A1k (Cxx (n— 1) — G(n) x X (n) * Cxx (n— 1)),

In the relations abov€xx denotes the inverse autocorrelation matrix of the
extended input signal. Inversion was done according to the matrix inndesiama

[8].

4 Experiments and Results

The nonlinear system with memory being identified consists of a linear filter with
impulse response given hy:

hinj=2""Y o0<n<M;—1 (11)
followed by a nonlinear system without memory which input-output relation is:
y[n] = X[n] + bxx3[n| (12)

The linear filter memory in relation (11) id; = 10. The coefficient b permits
to change the nonlinearity degree.

The input signak[n] is a white Gaussian sequenzg], colored using the au-
toregresive filter described by:

x[n] = x[n—1] — 0,9x[n— 2] +- 0,5z|n| (13)

Experiments have been done regarding the identification of a third order no
linear system with different degrees of nonlinearity. The performantieeoRLS
adaptive Volterra filter was appreciated by comparing the error of thénean
identifier with the error of a linear identifier. The same memidry= 10 has been
chosen for the linear and for the third order Volterra kernel accortditige relation
(9). For the linear identifier we fixed the same memory. The fattaras chosen
equal to 0995.

The simulations have been done in the MATLAB software.
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Fig. 2. The error of the RLS Volterra identifier: Fig. 3. The error of the RLS linear identifier:
b=0.01 b=0.01

Nonlinear system identifiedd = 0,01 The error using the RLS Volterra iden-
tifier is indicated in Fig.2.

Nonlinear system identifiedo = 0,1. The error using the RLS \olterra iden-
tifier is indicated in Fig.4 and the error using the linear identifier is depicted in
Fig.5.

Nonlinear system identifiedo = 1. The error signal using the RLS Volterra
identifier is indicated in Fig.6 and the error using the linear identifier is depicted in
Fig.7.
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Fig. 4. The error of the RLS \olterra identifier: Fig. 5. The error of the RLS linear identifier:
b=0.1 b=0.1

The mean and the dispersion of the error signals were calculated too.ein ord
to characterize the performances of both identifiers. The corresgpudines are
indicated in Table 1. As it can be seen the nonlinear identifier performdmges
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Fig. 6. The error of the RLS Volterra identifier: Fig. 7. The error of the RLS linear identifier:
b=1 b=1

Oev ) are very good for different nonlinearity degrees, while the lineartiien
performances (g, Og ) are unsatisfactory when the nonlinearity increases.

Table 1. The identifiers parameters

(b | m [ g | my [ gGa | My | Gev |
001 —76-10% | 0.606 | 2.38-10 4 | 0.0083 | —2.32-10°° | 0.0367
01 | —85-10% | 05972 | 0.0025 0.080 | —2.33-10°% | 0.0368
1 0.0123 1,63 0.025 0,8 1.193-10° | 0.0366

5 Conclusions

In this paper we have proposed a new implementation of the third order RLS
\olterra filter based on the decomposition of the input signal and on symmetric
kernels assumption. For that purpose we have introduced the condééptxo

ond order input vector” and "third order input vector”. For simplicity; tbe RLS
Volterra implementation there were considered only the first and the third orde
kernels, but also the second order kernel might be included.

The nonlinear adaptive filter performances were evaluated in a typistdray
identification application and compared with the performances of a linear identi-
fier. The experimental results showed that the RLS Volterra filter peribimeéer
than the linear filter which performances whose inacceptable when the eaxitjn
degree was increased.

The costs of these performances are paid by the computational complexity re
quired by the nonlinear adaptive Volterra filter implementation .
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